English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermal dissociation of chemisorbed oxygen molecules on Ag(110): an investigation by scanning tunneling microscopy

MPS-Authors
/persons/resource/persons22280

Zambelli,  Tomaso
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21333

Barth,  Johannes V.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22245

Wintterlin,  Joost
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Zambelli, T., Barth, J. V., & Wintterlin, J. (2002). Thermal dissociation of chemisorbed oxygen molecules on Ag(110): an investigation by scanning tunneling microscopy. Journal of Physics: Condensed Matter, 14(16), 4241-4250. doi:10.1088/0953-8984/14/16/314.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0011-151A-2
Abstract
The thermal dissociation of oxygen molecules on A-(110) was studied by means of scanning tunnelling microscopy. At temperatures around 170 K a fraction of the molecules dissociate to form pairs of O atoms on the unreconstructed surface. The atoms lie in the trenches between the close-packed Ag rows; the intrapair distance is two lattice constants. The O atoms are very reactive with CO at temperatures as low as 70 K. The preferential orientation of the pairs in the [001] direction contrasts with the finding in a previous study (Hahn J R, Lee H J and Ho W 2000 Phys. Rev. Lett. 85 1914) that electron-induced dissociation exclusively leads to [110]-oriented pairs. The trajectories of thermal and electron-induced dissociations must therefore be different. In the temperature range of the dissociation, several additional oxygen features occur on the surface. These include unreacted O-2, molecules, the first nuclei of the added-row reconstruction, and two unidentified O-induced structures.