English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Global biogeophysical interactions between forest and climate

MPS-Authors
/persons/resource/persons37113

Brovkin,  Victor
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37299

Raddatz,  Thomas
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37304

Reick,  Christian H.
Global Vegetation Modelling, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37123

Claussen,  Martin
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
B 2 - Land Use and Land Cover Change, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations;

/persons/resource/persons37153

Gayler,  Veronika
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

grl25800.pdf
(Publisher version), 291KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., & Gayler, V. (2009). Global biogeophysical interactions between forest and climate. Geophysical Research Letters, 36: L07405. doi:10.1029/2009GL037543.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0011-F81F-6
Abstract
In two sensitivity experiments using the Earth System Model of the Max Planck Institute for Meteorology (MPI‐ESM), the vegetation cover of the ice‐free land surface has been set worldwide to either forest or grassland in order to quantify the quasi‐equilibrium response of the atmosphere and ocean components to extreme land surface boundary conditions. After 400 years of model integration, the global mean annual surface temperature increased by 0.7°K and declined by 0.6°K in the forest and grassland simulations, respectively, as compared to the control simulation. Thereafter, the geographic distribution of vegetation has been allowed to respond interactively to climate. After subsequent 500 years of interactive climate‐vegetation dynamics, both forest and grassland simulations converged to essentially the same climate state as in the control simulation. This convergence suggests an absence of multiple climate‐forest states in the current version of the MPI‐ESM.