English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Implications of observed neutrinoless double beta decay

MPS-Authors
/persons/resource/persons30685

Klapdor-Kleingrothaus,  H. V.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30975

Sarkar,  U.
Prof. Dirk Schwalm, Emeriti, MPI for Nuclear Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Klapdor-Kleingrothaus, H. V., & Sarkar, U. (2001). Implications of observed neutrinoless double beta decay. Modern Physics Letters A, 16(38), 2469-2482.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0011-852E-3
Abstract
Recently a positive indication of the neutrinoless double beta decay has been announced. We study the implications of this result taking into consideration earlier results on atmospheric neutrinos and solar neutrinos. We also include in our discussions the recent results from SNO and K2K. We point out that on the confidence level given for the double beta signal, the neutrino mass matrices are now highly constrained. All models predicting Dirac masses are ruled out and leptogenesis becomes a natural choice. Only the degenerate and the inverted hierarchical solutions are allowed for the three-generation Majorana neutrinos. In both cases we find that the radiative corrections destabilize the solutions and the LOW, VO and Just So solutions of the solar neutrinos are ruled out. For the four-generation case only the inverted hierarchical scenario is allowed.