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1 Introduction

The calculation of worldsheet correlation functions of vertex operators for strings in

AdS5×S5 is, by the AdS/CFT conjecture [1], equivalent to the computation of space-

time correlation functions in the boundary theory. While there has been a tremendous

amount of work on this correspondence, for the most part explicit holographic calcula-

tions of correlators have been restricted to BPS operators and to the supergravity limit,

for example [2–4]. A key difficulty in going beyond the supergravity approximation is the

identification of the appropriate string vertex operator corresponding to a given gauge in-

variant operator in the boundary theory. Not knowing the exact vertex operators nor how

to exactly quantize the worldsheet theory, it is useful to take a semiclassical approach and

consider states with charges that scale like the string worldsheet coupling
√
λ ≫ 1 [5, 6].

In this case the string path integral for the correlation functions can be evaluated in the

saddle-point approximation. Recently, there has been renewed interest in the identification

of the semiclassical vertex operators [7–9] and the calculation of their Euclidean signa-

ture two-point functions. Worldsheet correlation functions in Lorentzian signature have
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also been recently studied in [10] where, moreover, it was shown how the strong coupling

calculation reproduces the correct space-time dependence of the gauge theory correlators.

In this semiclassical limit one can further attempt to calculate three-point functions,

however now in addition to identifying the correct vertex operators one must find the

classical solution which provides the appropriate saddle point. Recent progress [11, 12] has

involved studying three-point functions where two operators are “heavy” and have charges

which scale as
√
λ and a third “light” operator which has charges that are constant or

scale as λ1/4 [9, 13–17]. In this case the saddle-point surface is just that sourced by the

two heavy operators and the three-point function can be found by evaluating the “light”

vertex operator on this classical surface. Similar considerations have been extended to four-

point functions [18, 19], open strings [20], giant magnons [21], giant gravitons [22], dyonic

strings [23], Wilson loops [24, 25] and even to include finite-size effects [26, 27]. Nonetheless,

a complete understanding of the exact form of the vertex operators and the appropriate

saddle-point surfaces for correlators of three operators with equally large charges remains

a challenging problem. Furthermore, at strong coupling there remains much to be done in

going beyond the semiclassical approximation and including quantum corrections.

One limit in which the match between string vertices and gauge theory operators is

better understood and where quantum corrections have been calculated is the plane-wave

limit. This limit [28] can be understood as taking a BMN string, a point-like string sitting

still in the AdS space and rotating along a great circle of the sphere, as the string vacuum.

The string worldsheet theory is exactly solvable [29, 30] in a light-cone gauge adapted to

these geodesics and it is possible to make a match between the string states and so-called

BMN operators in the gauge theory (see [31] for a useful definition of these operators).

In this limit it was also possible to construct the cubic Hamiltonian of light-cone string

field theory which describes the splitting and joining of strings (see [32, 33] for reviews).

Furthermore, this vacuum played an important calculational and conceptual role in studies

of integrability in the planar limit of the AdS/CFT duality (for reviews see [34] and [35]1).

The integrability of the worldsheet theory allowed for the exact solution to the spectrum of

string energies, correspondingly gauge theory anomalous dimension, and thus gauge theory

two-point functions. It may hopefully lead to a greater understanding of the matching

between string vertex operators and gauge theory operators. It has already been shown

that integrable methods, e.g. the algebraic Bethe ansatz for the spin-chain description of

operators, can be useful in the calculation of three-point functions at weak coupling [39–42]

and even matched to strong coupling results [43].

In this work we consider the strong coupling description of euclidean BMN strings as

saddle points of the path integral for three-point correlators and the quantization about

this classical approximation. We make use of a light-cone gauge which starts from the

Poincaré coordinates for AdS5 and forms the light-cone directions from two boundary

coordinates [44, 45]. In the literature this light-cone gauge has been used somewhat less

frequently, however recently it has proven very useful in efficiently calculating the quantum

1For discussion of the plane-wave limit and its quantization see particularly chapters II.1, II.2 and

II.3 [36–38].
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corrections to various semiclassical string configurations [46–49]. In this gauge, point-like

solutions are particularly simple being merely straight lines. Starting with the two-point

functions, where the string topology is a cylinder, we interpret the chiral primary vertex

operators given in [18] (following on from [11, 50]) as contributing boundary terms to the

string action, which determine the string state at the initial and final times. We show that

the analytic continuation of the point-like solutions satisfies all the appropriate equations

of motion, including those at the boundary. This slightly differs conceptually from the

calculation in e.g. [7–9], which consider the worldsheet as a plane with vertex operators

inserted at specific points, though of course the two prescriptions should be equivalent

by the usual state/operator conformal mapping. In the cases considered in this work,

as the vertices evaluated on the solution do not depend on the worldsheet coordinate, the

mapping is essentially trivial however for more general solutions this may need to be treated

differently. Evaluating the action on this solution reproduces the space-time dependence

of Euclidean two-point functions in conformal field theory for chiral primary operators. In

this, we are simply recasting the results of [7–10] into light-cone gauge. However, we can

then go beyond the leading result and include corrections from quantum fluctuations about

this result, moreover one can define the vertex operators for BMN operators with a few

added impurities. Much of this closely parallels the calculation of string energies for BMN

strings and one key point is that the spectrum for the general class of solutions does not

depend on the specific boundary conditions or string orientation on the sphere but only

the total charge.

The same euclidean BMN strings can be used to find the classical solution sourced by

three BMN vertex operators. We follow the calculation of [10] in finding the intersection of

three BMN strings and then minimizing the action by varying the intersection point. We

are able to explicitly solve this minimization problem and so find the complete solution.

As has already been shown, though without finding the explicit solution, evaluating the

action on this saddle point gives a holographic derivation of the space-time dependence for

gauge theory three-point functions. Having the explicit form of the solution allows us to

extend the results from the two-point functions and to calculate the fluctuations about the

three-point functions. In this, we are able to make contact with the results of light-cone

string field theory, though with a few caveats. Moreover, our considerations are valid not

only for extremal correlators but also for non-extremal ones.

There have been several earlier works analyzing the holographic calculation of the

three-point functions of BMN operators, of particular note are those based on the GKP-

Witten [51, 52] definition of the AdS/CFT duality [53–57]. These calculations lift the

supergravity calculation of three-point functions to include string effects by making use of

the light-cone string field theory results. In many respects our calculation of the quantum

fluctuations simply reproduces these results although within a slightly different framework

that makes contact with more recent progress regarding three-point functions of far from

BPS semiclassical strings.

