Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Aggregated motion estimation for image reconstruction in real-time MRI.

MPG-Autoren
/persons/resource/persons85574

Li,  H.
Research Group of Statistical Inverse-Problems in Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons32717

Haltmeier,  M.
Research Group of Statistical Inverse-Problems in Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16078

Zhang,  S.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons32719

Munk,  A.
Research Group of Statistical Inverse-Problems in Biophysics, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)

930629-Suppl-1.avi
(Ergänzendes Material), 5MB

930629-Suppl-2.avi
(Ergänzendes Material), 4MB

930629-Suppl-3.avi
(Ergänzendes Material), 2MB

Zitation

Li, H., Haltmeier, M., Zhang, S., Frahm, J., & Munk, A. (2014). Aggregated motion estimation for image reconstruction in real-time MRI. Magnetic Resonance in Medicine, 72(4), 1039-1048. doi:10.1002/mrm.25020.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0011-A0D0-A
Zusammenfassung
Purpose: In real-time MRI serial images are generally reconstructed from highly undersampled datasets as the iterative solutions of an inverse problem. While practical realizations based on regularized nonlinear inversion (NLINV) have hitherto been surprisingly successful, strong assumptions about the continuity of image features may affect the temporal fidelity of the estimated reconstructions. Theory and Methods: The proposed method for real-time image reconstruction integrates the deformations between nearby frames into the data consistency term of the inverse problem. The aggregated motion estimation (AME) is not required to be affine or rigid and does not need additional measurements. Moreover, it handles multi-channel MRI data by simultaneously determining the image and its coil sensitivity profiles in a nonlinear formulation which also adapts to non-Cartesian (e.g., radial) sampling schemes. The new method was evaluated for real-time MRI studies using highly undersampled radial gradient-echo sequences. Results: AME reconstructions for a motion phantom with controlled speed as well as for measurements of human heart and tongue movements demonstrate improved temporal fidelity and reduced residual undersampling artifacts when compared with NLINV reconstructions without motion estimation. Conclusion: Nonlinear inverse reconstructions with aggregated motion estimation offer improved image quality and temporal acuity for visualizing rapid dynamic processes by real-time MRI.