Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Mt Cimone, Italy, free tropospheric campaign: principal characteristics of the gaseous and aerosol composition from European pollution, Mediterranean influences and during African dust events

MPG-Autoren
/persons/resource/persons31019

Schulz,  M.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30473

Fischer,  H.
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30561

Hanke,  Markus
Frank Arnold - Atmospheric Trace Gases and Ions, Research Groups, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Balkanski, Y., Bauer, S. E., van Dingenen, R., Bonasoni, P., Schulz, M., Fischer, H., et al. (2003). The Mt Cimone, Italy, free tropospheric campaign: principal characteristics of the gaseous and aerosol composition from European pollution, Mediterranean influences and during African dust events. Atmospheric Chemistry and Physics Discussions, 3, 1753-1776. Retrieved from www.atmos-chem-phys.org/acpd/3/1753.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-8F19-C
Zusammenfassung
A 5 weeks experiment (1 June to 5 July 2000) took place at a mountain site, Mt Cimone (44º11' N, 10º42' E, 2165 m a.s.l.), that is representative of Southern Europe background conditions. During this field campaign, a comprehensive characterisation of trace gases and radicals, involved in the production and destruction of O3, as well as of chemical, physical and optical properties of the aerosol was done. Atmospheric gases and aerosols were measured continuously over the 5 weeks period, in order to characterize their background concentrations in the free troposphere and their respective differences in air containing dust aerosols advected from Africa. Due to its location and elevation, Mt Cimone gets free tropospheric air both from the Mediterranean and from the Po Valley, which makes it an invaluable place to study gas/aerosol interactions. A global chemical model coupled to a GCM was used to simulate based upon ECMWF reanalysis the ozone over the region during the period of the field study. The heterogeneous reactions of O3, N2O5, HNO3 and NO3 were accounted for. We estimate that during the field campaign, the effect of heterogeous reactions was to reduce by 8 to 10% the ozone concentration at MTC in cases when air had passed over the Mediterranean Sea. When air was coming from the Atlantic or continental Europe, the reduction of ozone is still 4%. This reduction is mostly due to the large uptake of HNO3 and is the the topic of ongoing work to assess how it affects the global cycle of O3 and the global nitrogen budget.