In particular we are able to extend our results, at least for the leading semiclassical

contribution, to circular winding strings. These solutions were found in [58], with the gen-

eral class of solutions being described in [59]. Specifically, we are able to show that by
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gluing three segments together, we can find a saddle-point solution which has the bound-

ary conditions appropriate to the simplest circular winding strings at all three boundary

points. In [14] a proposal for the vertex operators corresponding to the circular winding

strings was made. While this vertex operator does indeed source the saddle-point sur-

face corresponding to the two-point correlator this does not guarantee that it is correct.

For one, there could be subleading polynomial terms, which though they will not affect

the saddle-point calculation of the surface will modify the strong coupling prediction for

the correlators. Further, it is not clear that the boundary conditions are even sufficient

to uniquely determine the exponentially large contributions and in the earlier work [7] a

different proposal was made which involved T-dualized angles. This vertex also provides

appropriate boundary conditions but, in our formulation, only after one changes the bound-

ary conditions for the bulk string action. Nonetheless, we evaluate the action, including

the boundary terms corresponding to the vertices of [14], which thus provides a strong

coupling approximation to the three point correlators of these vertices. The result using

the vertices of [7] is essentially the same.

2 Coordinates and geodesics

In this paper, we work with Euclidean AdS5, defined as the surface X2
0 + . . .+X2

4 −X2
5 =

−R2 embedded in R5,1 with metric (+, . . . ,+,−). This surface can either be parametrized

by global coordinates (i = 1, . . . , 4)

X0 = R cosh ρ sinh t , Xi = R sinh ρΩi , X5 = R cosh ρ cosh t , (2.1)

where Ωi is a unit vector, or by Poincaré coordinates

~X = R
~x

z
, X4 =

R

2z

(

−1 + z2 + ~x 2
)

, X5 =
R

2z

(

1 + z2 + ~x 2
)

. (2.2)

where we have introduced the vector notation ~x = (x0, x1, x2, x3) for the coordinates on

the boundary of AdS. Unlike in the case of Lorentzian signature, the Poincaré coordinates

cover the entire Euclidean AdS space.

Geodesics. In Poincaré coordinates, the geodesics are semi-circles with center at the

boundary z = 0. These geodesics are the Wick rotation of light-like geodesics in Lorentzian

AdS. Explicitly, the geodesic that starts at point (~x, z) = (~a1, 0) and ends at point (~a2, 0)

can be parametrized by

~x(τ) =
~a2 − ~a1

2
tanhκτ +

~a1 + ~a2

2
, z(τ) =

|~a2 − ~a1|
2 cosh κτ

, −∞ ≤ τ ≤ ∞ (2.3)

and satisfies

(

~x− ~a1 + ~a2

2

)2

+ z2 =

(

~a2 − ~a1

2

)2

. (2.4)
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In global coordinates, this geodesic becomes

tanh t(τ) =
|~a2 − ~a1| tanhκτ

1 + 1
2(~a 2

1 + ~a 2
2 ) + 1

2(~a 2
2 − ~a 2

1 ) tanhκτ
(2.5)

cosh2 ρ(τ) =
cosh2 κτ

(~a2 − ~a1)2

[

(

1 +
1

2
(~a 2

1 + ~a 2
2 ) +

1

2
(~a 2

2 − ~a 2
1 ) tanh κτ

)2

− (~a2 − ~a1)
2 tanh2 κτ

]

(2.6)

and Ω1 = Ω2 = Ω3 = 0, Ω4 = 1.

Intersecting geodesics. In the discussion of the string three-point functions, we will

arrive at a configuration where three geodesics of the form (2.3) intersect in the bulk at

some point (~xint, zint), see figure 1. For given locations ~ai, where the three geodesics reach

the boundary, the intersection point is determined by extremizing2 the function [10]

B =

3
∑

i=1

∆i ln
zint

z2
int + (~xint − ~ai)2

. (2.7)

In our computation in section 7, we will obtain (2.7) as the boundary action which encodes

the specifics of the interacting strings, e.g. the dimensions ∆i of the operators to which

they are dual. Geometrically, (2.7) the total proper length of the three interacting strings

where each segment is weighted by the corresponding dimension. This is seen by expanding

the geodesic distance between (~ai, ε) and (~xint, zint) for ε→ 0:

arccosh

(

1 +
(~xint − ~ai)

2 + (zint − ε)2

2zintε

)

= − ln
zintε

z2
int + (~xint − ~ai)2

+ O(ε) . (2.8)

Finding the intersection point analytically is greatly facilitated by the introduction of

the variables3

α1 = ∆2 +∆3 −∆1 and cyclic permutations of 1, 2, 3 . (2.9)

In terms of these quantities, the coordinates of the intersection point are given by

~xint =
α2α3 ~a

2
23 ~a1 + α1α3 ~a

2
13 ~a2 + α1α2 ~a

2
12 ~a3

α2α3 ~a 2
23 + α1α3 ~a 2

13 + α1α2 ~a 2
12

(2.10)

zint =

√

α1α2α3(α1 + α2 + α3) |~a23||~a13||~a12|
α2α3 ~a

2
23 + α1α3 ~a

2
13 + α1α2 ~a

2
12

with ~aij = ~ai − ~aj. This result is physically sensible only for zint ≥ 0, i.e. all α’s must be

positive. This imposes the triangle inequality

|∆1 −∆2| ≤ ∆3 ≤ ∆1 +∆2 and cyclic , (2.11)

2In this case, it is maximizing.
3This was suggested to us by Joe Minahan who first obtained the result (2.10), and furthermore inter-

preted the extremization conditions as the conservation laws for the canonical momenta of the string at the

intersection [60].

