English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Stability analysis of a real space split operator method for the Klein-Gordon equation

MPS-Authors
/persons/resource/persons30316

Blumenthal,  Frederick
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Blumenthal, F. (2011). Stability analysis of a real space split operator method for the Klein-Gordon equation. Bachelor Thesis, Ruprecht-Karls-Universität, Heidelberg.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0011-6F8D-A
Abstract
The Klein-Gordon equation is the relativistic, quantum mechanical equation of motion for spinless particles. Ruf et al. [1] introduced a real space split operator method for the Klein-Gordon equation and they presented a computer implementation of the method. In this thesis, a stability analysis of this method is performed in the Euclidean norm for one-dimensional problems with constant electromagnetic potentials. Results of the stability analysis are compared with the stability of the computer implementation.