Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing

MPG-Autoren
/persons/resource/persons37279

Niemeier,  U.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Middle and Upper Atmosphere, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37162

Granier,  C.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37214

Kornblueh,  L.
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37111

Brasseur,  G. P.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2005JD006407.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Niemeier, U., Granier, C., Kornblueh, L., Walters, S., & Brasseur, G. P. (2006). Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing. Journal of Geophysical Research-Atmospheres, 111(9): D09301. doi:10.1029/2005JD006407.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0011-FCA0-9
Zusammenfassung
Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1–5 ppbv in the remote regions and by 5–20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm⁻². In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30–50 ppbv (50–100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm⁻²