– 5 –



J
H
E
P
0
4
(
2
0
1
2
)
0
8
0

PSfrag

~x

z

~a1

~a2

~a3

|~a12|

|~a13|

|~a23|

δ12

δ13

δ23

(~xint, zint)

Figure 1. Intersecting geodesics. Each segment is a geodesic and the location of the intersec-

tion point is found by demanding that the overall proper length is minimal, where, however, the

length of each segment is weighted by the conformal dimension that is associated with the corre-

sponding string.

on the conformal dimensions. The tangents to the three segments at the intersection point

lie in the same plane, see figure 1, and the angles δij between the segments i and j are

given by

cos δ12 =
∆2

3 −∆2
1 −∆2

2

2∆1∆2
and cyclic . (2.12)

If all dimensions ∆i are equal to each other, then all angles are equal to δij = 120◦. If

one dimension is equal to the sum of the other two, say ∆3 = ∆1 + ∆2 so that α3 = 0,

then segment “3” shrinks to zero length and the intersection point coincides with the point

~a3 on the boundary where the other two segments arrive with parallel tangents (δ12 = 0,

δ13 = δ23 = 180◦), thus in this case the string is essentially the product of two two-point

correlators. This corresponds to an extremal correlator. It is interesting to note that the

limit, α3 → 0, is smooth and in fact one can define the extremal correlator as the analytic

continuation of the non-extremal version as suggested in [61].4

We can also reproduce the “heavy-heavy-light” configuration which is discussed so

extensively in the recent literature by first setting two dimensions equal to each other,

say ∆1 = ∆2, and then the third to zero. Then the angles are given by δ12 = 180◦ and

δ13 = δ23 = 90◦, i.e. the heavy segments “1” and “2” form a semi-circle to which the light

segment “3” is attached without being able to pull the intersection point toward ~a3.

AdS5×S5 coordinates and complexification. We parametrize points on S5 by a unit

vector u in R6, where we use bold-face in order to distinguish these vectors from the 4-

4A similar calculation was performed by Buchbinder and Tseytlin [62] who considered three CPO oper-

ators and assumed that once fermions are included the correlator localizes to just the usual supergravity

expression in terms of three AdS propagators which essentially gives (2.7). Then, by performing a station-

ary point approximation, they were also able to show that the there is no non-trivial trajectory for α3 = 0

but that it should rather be defined by analytic continuation of the nonextremal case.
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vector ~x that parametrizes points on the AdS-boundary. In these coordinates, the metric

on AdS5 × S5 reads

ds2 = z−2
(

d~x 2 + dz2
)

+ du2 . (2.13)

It is convenient to introduce an unconstrained 6-vector z = zu which mixes the radial part

of AdS with the 5-sphere. In terms of this vector, the metric becomes simply

ds2 = z−2
(

d~x 2 + dz2
)

. (2.14)

Later, we will compute the saddle points of the path integral for strings propagating

in this background. Such saddle points are in general complex. Therefore, we allow ~x ∈ C4

and z = C6. However, we will retain the definition of the norm to be |z| =
√

z · z and do

not use
√

z · z∗.

3 Vertex operators

The structure of vertex operators corresponding to semiclassical string states in AdS was

described in [5, 6]. A string with charges {Qi}, for example string energy (equivalently

conformal dimension) ∆, AdS spin S, or angular momentum on the sphere, J ,5 is created

at the location ~a on the boundary of AdS by an integrated vertex operator V{Qi}(~a). It is

given by an integral over the worldsheet,

V{Qi}(~a) =

∫

dσ dτ

2π
V{Qi}(σ, τ,~a) , (3.1)

where the unintegrated vertex V{Qi}(σ, τ,~a) is a function of the target space bosonic and

fermionic coordinates and their derivatives and thus implicitly depends on the worldsheet

coordinates. Furthermore, the vertex operator generically decomposes into a part W which

scales exponentially in the charges e.g. (. . . )Qi and a polynomial part U :

V{Qi}(σ, τ,~a) = W{Qi}(σ, τ,~a)U(σ, τ) . (3.2)

In the large charge limit, when the charges scale like Qi ∼
√
λ, the exponential part can be

interpreted as providing a boundary action for the path integral, it thus acts as a source

for the saddle-point worldsheet in the semiclassical approximation. The polynomial part

generically involves derivative terms and fermions, which can encode information such as

the mode number and polarization of the excited string state.

BMN strings. The exponential part of the non-integrated vertex operator for

(near-)BMN strings is given by [5, 6]

WBMN
∆,J (σ, τ,~a,n) =

( |z|
z2 + (~x− ~a)2

)∆(
n · z
|z|

)J

. (3.3)

5The string will also in general depend on discrete quantum numbers such as winding or mode numbers.
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It creates a string with angular momentum J on the 5-sphere in a plane that is specified

by the complex polarization 6-vector n which satisfies6

n2 = 0 , n · n∗ = 2 . (3.4)

The simplest example would be n = (1, i, 0, 0, 0, 0). More general vertex operators would

be obtained by the replacement

(

n · z
|z|

)J

−→ Y (ẑ) , (3.5)

where Y (ẑ) is a spherical harmonic of SO(6) and ẑ = z

|z| . Most conveniently, these functions

are written as homogeneous polynomials

Y (ẑ) = CMNO...ẑ
M ẑN ẑO · · · . (3.6)

For this to be an irreducible representation, the tensor CMNO... has to be symmetric and

completely traceless. We will stick to the special case (3.3), which corresponds to the

highest weight state and is obtained by setting

CMNO... = nMnNnO · · · . (3.7)

The bosonic quadratic-in-derivatives part of the BMN vertex operator U = UI +UII +

UIII as written in [18] (based on [11, 50]) consists of the components

UI =

√
hhab

8z2

[

(∂a~x · ∂b~x) − (∂az · ∂bz)
]

, (3.8)

UII + UIII =

√
hhab

(z2 + ~x 2)2

(

[

~x 2(∂a|z|)(∂b|z|) − (~x · ∂a~x)(~x · ∂b~x)
]

+
z2 − ~x 2

|z| (~x · ∂a~x)∂b|z|
)

.

The complete expression for U will involve fermionic terms which can in principle be derived

as in [11] but expanding the full superstring action rather than just the bosonic part.

4 String action in light-cone gauge

In this section we wish to briefly review the AdS light-cone gauge fixing, for a recent

treatment see e.g. [46], and the corresponding calculation of the string path integral. Here

we focus on the bosonic fields and discuss the fermions in appendix A. Starting from

the AdS5 × S5 metric in Poincaré coordinates (2.13), we introduce the AdS light-cone

combinations

x± = 1√
2
(x3 ± ix0) , x = 1√

2
(x1 + ix2) , x̄ = 1√

2
(x1 − ix2) . (4.1)

In these coordinates the product of two vectors is ~a ·~b = a+b− + a−b+ + ab̄ + āb, where

a+ = a− and a− = a+ and so the metric now reads

ds2 = z−2
(

2dx+dx− + 2dxdx̄+ dz2
)

. (4.2)

6We could have normalized n to unity, but that would have made (5.14) more inconvenient.
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For the classical solutions we consider, this form of light-cone gauge is particularly useful.

