Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Effective action and phase structure of multi-layer sine-Gordon type models

MPG-Autoren
/persons/resource/persons30634

Jentschura,  Ulrich David
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jentschura, U. D., Nándori, I., & Zinn-Justin, J. (2006). Effective action and phase structure of multi-layer sine-Gordon type models. Annals of Physics, 321(11), 2647-2659. doi:10.1016/j.aop.2006.01.005.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-8081-D
Zusammenfassung
We analyze the effective action and the phase structure of Ν-layer sine-Gordon type models, generalizing the results obtained for the two-layer sine-Gordon model found in [I. Nándori, S. Nagy, K. Sailer, U.D. Jentschura, Nucl. Phys. B, 725 (2005) 467–492]. Besides the obvious field theoretical interest, the layered sine-Gordon model has been used to describe the vortex properties of high transition temperature superconductors, and the extension of the previous analysis to a general N-layer model is necessary for a description of the critical behaviour of vortices in realistic multi-layer systems. The distinction of the Lagrangians in terms of mass eigenvalues is found to be the decisive parameter with respect to the phase structure of the N-layer models, with neighboring layers being coupled by quadratic terms in the field variables. By a suitable rotation of the field variables, we identify the periodic modes (without explicit mass terms) in the N-layer structure, calculate the effective action and determine their Kosterlitz–Thouless type phase transitions to occur at a coupling parameter β2c,N=8Nπ, where N is the number of layers (or flavors in terms of the multi-flavor Schwinger model).