English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Separation of atmosphere-ocean-vegetation feedbacks and synergies for mid-Holocene climate

MPS-Authors
/persons/resource/persons37286

Otto,  J.
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37299

Raddatz,  T.
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37123

Claussen,  M.       
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
A 2 - Climate Processes and Feedbacks, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations;

/persons/resource/persons37113

Brovkin,  V.       
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37153

Gayler,  V.       
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

grl25779.pdf
(Publisher version), 155KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Otto, J., Raddatz, T., Claussen, M., Brovkin, V., & Gayler, V. (2009). Separation of atmosphere-ocean-vegetation feedbacks and synergies for mid-Holocene climate. Geophysical Research Letters, 36: L09701. doi:10.1029/2009GL037482.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-F7F2-0
Abstract
We determine both the impact of atmosphere‐ocean and atmosphere‐vegetation feedback, and their synergy on northern latitude climate in response to the orbitally‐induced changes in mid‐Holocene insolation. For this purpose, we present results of eight simulations using the general circulation model ECHAM5‐MPIOM including the land surface scheme JSBACH with a dynamic vegetation module. The experimental set‐up allows us to apply a factor‐separation technique to isolate the contribution of dynamic Earth system components (atmosphere, atmosphere‐ocean, atmosphere‐vegetation, atmosphere‐ocean‐vegetation) to the total climate change signal. Moreover, in order to keep the definition of seasons consistent with insolation forcing, we define the seasons on an astronomical basis. Our results reveal that north of 40°N atmosphere‐vegetation feedback (maximum in spring of 0.08°C) and synergistic effects (maximum in winter of 0.25°C) are weaker than in previous studies. The most important modification of the orbital forcing is related to the atmosphere‐ocean component (maximum in autumn of 0.78°C).