English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming

MPS-Authors
/persons/resource/persons37207

Kloster,  S.
The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37340

Six,  K. D.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37144

Feichter,  J.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37253

Maier-Reimer,  E.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37308

Roeckner,  E.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37379

Wetzel,  P.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37348

Stier,  P.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37141

Esch,  M.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2006JG000224.pdf
(Publisher version), 9MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kloster, S., Six, K. D., Feichter, J., Maier-Reimer, E., Roeckner, E., Wetzel, P., et al. (2007). Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. Journal of Geophysical Research-Biogeosciences, 112: G03005. doi:10.1029/2006JG000224.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-FADB-8
Abstract
A global coupled ocean-atmosphere modeling system is applied in a transient climate simulation to study the response to global warming of Dimethylsulfide (DMS) in the ocean, the DMS flux to the atmosphere, and the resulting DMS concentrations in the atmosphere. The DMS production and consumption processes in the ocean are linked to plankton dynamics simulated in the marine biogeochemistry model HAMOCC5.1, embedded in an ocean general circulation model (MPI-OM). The atmospheric model ECHAM5 is extended by the microphysical aerosol model HAM, treating the sulfur chemistry in the atmosphere and the evolution of microphysically interacting internally and externally mixed aerosol populations. For future conditions (2000-2100) we assume greenhouse gas concentrations, aerosol and aerosol precursor emissions according to the SRES A1B scenario. We analyzed the results in terms of simulated changes between the period 1861-1890 and 2061-2090. For the global annual mean DMS sea surface concentration and the DMS flux we found a reduction by 10%. The DMS burden in the atmosphere is reduced by only 3%, owing to a longer lifetime of DMS in the atmosphere in a warmer climate (+ 7%). Regionally the response and the underlying mechanisms are quite inhomogeneous. The largest reduction in the DMS sea surface concentration is simulated in the Southern Ocean (-40%) caused by an increase in the summer mixed layer depth, leading to less favorable light conditions for phytoplankton growth. In the mid and low latitudes DMS sea surface concentrations are predominantly reduced due to nutrient limitation of the phytoplankton growth through higher ocean stratification and less transport of nutrients into the surface layers. [References: 68]