English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Absorbed in thought: The effect of mind wandering on the processing of relevant and irrelevant events

MPS-Authors
/persons/resource/persons22949

Smallwood,  Jonathan
Department Social Neuroscience, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Barron, E., Riby, L. M., Greer, J., & Smallwood, J. (2011). Absorbed in thought: The effect of mind wandering on the processing of relevant and irrelevant events. Psychological Science, 22(5), 596-601. doi:10.1177/0956797611404083.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-59EF-0
Abstract
This study used event-related potentials to explore whether mind wandering (task-unrelated thought, or TUT) emerges through general problems in distraction, deficits of task-relevant processing (the executive-function view), or a general reduction in attention to external events regardless of their relevance (the decoupling hypothesis). Twenty-five participants performed a visual oddball task, in which they were required to differentiate between a rare target stimulus (to measure task-relevant processes), a rare novel stimulus (to measure distractor processing), and a frequent nontarget stimulus. TUT was measured immediately following task performance using a validated retrospective measure. High levels of TUT were associated with a reduction in cortical processing of task-relevant events and distractor stimuli. These data contradict the suggestion that mind wandering is associated with distraction problems or specific deficits in task-relevant processes. Instead, the data are consistent with the decoupling hypothesis: that TUT dampens the processing of sensory information irrespective of that information’s task relevance.