Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Photodissociation spectroscopy of stored CH+ ions: Detection, assignment, and close-coupled modeling of near-threshold Feshbach resonances

MPG-Autoren
/persons/resource/persons30575

Hechtfischer,  U.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30746

Lange,  M.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30769

Linkemann,  J.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31023

Schwalm,  D.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31172

Wester,  R.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31190

Wolf,  A.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31204

Zajfman,  D.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hechtfischer, U., Carl J. Williams, J., Lange, M., Linkemann, J., Schwalm, D., Wester, R., et al. (2002). Photodissociation spectroscopy of stored CH+ ions: Detection, assignment, and close-coupled modeling of near-threshold Feshbach resonances. The Journal of Chemical Physics, 117(19), 8754-8777.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0011-84F1-F
Zusammenfassung
We have measured and theoretically analyzed a photodissociation spectrum of the CH+ molecular ion in which most observed energy levels lie within the fine-structure splitting of the C + fragment and predissociate, and where the observed irregular line shapes and dipole-forbidden transitions indicate that nonadiabatic interactions lead to multichannel dynamics. The molecules were prepared in low rotational levels J = 0-9 of the vibrational ground state X 1+ (v = 0) by storing a CH+ beam at 7.1 MeV in the heavy-ion storage ring TSR for up to 30 s, which was sufficient for the ions to rovibrationally thermalize to room temperature by spontaneous infrared emission. The internally cold molecules were irradiated with a dye laser at photon energies between 31 600-33 400 cm-1, and the resulting C+ fragments were counted with a particle detector. The photodissociation cross section displays the numerous Feshbach resonances between the two C+ fine-structure states predicted by theory for low rotation. The data are analyzed in two steps. First, from the overall structure of the spectrum, by identifying branches, and by a Le Roy-Bernstein analysis of level spacings we determine the dissociation energy D0 = (32 946.7±1.1) cm-1 (with respect to the lower fine-structure limit) and assign the strongest features to the vibrational levels v = 11-14 of the dipole-allowed A 1 state. The majority of the 66 observed resonances cannot be assigned in this way. Therefore, in a second step, the complete spectrum is simulated with a close-coupling model, starting from recent ab initio Born-Oppenheimer potentials. For the long-range induction, dispersion and exchange energies, we propose an analytical expression and derive the C6 coefficients. After a systematic variation of just the vibrational defects of the four Born-Oppenheimer potentials involved, the close-coupling model yields a quantitative fit to the measured cross section in all detail, and is used to assign most of the remaining features to the dipole-forbidden a 3 state (v = 17-20), and some to the weakly bound c 3+ state (v = 0-2). The model potentials, which reproduce the spectrum and compactly represent the spectroscopic data, should help to predict more accurately C+ + H scattering in the interstellar medium.