日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Long-term effects of biophysical and biogeochemical interactions between terrestrial biosphere and climate under anthropogenic climate change

MPS-Authors
/persons/resource/persons37327

Schurgers,  G.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37265

Mikolajewicz,  U.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37164

Groeger,  M.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37253

Maier-Reimer,  E.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
B 2 - Land Use and Land Cover Change, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations;

/persons/resource/persons37367

Vizcaino,  M.
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37381

Winguth,  A.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Schurgers, G., Mikolajewicz, U., Groeger, M., Maier-Reimer, E., Vizcaino, M., & Winguth, A. (2008). Long-term effects of biophysical and biogeochemical interactions between terrestrial biosphere and climate under anthropogenic climate change. Global and Planterary Change, 64(1-2), 26-37. doi:10.1016/j.gloplacha.2008.01.009.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-F93D-3
要旨
A complex earth system model, simulating atmosphere and ocean dynamics, marine biogeochemistry, terrestrial vegetation and ice sheets, was used to study feedbacks between the terrestrial biosphere and climate with a set of long-term climate change ensemble experiments. CO2 emissions were assigned according to historical data and the IPCC SRES scenarios B1, A1B and A2, followed by an exponential decay of the emissions for the period 2100-3000. The experiments give a reasonable reconstruction of the measured CO2 concentrations between 1750 and 2000. Maximum atmospheric CO2 concentrations of 520 ppm (B1), 860 ppm (A1B) and 1680 ppm (A2) were reached between 2200 and 2500. Additional experiments were performed with CO2 emissions and suppressed climate change, as well as an experiment with a prescribed land surface. The experiments were repeated with the vegetation model driven offline, to investigate the effects of climate and CO2 changes separately. The biogeochemical and biogeophysical interactions between terrestrial biosphere and atmosphere were quantified and compared. A decrease of albedo at high latitudes was the most important biogeophysical change. For the A2 scenario experiment, it causes an additional temperature increase of 1 to 2 K for some high latitude regions by the year 3000, but the changes are minor compared to the heating due to CO2 increase. The terrestrial biosphere takes up between 15 and 30% of the CO2 emissions, depending on the scenario and the period considered. The carbon is stored in the tropics and subtropics, where carbon is stored fast, and in the high latitudes, where carbon storage, partly due to forest expansion, is Much slower. By the year 3000, the storage of terrestrial carbon results in a decrease of atmospheric CO2 concentration of 400 ppm, which in turn decreases the global temperature increase by 0.4 K. (C) 2008 Elsevier B.V. All rights reserved. [References: 46]