English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kinetic nucleation and ions in boreal forest particle formation events

MPS-Authors
/persons/resource/persons30561

Hanke,  Markus
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30261

Arnold,  Frank
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Laakso, L., Anttila, T., Lehtinen, K. E. J., Aalto, P. P., Kulmala, M., Hörrak, U., et al. (2004). Kinetic nucleation and ions in boreal forest particle formation events. Atmospheric Chemistry and Physics, 4(9/10), 2353-2366. Retrieved from http://www.atmos-chem-phys.org/acp/4/2353/.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-8AD2-1
Abstract
In order to gain a more comprehensive picture on different mechanisms behind atmospheric particle formation, measurement results from QUEST 2-campaign are analyzed with an aid of an aerosol dynamic model. A special emphasis is laid on air ion and charged aerosol dynamics. Model simulations indicate that kinetic nucleation of ammonia and sulphuric acid together with condensation of sulphuric acid and low-volatile organic vapours onto clusters and particles explain basic features of particle formation events as well as ion characteristics. However, an observed excess of negative ions in the diameter range 1.5-3nm and overcharge of 3-5nm particles demonstrate that ions are also involved in particle formation. These observations can be explained by preferential condensation of sulphuric acid onto negatively charged clusters and particles and/or contribution of ion-induced nucleation on particle formation. According to model simulations, which assume that the nucleation rate is equal to the sulfuric acid collision rate, the relative contribution of ion-based particle formation seems to be smaller than kinetic nucleation of neutral clusters. Conducted model simulations also corroborate the recently-presented hypothesis according to which a large number of so-called thermodynamically stable clusters (TSCs) having a diameter between 1-3nm exist in the atmosphere. TSCs were found to grow to observable sizes only under favorable conditions, e.g. when the pre-existing particle concentration was low.