However, we can be slightly more general and use the generic notation

ds2 = Gµν(X)dXµdXν = 2G+−(X)dX+dX− +GAB(X)dXAdXB , (4.3)

and substitute later Xµ = (~x, z) and Gµν = δµν/z
2. The bosonic string action is

S =

√
λ

2π

∫ 2π

0
dσ

∫ τ2

τ1

dτ L , L =
1

2

√
hhab ∂aX

µ∂bX
ν Gµν(X) , (4.4)

where hab is the Euclidean7 worldsheet metric and h = |det(hab)|. We wish to calculate

the worldsheet correlators defined by the usual Euclidean path integral with insertions,

〈. . .〉 =

∫

DX DpDh (. . .) e−S[p,X,h] . (4.5)

The momentum densities are defined to be

pµ =
∂L
∂Ẋµ

=
√
hhτb ∂bX

ν Gµν , (4.6)

so we can write the Lagrangian as

L = pµẊ
µ −H (4.7)

with

H =
1

2
√
hhττ

(

Gµνpµpν − X́µX́νGµν

)

− hτσ

hττ
X́µpµ . (4.8)

As is usual for diffeomorphism invariant theories the Hamiltonian is a sum of constraints

with components of the metric acting as Lagrange multipliers. We can thus integrate out8

the worldsheet metric hab which results in the constraints

Gµνpµpν − X́µX́µGµν = 0 , pµX́
µ = 0 . (4.9)

We can further impose the light-cone gauge

X+ = τ , p− = s , (4.10)

where s is a constant. In this gauge, the constraints (4.9) become

p+ = −G+−(X)

2s

(

GABpApB − X́AX́BGAB

)

≡ −Hlc(pA,X
A, s) , (4.11)

sX́− + pAX́
A = 0 , (4.12)

7This action is also good for a Lorentzian worldsheet with signature (+,−), but for signature (−, +), we

would have to change the overall sign of the action. Moreover, for Lorentzian worldsheet of either signature,

the sign of the X́µX́νGµν -term in (4.8) below would change.
8In principle there is a non-trivial Jacobian factor from the path integral measure and moreover if the

insertions depend on hab these must be treated carefully. However such terms will not be relevant to our

considerations and for the insertions we will simply insert the appropriate gauge fixed versions.
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where the first equation defines the light-cone Hamiltonian Hlc(pA,X
A, s). These can be

used to remove9 the path integrals over p+ and X−. Moreover, as light-cone gauge is a

physical gauge the ghost contributions decouple. Thus, one is left with a path integral over

the transverse coordinates and momenta in addition to an ordinary integral over s

〈. . .〉 =

∫

DXA DpA ds (. . .) e
−

√
λ

2π

2π
R

0

dσ
τ2
R

τ1

dτ

[

pAẊA+sẊ−−Hlc(pA,XA)

]

. (4.13)

Leaving the general discussion and specializing to AdS5 × S5, the path integral becomes

〈. . .〉 =

∫

DxDx̄DzDpDp̄Dp ds (. . .)e−S (4.14)

with the action

S =

√
λ

2π

∫ 2π

0
dσ

∫ τ2

τ1

dτ

(

p ˙̄x+ p̄ẋ+ pż + sẋ− −Hlc

)

, (4.15)

where the light-cone Hamiltonian is

Hlc =
1

s

(

pp̄+
1

2
p2 − x́´̄x

z4
− ź2

2z4

)

. (4.16)

Thus we find an effective path integral for the physical degrees of freedom. This action

is essentially equivalent to that found by directly imposing the diagonal light-cone gauge,

hab = diag(z2, z−2), on the Lagrangian, dropping the x− degree of freedom and analytically

continuing to Euclidean signature, see for example [46]. This also provides a convenient

method for finding the action for the fermionic fields which is necessary when we wish

to perform the fluctuation analysis about leading classical saddle points. It is to the

determination of such classical configurations that we now turn our attention.

5 Classical two-point function

We consider the two-point correlator of two BMN vertex operators located at the boundary

positions ~a1 and ~a2 for worldsheet times10 τ1, τ2 and rotating in planes intersecting the S5

described by n1, n2,

〈V1(τ1,~a1,n1)V2(τ2,~a2,n2)〉 . (5.1)

For the most part we are simply recasting the results from conformal gauge calcula-

tions [7, 8, 10] into light-cone gauge. However, this is useful for introducing the notation

describing the saddle-point configurations (Euclidean classical solutions) and to highlight

the differences, most notably the absence of a marginality condition for the vertex operators.

9An integral over the zero mode of X− is left which results in an important non-locality in the gauge fixed

theory particularly in the definition of the supercharges. The remaining integral over s imposes boundary

conditions on this zero mode.
10In light-cone gauge, the boundary locations of the vertex operators and their worldsheet times are

obviously related by x+ = τ .
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The exponential parts of the vertex operators, which scale as
√
λ, supply a boundary

action B for the path integral. Then we are left with the expectation value of the polynomial

parts of the vertex operators

〈V1(τ1,~a1,n1)V2(τ2,~a2,n2)〉S = 〈U1(τ1)U2(τ2)〉S+B(W1,W2) . (5.2)

The bulk action S is given in (4.15) while the boundary action is a sum over contributions

from the different boundaries associated with the individual vertex operator insertions or

explicitly for two-point functions, B = B1 + B2, with

Bi =

√
λ

2π

∫ 2π

0
dσ

∫ τ2

τ1

dτ

(

− 1√
λ

lnWi(τ,~ai,ni)δ(τ − τi)

)

. (5.3)

Here we take the definition of the integrated vertex operators to be

exp
[

1
2π

∫

dσ lnVi(τi, σ,~a)
]

which is natural when interpreting the exponentially large

part of the vertex as part of an action. The standard definition, taking the integral inside

the logarithm, gives the same answer as, on the solution, the vertex is independent of σ.

