Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Heterogeneous catalysis on the atomic scale

MPG-Autoren
/persons/resource/persons21498

Ertl,  Gerhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ertl, G. (2001). Heterogeneous catalysis on the atomic scale. The Chemical Record, 1(1), 33-45. doi:10.1002/1528-0691(2001)1:1<33:AID-TCR6>3.0.CO;2-V.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-18F8-5
Zusammenfassung
Information about the elementary processes underlying heterogeneous catalysis may be obtained by investigating well-defined single crystal surfaces. The success of this "surface science" approach for "'real" catalysis can be demonstrated, for example, with ammonia synthesis. The progress of catalytic reactions can be observed on an atomic scale by applying scanning tunneling microscopy and other surface physical techniques, as is shown with different examples in this paper: CO oxidation on a Pt(111) surface proceeds preferentially along the boundaries between adsorbed O and CO patches. Ru is practically inactive for the same reaction under lower pressure conditions but is transformed into RuO2 under atmospheric pressure conditions, where part of the surface Ru atoms function as coordinatively unsaturated sites (cus). In contrast, in the hydrogen oxidation reaction on Pt(111), an autocatalytic reaction step comes into prominence, and is responsible for the formation of propagating concentration patterns on the surface as a characteristic of nonlinear dynamics. Additionally, the limits of the concept of thermal equilibrium in surface rate processes are explored by applying ultrafast (femtosecond) laser techniques.