English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electron-ion interactions for trapped highly charged Ge ions

MPS-Authors
/persons/resource/persons30383

Crespo López-Urrutia,  J. R.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31209

Zhang,  X.
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31099

Tawara,  H.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Machtoub, G. H., Crespo López-Urrutia, J. R., Zhang, X., & Tawara, H. (2006). Electron-ion interactions for trapped highly charged Ge ions. Canadian Journal of Physics, 84(1), 67-81.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-86D9-A
Abstract
A theoretical simulation of complex K X-ray spectra including those from dielectronic recombination and excitation processes is presented for trapped highly charged germanium ions ( Geq+, q = 27–30) interacting with a dense electron beam. We carried out numerical calculations of transition rates, level energies, transition wavelengths, resonance and collision strengths, and satellite intensity factors. Analytical results related to cross sections of B- through He-like Ge ions were obtained as well. The simulated spectra, including the contribution from different charge states of Ge27+–Ge30+, show good overall agreement over a wide electron energy range with the available X-ray measurements from the Heidelberg electron beam ion trap (EBIT). We have also predicted the electron impact excitation cross-section ratios for different transitions of Ge29+ and Ge30+ ions. It should be emphasized that the present analysis can also provide new information and clues of possible temperature measurements for EBIT and other plasma diagnostics.