This most likely will not be true for more general solutions which are σ dependent. In this

section we evaluate the action (bulk and boundary) at the saddle point while in the next

section we will include fluctuations. For the saddle point we need to find and solve the

classical equations of motion with the appropriate boundary terms. One notable feature

of these equations, as pointed out in [63], is that for point-like solutions, i.e. with no σ

dependence, they are simply those of a particle moving in flat space. Thus, the complete

set of geodesic solutions is the set of straight lines.

For the light-cone gauge fixed theory, (corresponding to diagonal gauge), the bulk

equations of motion are given by

ẋ =
1

s
p , ˙̄x =

1

s
p̄ , ż =

1

s
p , ẋ− = −1

s
Hlc ,

ṗ = −1

s
∂σ

(

x́

|z|4
)

, ˙̄p = −1

s
∂σ

(

´̄x

|z|4
)

, (5.4)

ṗ = −1

s
∂σ

(

ź

|z|4
)

− 4

s

(

x́´̄x+
1

2
ź2

)

z

|z|6
, ṡ = 0 .

The boundary equations of motion at τ = τ1 are

p =
−1√
λ

δ lnW1

δx̄
, p̄ =

−1√
λ

δ lnW1

δx
, pM =

−1√
λ

δ lnW1

δzM
, s =

−1√
λ

δ lnW1

δx−
(5.5)

and those at τ = τ2 are

p =
1√
λ

δ lnW2

δx̄
, p̄ =

1√
λ

δ lnW2

δx
, pM =

1√
λ

δ lnW2

δzM
, s =

1√
λ

δ lnW2

δx−
, (5.6)

where

δ lnW

δx
= −∆ 2(x̄− ā)

z2 + (~x− ~a)2
,
δ lnW

δx̄
= −∆ 2(x− a)

z2 + (~x− ~a)2
,
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and

δ lnW

δx−
= −∆ 2(τ − a+)

z2 + (~x− ~a)2
,

and finally

δ lnW

δzM
= −∆ z2 − (~x− ~a)2

z2 + (~x− ~a)2
zM
z2

+ J
z2 nM − (n · z) zM

z2 (n · z) . (5.7)

Let us consider the configuration where the two vertex operators are at the locations

~a1 = (b0, 0, 0, 0) , ~a2 = (c0, 0, 0, 0) (5.8)

with c0 > b0. This means that the vertex operators are separated only in the (Euclidean)

time direction. More general configurations, equivalent up to boosts and rotations, can be

treated at the cost of more complicated formulas. A solution to the equations of motion

that does not have any σ-dependence is [63]

xcl = 0 , x̄cl = 0 , x−cl = −τ , scl =
∆√
λ

i
√

2

c0 − b0
, (5.9)

zcl =
1

√

(n1 − n2)2

[

(c0 − x0)e
φ n1 − (x0 − b0)e

−φ n2

]

.

with x0 ≡ −i
√

2τ . The corresponding momenta follow from

p = sẋ , p̄ = s ˙̄x , p = sẋ . (5.10)

Thus we are required to set

J1 = ∆1 = ∆ = ∆2 = J2 . (5.11)

It is interesting to compare this to the corresponding computations in conformal gauge.

In that case, the equations of motion do not impose a relation between the dimension

and the charge. There, this relation follows from demanding that the vertex operators

are marginal operators. In our case, the origin of this relation is the Virasoro constraints.

Since we have explicitly used them to eliminate the unphysical fields, we require that the

vertex operators actually describe physical states satisfying the appropriate constraints. It

is also worth mentioning that while we only demand that the solution satisfies the boundary

conditions at the worldsheet end-points, the fact is they are actually satisfied for any time.

That is to say, the explicit time dependence cancels in equations (5.5) and (5.6).

Let us consider the two-point function for operators which carry the same U(1) R-

charge. That is we want to consider n1 = −n∗
2 = n (as we will see taking the conjugate

of n2 corresponds to this vertex being incoming), the solution (5.9) then satisfies several

useful relations:

z2
cl = (x0 − b0)(c0 − x0) , z2

cl + (~x−~b)2 = (x0 − b0)(c0 − b0) , (5.12)

ż2
cl = 2 , z2

cl + (~x− ~c)2 = (c0 − x0)(c0 − b0) .
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as well as

n · zcl = (x0 − b0)e
−φ , n∗ · zcl = (c0 − x0)e

φ , (5.13)

and therefore

(n · zcl) (n∗ · zcl) = z2
cl or

n · zcl

|zcl|
=

|zcl|
n∗ · zcl

. (5.14)

Using this last relation in (3.3) shows that changing the sign of J is equivalent to complex

conjugating n. This is relevant for treating vertices of incoming and outgoing strings,

which should correspond to taking complex conjugates. However, to put all vertices on

the same footing we will for most part treat all vertices as outgoing but take the charges

to be negative.

Let us not impose the relations (5.11) in the next few equations in order to see why

they are important. The bulk action S evaluates to zero even without these conditions

while for the boundary action or, equally, the vertex operators we find that on the solution

they contribute

W1,cl =
e−φJ1

(c0 − b0)∆1
lim

x0→b0

(

x0 − b0
c0 − x0

)

∆1−J1
2

, (5.15)

W2,cl =
e−φJ2

(c0 − b0)∆2
lim

x0→c0

(

c0 − x0

x0 − b0

)

∆2+J2
2

. (5.16)

Generically, these expressions would be infinity or zero because of the limit, however in

the case ∆1 = J1 and ∆2 = −J2, corresponding to the protected BPS state, the vertex

operators are separately finite. More generally, when the charges obey ∆2 = ∆1 and

J2 = −J1 i.e. when the incoming and outgoing charges are the same, as they must be for

the above solution, then we can write

〈W1W2〉cl =
N

|c0 − b0|2∆
. (5.17)

In addition to the exponential components of the vertex operators there are the con-

tributions from the U(τ) factors (3.8). Writing these prefactors in the diagonal gauge

hab = diag(z2, z−2) and evaluating them on the above solutions for the times τ = τ1,2, we

find the simple result that UI + UII + UIII = 1. Thus, the two-point function to leading

order in large
√
λ is

〈V1V2〉cl =
1

|c0 − b0|2∆
. (5.18)

6 Quantum two-point function

We now wish to consider the effects of fluctuations about the saddle-point solutions con-

sidered above. This will allow us to find the corrections to the classical expressions for

the vacuum and to consider the two-point functions of near-BMN states, that is operators
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with impurities. This requires including corrections to the vertex operators and including

subleading corrections to the evaluation of the path integral. In doing so we follow methods

standard from the analogous calculation of worldsheet correlation functions in flat space.

