English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model

MPS-Authors
/persons/resource/persons37381

Winguth,  Arne
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37265

Mikolajewicz,  Uwe
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37164

Groger,  Matthias
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37253

Maier-Reimer,  Ernst
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Biogeochemistry, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37327

Schurgers,  Guy
The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37367

Vizcaino,  Miren
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

GRL_32-L23714.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Winguth, A., Mikolajewicz, U., Groger, M., Maier-Reimer, E., Schurgers, G., & Vizcaino, M. (2005). Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic Earth system model. Geophysical Research Letters, 32(23): L23714. doi:10.1029/2005GL023681.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0011-FE28-B
Abstract
A complex Earth system model including atmosphere, ocean, ice sheets, marine carbon cycle and terrestrial vegetation was used to study the long-term response (100–1000 yrs) of the climate to different increased atmospheric CO2 concentrations. A 3.2 K global mean surface temperature increase is simulated for a 3xCO2 experiment. The freshwater input by melting of the Greenland Ice Sheet due to global warming is of minor importance compared to hydrological changes in the atmosphere. Increased equatorial upwelling enhances the tropical outgassing of CO2 from the oceans, lowering the total marine carbon uptake by 16–22%. On land, carbon release due to increase in soil temperature reduces the anthropogenic carbon uptake from CO2 fertilization up to 43%. Thus, we show that both marine and terrestrial carbon cycle have a positive feedback on climate, which has to be considered for future carbon emission scenarios.