English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High Precision Wavelength Measurements of QED-Sensitive Forbidden Transitions in Highly Charged Argon Ions

MPS-Authors
/persons/resource/persons30423

Draganic,  I.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30383

Crespo López-Urrutia,  J.R.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30427

DuBois,  R.
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30493

Fritzsche,  S.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31064

Soria Orts,  R.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31119

Tupitsyn,  I.I.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons31125

Ullrich,  J.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Draganic, I., Crespo López-Urrutia, J., DuBois, R., Fritzsche, S., Shabaev, V., Soria Orts, R., et al. (2003). High Precision Wavelength Measurements of QED-Sensitive Forbidden Transitions in Highly Charged Argon Ions. Physical Review Letters, 91(18): 183001, pp. 1-4.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0011-8DDC-8
Abstract
We present the results of an experimental study of magnetic dipole (M1) transitions in highly charged argon ions (Ar X, Ar XI, Ar XIV, Ar XV) in the visible spectral range using an electron beam ion trap. Their wavelengths were determined with, for highly charged ions, unprecedented accuracy up to the sub-ppm level and compared with theoretical calculations. The QED contributions, calculated in this Letter, are found to be 4 orders of magnitude larger than the experimental error and are absolutely indispensable to bring theory and experiment to a good agreement. This method shows great potential for the study of QED effects in relativistic few-electron systems