This calculation is morally similar, and technically almost identical, to the quantization of

fluctuations about BMN strings and to the calculation of physical energies of such strings.

In this case the action has Euclidean signature and the underlying classical solution has

more parameters, however, as we shall see neither of these are significant.

Fluctuation action. We wish to determine the action for fluctuations of the coordinates

and light-cone momentum parameter, s, where the expansion is in ǫ = λ−1/4, i.e. for a

generic coordinate

Xµ = Xµ
cl + ǫX̃µ . (6.1)

As the transverse momenta appear quadratically, imposing their equations of motion is

equivalent, up to overall normalization constants, to performing the functional integra-

tion. More specifically, the fluctuation expansion about the classical solution found in

section 5 is,11

x = εx̃ , x̄ = ε˜̄x , x− = −τ + εx̃− , s = scl + εs̃ , z = zcl + εz̃ . (6.2)

We plug this expansion only into the bulk action and we will effectively treat the fluctua-

tions at the boundary as if they vanished e.g. dropping total derivative terms. A rigorous

treatment would also involve evaluating the Jacobian and functional derivatives involved

in the coordinate redefinitions performed at intermediate steps, however as in flat space,

these should not be relevant to our considerations. As described in the previous section,

the bulk action vanishes on the saddle point, so to zeroth order in ε the action will vanish.

The first and second order terms in the expansion of the Lagrangian are

L = ε
[

2sclżcl · ˙̃z + scl ˙̃x
−
]

+ ε2

[

scl ˙̃x
˙̄̃x+

1

2
scl ˙̃z

2 + s̃ ˙̃x− + s̃żcl · ˙̃z +
´̃x ´̄̃x+ 1

2
´̃z2

scl(x0 − b0)2(c0 − x0)2

]

. (6.3)

The order-ε terms are a total derivative because scl and żcl are constant. The order-ε2

can also be simplified: firstly, this is the only place where s̃ occurs and since it occurs

linearly, we can integrate it out. Its equation of motion imposes the constraint on the

zero-mode of x̃−

˙̃x− = −żcl · ˙̃z . (6.4)

The action for the quadratic fluctuations is thus

Sfl =

√
λ

2π

∫ 2π

0
dσ

∫ τ2

τ1

dτ ε2
(

scl ˙̃x
˙̄̃x+

1

2
scl ˙̃z

2 +
´̃x ´̄̃x+ 1

2
´̃z2

scl(x0 − b0)2(c0 − x0)2

)

(6.5)

11For simplicity we focus on the solution corresponding to the two-point functions with n1 = −n
∗
2 = n.

As we will see this is not a significant assumption as the fluctuation spectrum depends only on the overall

charge ∆ and not the boundary position or plane of rotation.
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Secondly, we redefine the fluctuations according to

x̃ =
√

F (τ) ˜̃x , z̃ =
√

F (τ) ˜̃z (6.6)

with F (τ) = (x0 − b0)(c0 − x0) = z2
cl, then, dropping the tildes, we find

Sfl =

√
λ

2π

∫ 2π

0
dσ

∫ τ2

τ1

dτ ε2
(

sclFẋ ˙̄x+
1

sclF
x́´̄x− scl

2F
(c0 − b0)

2xx̄

+
1

2
sclF ż2 +

1

2sclF
ź2 − scl

4F
(c0 − b0)

2z2

)

, (6.7)

where we have integrated by parts in τ and dropped the surface terms. We can redefine τ

according to

dτ

sclF (τ)
= dτ̃ , sclF (τ)∂τ = ∂τ̃ , (6.8)

so that (x0 ≡ −i
√

2τ)

τ̃ =
1

2

(√
λ

∆

)

ln

(

x0 − b0
c0 − x0

)

, i.e.

{

τ̃ → ∞ as x0 → c0
τ̃ → −∞ as x0 → b0

(6.9)

then finally

Sfl =
1

2π

∫

dσdτ

(

1

2
Ẋ2 +

1

2
X́2 +

1

2
µ2X2

)

. (6.10)

We have combined the transverse coordinates, x, x̄, z, into XI , I = 1, . . . 8, used the fact

that ǫ2 = λ−1/2 and once again dropped the tildes, on this occasion from the time coor-

dinate. Thus we find, as expected, the transverse massive scalars familiar from the BMN

string where the mass of the fluctuations is µ = ∆/
√
λ. While in general the dimension is

a non-trivial function of the coupling, ∆ = ∆(
√
λ), in the case at hand

∆ =
√
λJ + O(1) , (6.11)

where J is the worldsheet density of the string angular momentum and so we can, to the

order of interest, replace µ = J . One notable feature is that the fluctuation action only

depends on the total charge of the classical string, ∆, and not on the positions of the

vertex operators or on the specific plane in which the string is rotating on the S5. It is

possible to include the fermions and the fluctuation analysis is described in appendix A,

the result being that to quadratic order the action is again that of the BMN string with

masses ±∆/
√
λ. We will for the most part focus on the bosonic calculation and only briefly

mention the (non-trivial) extension to include fermions.

