Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bulk and Surface Structure and High-Temperature Thermoelectric Properties of Inverse Clathrate-III in the Si-P-Te System

MPG-Autoren
/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zaikina, J. V., Takao, M., Kovnir, K., Teschner, D., Senyshyn, A., Schwarz, U., et al. (2010). Bulk and Surface Structure and High-Temperature Thermoelectric Properties of Inverse Clathrate-III in the Si-P-Te System. Chemistry-a European Journal, 16(42), 12582-12589. doi:10.1002/chem.201001990.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-299A-1
Zusammenfassung
The creation of thermoelectric materials for waste heat recovery and direct solar energy conversion is a challenge that forces the development of compounds that combine appreciable thermoelectric figure-of-merit with high thermal and chemical stability. Here we propose a new candidate for high-temperature thermoelectric materials, the type-III Si172−xPxTey cationic clathrate, in which the framework is composed of partially ordered silicon and phosphorus atoms, whereas tellurium atoms occupy guest positions. We show that the utmost stability of this clathrate (up to 1500 K) in air is ensured by the formation of a nanosized layer of phosphorus-doped silica on the surface, which prevents further oxidation and degradation. As-cast (non-optimized) Si-P-Te clathrates display rather high values of the thermoelectric figure-of-merit (ZT=0.24–0.36) in the temperature range of 700–1100 K. These ZT values are comparable to the best values achieved for the properly doped transition-metal-oxide materials. The methods of the thermoelectric efficiency optimization are discussed.