日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Characterization of a two-parameter mixed-mode electrochemical behavior regime using neural networks

MPS-Authors
/persons/resource/persons22003

Rico-Martínez,  Ramiro
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22252

Wolf,  Wilfried
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21826

Lübke,  Margot
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21488

Eiswirth,  Markus
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21711

Kevrekidis,  Ioannis G.
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

González-García, R., Rico-Martínez, R., Wolf, W., Lübke, M., Eiswirth, M., Anderson, J. S., & Kevrekidis, I. G. (2001). Characterization of a two-parameter mixed-mode electrochemical behavior regime using neural networks. Physica D, 151(1), 27-43. doi:10.1016/S0167-2789(00)00219-0.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-1885-9
要旨
We use nonlinear signal processing techniques, based on artificial neural networks, to construct a continuous-time model (set of ordinary differential equations, ODEs) from experimental observations of mixed-mode oscillations during the galvanostatic oxidation of hydrogen on platinum in the presence of bismuth and chloride ions. The data was in the form of time-series of the potential for different values of the applied current and chloride ion concentration. We use the model to reconstruct the experimental dynamics and to explore the associated bifurcation structures in phase-space. Using numerical bifurcation techniques we locate stable and unstable periodic solutions, calculate eigenvalues, and identify bifurcation points. This approach constitutes a promising data post-processing procedure for investigating phase-space and parameter space of real experimental systems; it allows us to infer phase-space structures which the experiments can only probe with limited measurement precision and only at a discrete number of operating parameter settings. For example, the fitted model suggests the existence of a sub-critical Hopf bifurcation near the range of parameters probed in the experiments; this might explain the experimental difficulty in locating small amplitude simple oscillations.