English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect

MPS-Authors
/persons/resource/persons37246

Lohmann,  U.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37298

Quaas,  J.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Emmy Noether Junior Research Group Cloud-Climate Feedbacks, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37202

Kinne,  S.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Observations and Process Studies, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37144

Feichter,  J.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BAMS_88-243.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Lohmann, U., Quaas, J., Kinne, S., & Feichter, J. (2007). Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect. Bulletin of the American Meteorological Society, 88(2), 243-249. doi:10.1175/BAMS-88-2-243.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-FB33-9
Abstract
Assessments of the influence of aerosol emissions from human activities on the radiation budget, in particular via the modification of cloud properties, have been a challenge. In light of the variability to both aerosol properties and environmental properties affected by aerosols, observational evidence alone cannot provide accurate and global answers, because detailed observations are locally limited and/or lack statistical significance. Thus, current understanding is predominantly derived from simulations with global models. General discrepancies to envelope (backward) modeling, however, suggest that many aerosol processes in global (forward) modeling are not properly considered. Using analytically derived parameterizations is recommended wherever possible. If an analytical method does not exist or is too demanding computationally, laboratory results augmented by field data are the second-best approach. For the constraint of so-derived parameterizations at the GCM scale, evaluating individual parameterizations using statistical relationships of satellite-retrieved quantities relevant to the process is recommended. The set of parameterizations may also be evaluated and improved using the data assimilation technique. To improve the quality of data references to modeling, there is a need to link available atmospheric data from all scales, and establish and support validation networks and experiments, and a commitment to fine-tune and improve satellite retrievals in an iterative process even beyond the anticipated period of the mission. Only then can more reliable estimates of the indirect aerosol effect be expected.