Oscillator expansion. We introduce an oscillator expansion of the fluctuation fields,

XI =

∞
∑

n=−∞

i√
2ωn

(αI
n − αI†

−n)e−inσ , (6.12)
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where ωn =
√

n2 + µ2. The corresponding canonical momenta are

P I =
1

2π

∞
∑

n=−∞

√

ωn

2
(αI

n + αI†
−n) e−inσ , (6.13)

and the bosonic light-cone Hamiltonian12 is (up to a constant which cancels with the

fermionic contribution)

Hlc =
1

2π

∫

dσ Hlc =
∑

n

ωn α
I†
n α

I
n . (6.14)

In defining the vertex operators we must now also include subleading terms characteriz-

ing the excitations at the boundary about the classical solution. That is, for every boundary

labeled by i = 1, . . . , N , we include a wave-function, ψi(X
I
i )eHlc,iτi , where XI

i = XI(σ, τi)

are the transverse boundary fluctuations and τi goes to minus infinity for incoming states

and plus infinity for outgoing. It will be useful to expand the fluctuation momenta for each

string boundary in terms of an oscillator basis, {aI
i,n 6=0,X

I
i,0, P

I
i,0}, different than that used

above,13

aI
i,n =

1√
2

(

αI
i,n + αI

i,−n

)

, aI
i,−n =

1

i
√

2

(

αI
i,n − αI

i,−n

)

, (n = 1, 2, 3, . . .) (6.15)

XI
i,0 = i√

2µi
(αI

i,0 − αI†
i,0) , P I

i,0 =
√

µi

2 (αI
i,0 + αI†

i,0) , (6.16)

so that

XI
i = XI

i,0 +
√

2

∞
∑

n=1

(

XI
i,n cosnσ +XI

i,−n sinnσ
)

,

P I
i =

1

2π

[

P I
i,0 +

√
2

∞
∑

n=1

(

P I
i,n cosnσ + P I

i,−n sinnσ
)

]

(6.17)

with XI
i,n = i√

2ωi,n
(aI

i,n − aI†
i,n) and P I

i,n =
√

ωi,n

2 (aI
i,n + aI†

i,n).

Worldsheet correlation functions. Having shown that the fluctuations are described

by the standard plane-wave action, calculating the quantum corrections to the two-point

function is straightforward. To be slightly more general than necessary for a moment, as it

will be useful later, we consider the N -point function. The string worldsheet corresponds to

multiple segments which intersect at some specified times and locations, τr and σr, giving

rise to 2N − 4 parameters describing the intersection points. In general we integrate over

all such moduli however by using the invariance under global shifts of the coordinates we

can fix the location of one intersection point. Thus for two-point and three-point functions,

12When deriving the canonical momentum and the Hamiltonian from (6.10), one has to be careful because

this is the Euclidean action. It is probably easiest to temporarily Wick-rotate to Lorentzian signature.
13These oscillators still satisfy the usual commutation relations [aI

i,n, a
J†
j,m] = δIJδnmδij .
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there will be no such integrations. The N -point function is given by14

〈V1(τ1)V2(τ2) . . . VN (τN )〉 = N e−Scl−Bcl

∫ N−3
∏

r=1

dτrdσr

∫

∏

DXI
N
∏

i=1

ψi(X
I
i )eHlc,iτie−Sfl ,

= N e−Scl−Bcl

∫

∏

i,n,I

dP I
i,n ψi(P

I
n,i)

×
∫

∏

DXI exp
[

∑

i

Hlc,i|τi|
]

exp
[

i
∑

i

∫

dσ P I
i (σ)XI(σ, τi) − Sfl

]

, (6.18)

where in the last line we have Fourier transformed the wavefunctions to momentum space.15

Scl and Bcl are the actions evaluated on the classical solutions.

Now we can follow standard procedure from functional light-cone methods and inte-

grate out the transverse coordinates.

〈V1(τ1)V2(τ2) . . . VN (τN )〉 = N e−Scl−Bcl [det ∆]−4 (6.19)

×
∫

∏

i,n,I

dP I
i,n

∏

i

ψki
(P I

i,n) e
P

i Hlc,i|τi|+ 1
4

P

i,j

R

dσ′dσ′′ P I
i (σ′)N(σ′,τi;σ′′,τj)P I

j (σ′′) .

For the wavefunction, we take,

ψki
(P I

i,n) =
∏

n,I

〈Ω(i)|(AI
i,n)ki,n |P I

i,n〉 . (6.20)

where |Ω(i)〉 is the string vacuum state at each worldsheet boundary, AI
i,n are the exact

annihilation operators, and |P I
i,n〉 are momentum eigenstates. To leading order in the

√
λ

expansion we simply have

|Ω(i)〉 = |0〉(i) + O(λ−1/2) , and AI
i,n = αI

i,n + O(λ−1/2) , (6.21)

where |0〉(i) is the usual Fock vacuum for plane-wave oscillators, and αI
i,n are the corre-

sponding oscillator annihilation operators (note these are the BMN oscillators not those

in which we expanded the momenta). The momentum eigenstates are given by their usual

expressions in terms of harmonic oscillators.

Two-point function. We now restrict ourselves to the two-point function where the

worldsheet is simply a cylinder with the two states at the corresponding boundaries: state

“1” is incoming, τ1 → −∞, and state “2” outgoing, τ2 → ∞. The vertex operators depend

on charges ∆1,2 and J1,2 which are related, by demanding the physical state conditions, so

that

∆1,2 = |J1,2| − P+;1,2 (6.22)

14This is not completely correct. As we shall see once we include fermions it is necessary to include

additional factors at the string intersection points exactly analogous to the flat space case.
15One difference from the flat space version is that the integration over momenta includes the zero modes.

For the pp-wave string the zero-modes are also harmonic oscillators and are on essentially the same footing

as all other modes.
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where P+ = − 1
P−
Hlc,i. As Hlc,i are all of order unity they do not affect the classical saddle

point about which we expand. Importantly, this implies that the classical worldsheet

sourced by vertex operators for the BMN vacuum and those for near-BMN excited states

are the same. Thus even for near-BMN strings we can use the analysis of the previous

section and from the boundary action we have the classical contribution to the two-point

function,16

〈V1(τ1)V2(τ2)〉cl =
N

|c0 − b0|2∆
. (6.23)

Turing to the quantum fluctuations, for generic points, solving for the worldsheet Green’s

function is straightforward,

N(σ, τ ;σ′, τ ′) = −
∞
∑

n=−∞

2

ωn
e−ωn|τ−τ ′|ein(σ−σ′) , (6.24)

= − 2

µ
e−µ|τ−τ ′| −

∞
∑

n=1

4

ωn
e−ωn|τ−τ ′|(cosnσ cosnσ′ + sinnσ sinnσ′) .

Calculating the Green’s function between points on the string endpoints one must include

the effects of waves reflected from the string boundary which in effect doubles those terms

involving e−ω|τ−τ ′|.

