English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

To be or not to be convergent in salicin-based defense in chrysomeline leaf beetle larvae: Evidence from Phratora vitellinae SAO

MPS-Authors
/persons/resource/persons3968

Kirsch,  Roy
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;
Research Group Dr. A. Burse, Chemical Defense of Leaf Beetles, Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4231

Vogel,  Heiko
Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;
Research Group Dr. H. Vogel, Genomics, Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3812

Boland,  Wilhelm
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kirsch, R., Vogel, H., Pasteels, J., & Boland, W. (2011). To be or not to be convergent in salicin-based defense in chrysomeline leaf beetle larvae: Evidence from Phratora vitellinae SAO. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3225-3232. doi:10.1098/rspb.2011.0175.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-2770-D
Abstract
Glandular chemical defence relying on the action of salicylaldehyde is characteristic for Chrysomela leaf beetle larvae. The salicylaldehyde precursor salicin, sequestered from salicaceous host plants, is deglucosylated and the aglycon further oxidized by a salicyl alcohol oxidase (SAO) to the respective aldehyde. SAOs, key enzymes in salicin-based glandular chemical defence, were previously identified and shown to be of a single evolutionary origin in Chrysomela species. We here identified and characterized SAO of Phratora vitellinae, the only species outside the genus Chrysomela that produce salicylaldehyde as a defensive compound. Although Chrysomela and Phratora are not closest relatives, their SAOs share glucose–methanol–choline oxidoreductase (GMC) affiliation, a specific GMCi subfamily ancestor, glandular tissue-specific expression and almost identical gene architectures. Together, this strongly supports a single origin of SAOs of both Chrysomela and Phratora. Closely related species of Chrysomela and P. vitellinae use iridoids as defensive compounds, which are like salicylaldehyde synthesized by the consecutive action of glucosidase and oxidase. However, we elucidated SAO-like sequences but no SAO proteins in the glandular secretion of iridoid producers. These findings support a different evolutionary history of SAO, related genes and other oxidases involved in chemical defence in the glandular system of salicylaldehyde and iridoid-producing leaf beetle larvae.