日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Determination of precipitation return values in complex terrain and their evaluation

MPS-Authors
/persons/resource/persons37190

Jacob,  D.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
B 2 - Land Use and Land Cover Change, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations;

/persons/resource/persons37248

Lorenz,  P.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

2009jcli2685%2E1.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Frueh, B., Feldmann, H., Panitz, H.-J., Schaedler, G., Jacob, D., Lorenz, P., & Keuler, K. (2010). Determination of precipitation return values in complex terrain and their evaluation. Journal of Climate, 23, 2257-2274. doi:10.1175/2009JCLI2685.1.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-F601-5
要旨
To determine return values at various return periods for extreme daily precipitation events over complex orography, an appropriate threshold value and distribution function are required. The return values are calculated using the peak-over-threshold approach in which only a reduced sample of precipitation events exceeding a predefined threshold is analyzed. To fit the distribution function to the sample, the L-moment method is used. It is found that the deviation between the fitted return values and the plotting positions of the ranked precipitation events is smaller for the kappa distribution than for the generalized Pareto distribution. As a second focus, the ability of regional climate models to realistically simulate extreme daily precipitation events is assessed. For this purpose the return values are derived using precipitation events exceeding the 90th percentile of the precipitation time series and a fit of a kappa distribution. The results of climate simulations with two different regional climate models are analyzed for the 30-yr period 1971-2000: the so-called consortium runs performed with the climate version of the Lokal Modell (referred to as the CLM-CR) at 18-km resolution and the Regional Model (REMO)-Umweltbundesamt (UBA) simulations at 10-km resolution. It was found that generally the return values are overestimated by both models. Averaged across the region the overestimation is higher for REMO-UBA compared to CLM-CR.