日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Soot microphysical effects on liquid clouds, a multi-model investigation

MPS-Authors
/persons/resource/persons37097

Bauer,  S. E.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37246

Lohmann,  U.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37298

Quaas,  J.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Emmy Noether Junior Research Group Cloud-Climate Feedbacks, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

acp-11-1051-2011.pdf
(出版社版), 4MB

付随資料 (公開)
There is no public supplementary material available
引用

Koch, D., Balkanski, Y., Bauer, S. E., Easter, R. C., Ferrachat, S., Ghan, S. J., Hoose, C., Iversen, T., Kirkevåg, A., Kristjansson, J. E., Liu, X., Lohmann, U., Menon, S., Quaas, J., Schulz, M., Seland, Ø., Takemura, T., & Yan, N. (2011). Soot microphysical effects on liquid clouds, a multi-model investigation. Atmospheric Chemistry and Physics, 11, 1051-1064. doi:10.5194/acp-11-1051-2011.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-F51B-6
要旨
We use global models to explore the microphysical effects of carbonaceous aerosols on liquid clouds. Although absorption of solar radiation by soot warms the atmosphere, soot may cause climate cooling due to its contribution to cloud condensation nuclei (CCN) and therefore cloud brightness. Six global models conducted three soot experiments; four of the models had detailed aerosol microphysical schemes. The average cloud radiative response to biofuel soot (black and organic carbon), including both indirect and semi-direct effects, is -0.11 Wm-2, comparable in size but opposite in sign to the respective direct effect. In a more idealized fossil fuel black carbon experiment, some models calculated a positive cloud response because soot provides a deposition sink for sulfuric and nitric acids and secondary organics, decreasing nucleation and evolution of viable CCN. Biofuel soot particles were also typically assumed to be larger and more hygroscopic than for fossil fuel soot and therefore caused more negative forcing, as also found in previous studies. Diesel soot (black and organic carbon) experiments had relatively smaller cloud impacts with five of the models <±0.06 Wm-2 from clouds. The results are subject to the caveats that variability among models, and regional and interrannual variability for each model, are large. This comparison together with previously published results stresses the need to further constrain aerosol microphysical schemes. The non-linearities resulting from the competition of opposing effects on the CCN population make it difficult to extrapolate from idealized experiments to likely impacts of realistic potential emission changes. © 2011 Author(s).