English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data

MPS-Authors
/persons/resource/persons37298

Quaas,  J.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;
Emmy Noether Junior Research Group Cloud-Climate Feedbacks, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37246

Lohmann,  U.
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acp-6-947.pdf
(Publisher version), 1011KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Quaas, J., Boucher, O., & Lohmann, U. (2006). Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmospheric Chemistry and Physics, 6, 947-955. Retrieved from http://www.copernicus.org/EGU/acp/acp/6/947.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-FCBC-D
Abstract
Aerosol indirect effects are considered to be the most uncertain yet important anthropogenic forcing of climate change. The goal of the present study is to reduce this uncertainty by constraining two different general circulation models (LMDZ and ECHAM4) with satellite data. We build a statistical relationship between cloud droplet number concentration and the optical depth of the fine aerosol mode as a measure of the aerosol indirect effect using MODerate Resolution Imaging Spectroradiometer (MODIS) satellite data, and constrain the model parameterizations to match this relationship. We include here "empirical" formulations for the cloud albedo effect as well as parameterizations of the cloud lifetime effect. When fitting the model parameterizations to the satellite data, consistently in both models, the radiative forcing by the combined aerosol indirect effect is reduced considerably, down to −0.5 and −0.3 Wm−2, for LMDZ and ECHAM4, respectively.