日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

The scaling of the meridional overturning with the meridional temperature gradient in idealised general circulation models

MPS-Authors
/persons/resource/persons37256

Marotzke,  J.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Lucas, M. A., Hirschi, J. J., & Marotzke, J. (2006). The scaling of the meridional overturning with the meridional temperature gradient in idealised general circulation models. Ocean Modelling, 13(3-4), 306-318. doi:10.1016/j.ocemod.2006.03.001.


引用: https://hdl.handle.net/11858/00-001M-0000-0011-FC7B-1
要旨
re-examined in two ocean general circulation models at coarse resolution in an idealised single-hemisphere setting. Two sets of results are presented, where the surface meridional temperature gradient is decreased either by increasing the northernmost temperature and keeping the equator temperature fixed, or by decreasing the equator temperature and keeping the northernmost temperature fixed. The maximum of the meridional overturning first increases and then decreases when the northernmost temperature is gradually increased, whereas the maximum overturning decreases monotonically when the equator temperature is decreased. No scaling law can be derived when the northernmost temperature is increased, whereas a 2/3 power law is found when the temperature is decreased at the equator. The behaviour of the overturning is strongly influenced by the vigour and, particularly, the spatial patterns of convection, which vary substantially between the two sets and which control the horizontal and vertical density gradients at high latitudes.