Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Dielectronic recombination at low energies: Spectroscopy of doubly excited states in beryllium-like Na7+ ions

MPG-Autoren
/persons/resource/persons30989

Schippers,  S.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30550

Gwinner,  G.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31003

Schnell,  M.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31190

Wolf,  A.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kieslich, S., Böhm, S., Brandau, C., Müller, A., Schippers, S., Shi, W., et al. (2003). Dielectronic recombination at low energies: Spectroscopy of doubly excited states in beryllium-like Na7+ ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 205, 99-101.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-81A4-8
Zusammenfassung
Absolute rate coefficients for the dielectronic recombination (DR) of Na8+ ions producing doubly excited states in beryllium-like Na7+ have been measured at the Heidelberg heavy-ion test storage ring (TSR). The investigated electron energy range covers all DR resonances related to 2s2p1/2 and 2s 2p3/2 Δn=0 core excitations. Resonances related to Δn =1 and Δn=2 transitions of the valence electron are found at relative energies between 50 and 250 eV. At very low energies the resonance group associated with Na7+ (1s2pj7lj') intermediate states has been investigated with an energy resolution and precision that will challenge state-of-the-art theory.