Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states

MPG-Autoren
/persons/resource/persons21738

Klüner,  Thorsten
Chemical Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Klüner, T., Govind, N., Wang, Y. A., & Carter, E. A. (2002). Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states. Journal of Chemical Physics, 116(1), 42-54. doi:10.1063/1.1420748.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-1620-A
Zusammenfassung
We extend our recently reported embedding theory [J. Chem. Phys. 110, 7677 (1999)] to calculate not only improved descriptions of ground states, but now also localized excited states in a periodically infinite condensed phase. A local region of the solid is represented by a small cluster for which high quality quantum chemical calculations are performed. The interaction of the cluster with the extended condensed phase is taken into account by an effective embedding potential. This potential is calculated by periodic density functional theory (DFT) and is used as a one-electron operator in subsequent cluster calculations. Among a variety of benchmark calculations, we investigate a CO molecule adsorbed on a Pd(111) surface. By performing complete active space self-consistent field, configuration interaction (CI), and Møller–Plesset perturbation theory of order n (MP-n), we not only were able to obtain accurate adsorption energies via local corrections to DFT, but also vertical excitation energies for an internal (52*) excitation within the adsorbed CO molecule. We demonstrate that our new scheme is an efficient and accurate approach for the calculation of local excited states in bulk metals and on metal surfaces. Additionally, a systematic means of improving locally on ground state properties is provided.