English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields

MPS-Authors
/persons/resource/persons30452

Ergler,  Th.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30960

Rudenko,  A.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30464

Feuerstein,  B.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31213

Zrost,  K.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31014

Schröter,  C. D.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30822

Moshammer,  R.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31125

Ullrich,  J.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ergler, T., Rudenko, A., Feuerstein, B., Zrost, K., Schröter, C. D., Moshammer, R., et al. (2005). Time-resolved imaging and manipulation of H2 fragmentation in intense laser fields. Physical Review Letters, 95(9): 093001, pp. 1-4. Retrieved from http://link.aps.org/abstract/PRL/v95/e093001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-8843-4
Abstract
We report on the experimental realization of time-resolved coincident Coulomb explosion imaging of H2 fragmentation in 1014 W/cm2 laser fields. Combining a high-resolution "reaction microscope" and a fs pump-probe setup, we map the motion of wave packets dissociating via one- or two-photon channels, respectively, and observe a new region of enhanced ionization. The long-term interferometric stability of our system allows us to extend pump-probe experiments into the region of overlapping pulses, which offers new possibilities for the manipulation of ultrafast molecular fragmentation dynamics.