English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter

MPS-Authors
/persons/resource/persons30503

Garny,  Mathias
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30609

Hohenegger,  Andreas
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30655

Kartavtsev,  Alexander
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30768

Lindner,  Manfred
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Garny, M., Hohenegger, A., Kartavtsev, A., & Lindner, M. (2009). Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter. Physical Review D, 80(12): 125027, pp. 1-28. doi:10.1103/PhysRevD.80.125027.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-7365-5
Abstract
The generation of a baryon asymmetry via leptogenesis is usually studied by means of classical kinetic equations whose applicability to processes in the hot and expanding early universe is questionable. The approximations implied by the state-of-the-art description can be tested in a first-principle approach based on nonequilibrium field theory techniques. Here, we apply the Schwinger-Keldysh/Kadanoff-Baym formalism to a simple toy model of leptogenesis. We find that, within the toy model, medium effects increase the vertex contribution to the CP-violating parameter. At high temperatures it is a few times larger than in vacuum and asymptotically reaches the vacuum value as the temperature decreases. Contrary to the results obtained earlier in the framework of thermal field theory, the corrections are only linear in the particle number densities. An important feature of the Kadanoff-Baym formalism is that it is free of the double-counting problem, i.e. no need for real intermediate state subtraction arises. In particular, this means that the structure of the equations automatically ensures that the asymmetry vanishes in equilibrium. These results give a first glimpse into a number of new and interesting effects that can be studied in the framework of nonequilibrium field theory.