English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dual echo EPI - The method of choice for fMRI in the presence of magnetic field inhomogeneities?

MPS-Authors
/persons/resource/persons19861

Mildner,  Toralf
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwarzbauer, C., Mildner, T., Heinke, W., Brett, M., & Deichmann, R. (2010). Dual echo EPI - The method of choice for fMRI in the presence of magnetic field inhomogeneities? Neuroimage, 49(1), 316-326. doi:10.1016/j.neuroimage.2009.08.032.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-2D69-6
Abstract
FMRI studies of the orbitofrontal cortex or the inferior temporal lobes are often compromised by susceptibility artefacts, which may result in signal reduction or loss in gradient echo (GE) EPI. Spin echo (SE) EPI is considerably more robust against susceptibility-related signal loss, but its intrinsic sensitivity to changes in the blood oxygenation level dependent (BOLD) contrast is generally lower. In this study, we performed a direct comparison of GE and SE fMRI using a single-shot dual echo EPI acquisition scheme. Transient hypercapnia, induced by breathing Carbogen (5% CO2, 95% O-2), was used as a global physiological stimulus to alter the BOLD contrast. In regions affected by magnetic field inhomogeneities, SE EPI provided significantly higher BOLD sensitivity than GE EPI. Such regions included the orbitofrontal cortex, temporal pole, anterior inferior temporal cortex, as well as parts of the lateral inferior temporal cortex and the lateral cerebellum. Dual echo fMRI benefits from the robustness of SE EPI in these critical regions while utilising the generally higher sensitivity of GE EPI in normal regions. It therefore provides an attractive solution for fMRI studies that require optimum sensitivity in both normal and critical brain regions. Furthermore, a general method is proposed to combine the GE and SE data into a single hybrid data set that provides optimum sensitivity in the whole brain. This method can be applied to any experimental design that can be expressed in terms of a generalised linear model. The feasibility of this approach is demonstrated both theoretically and experimentally. (C) 2009 Elsevier Inc. All rights reserved.