We can thus rewrite the two-point function as17

〈V1(τ1)V2(τ2)〉 =
N

|c0 − b0|2∆
〈{k2,n}, {k2,n}|e

P

i Hlc,iτie−2
P

n
1

ωn
P I

1,nP I
2,ne−ωn(τ2−τ1) |0〉 . (6.25)

In the simplest case where both strings are in the vacuum state, i.e. ki,n = 0 for every i

and n, the light-cone Hamiltonian P+,i = 0 and, as |τ1 − τ2| = |τ1| + |τ2| → (2 ×∞) with

ωn > 0 for each n, we simply find

〈V1(τ1)V2(τ2)〉 =
1

|c0 − b0|2∆
(6.26)

where we have fixed the normalization N = 1. In the case where there are excitations,

in (6.25) we need to commute the light-cone Hamiltonian through the momentum operators.

After doing this, the only terms which are not exponentially suppressed are those of the

form e−
P

n aI†
2,naI†

1,n , or switching to the BMN oscillators, e−
P

n αI†
2,nαI†

1,n , so that

〈V1(τ1)V2(τ2)〉 =
1

|c0 − b0|2∆
〈{k1,n}, {k2,n}|e−

P

n αI†
2,nαI†

1,n |0〉

=
δ{k1,n,k2,n}
|c0 − b0|2∆

. (6.27)

16We will not explicitly evaluate the functional determinant but simply absorb it into the overall normal-

ization. It does not depend on the excitations of the string state and so has no dependence on the mode

numbers.
17Note that the states are written in a shorthand and are strictly states in the tensor product of Hilbert

spaces. E.g. |{k1,n}, {k2,n}〉 = |(αI
1,n)k1,n〉(1) ⊗ |(αI

2,n)k2,n〉(2).

– 18 –



J
H
E
P
0
4
(
2
0
1
2
)
0
8
0

x1,in x1,outx2,in x2,outx3,out

(xint, zint)

z

Figure 2. Three-string junction. Each segment of the saddle-point solution for three strings is

the saddle-point solution for two strings that we found in section 5. However, from the two-string

solution, we discard the part (dashed line) that lies beyond the intersection point.

7 Classical three-point function

Our main concern is the generalization of previous consideration to three point functions

and it is to this topic we now turn. We consider three vertex operators V∆1,J1(τ1,~a1,n1),

V∆2,J2(τ2,~a2,n2), and V∆3,J3(τ3,~a3,n3) corresponding to three string states all with large

charges sourcing a classical worldsheet. We will think of the string, with charges ∆1, J1

as originating at the boundary coordinate ~a1, extending into the bulk, splitting at the

bulk point (~xint, zint) into two parts with charges ∆2, J2 and ∆3, J3, and the two fragments

reaching the boundary at locations ~a2 and ~a3, respectively. Thus there are three boundary

actions and three string segments which reach from the three points on the boundary to

the intersection point. In addition each string segment is characterized by an internal

coordinate ni characterizing its motion on the sphere.

We focus on the particular configuration where the vertex operators are aligned along

the (Euclidean) time18

~a1 = (b, 0, 0, 0) , ~a2 = (c, 0, 0, 0) , ~a3 = (d, 0, 0, 0) . (7.1)

Since “1” is the in-string, and “2” and “3” are the out-strings,19 the intersection point

will satisfy b < xint < c, d and we also choose c < d. The classical solution will look

qualitatively like figure 2.

For each segment, we can recycle the solution (5.9) that we found in the case of the

two-point function that is, for each segment i = 1, 2, 3, the solution is of the form

xi,cl = 0 , x̄i,cl = 0 , x−i,cl = −τ , si,cl =
∆i√
λ

i
√

2

xi,out − xi,in
, (7.2)

zi,cl =
1

|ni,in − ni,out|
[

(xi,out − x)eφini,in − (x− xi,in)e
−φini,out

]

.

18We could write the time components as b0, c0, etc., but for convenience and clarity we drop the

component index.
19We stress again that while we refer to the segments as “incoming” and “outgoing” we are working in a

Euclidean formulation so the individual string segments are not physical propagating string solutions.
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where x ≡ −i
√

2τ . If x takes values along the entire interval [xi,in, xi,out], then this solution

describes a semi-circle from the point (x, z) = (xi,in, 0) to (xi,out, 0). That was appropriate

for the two-point function. For the three-point function only one end of each segment

necessarily reaches all the way to the boundary while the other end will terminate at the

intersection point which is generically in the bulk; therefore we need to restrict the interval

for x along each string segment, see figure 2. However, the solution describing each segment

still depends on the this “virtual” end-point which is a parameter determined by demanding

that the strings intersect at the point (~xint, zint). Similarly, for each segment one of ni,in or

ni,out is determined by the vertex operator on the boundary but the solution also depends

on a “virtual” vector which is again determined by demanding that the strings intersect.20

From the first property of the solution given in (5.12) (which also holds for the more

general ansatz (7.2)) we have the relation, satisfied along each segment,

z2
int = (xint − xi,in)(xi,out − xint) . (7.3)

This allows us to eliminate the unphysical endpoint for string “1” and the initial points for

strings “2” and “3”. Thus we have:

Segment i Parameter x xi,in xi,out

1 [b, xint] b xint +
z
2
int

xint−b

2 [xint, c] xint − z
2
int

c−xint
c

3 [xint, d] xint − z
2
int

d−xint
d

(7.4)

By construction we have ensured that the segments meet in the AdS5 subspace; all segments

have the point (xint, zint) in common, where zint = |zint|. For the segments to meet on the

sphere, we need to further impose

zint = z1,cl|x=xint
= z2,cl|x=xint

= z3,cl|x=xint
. (7.5)

Using this condition we can determine, for example, on the first segment

n1,out =
e2φ1

(xint − b)2

[

z2
intn1,in − 2(n1,in · zint)zint

]

(7.6)

with similar expressions for n2,in and n3,in.

For the above solution we require that ∆1 = J1, ∆2 = J2, and ∆3 = J3 so that,

plugging the solution into the action, one finds, as for the two-point funciton, that the bulk

action vanishes, the prefactors become unity and the only non-trivial contribution comes

from the boundary terms which, after some algebra, give

B = BAdS + BSph (7.7)

20In a previous version of this paper this freedom was neglected, resulting in an insufficiently general

ansatz and hence an incorrect saddle point for the sphere coordinates for non-extremal correlators. The

correct ansatz, in conformal gauge, was found in [64] and the correct saddle point was identified. We thank

A. Tseytlin for bringing this to our attention.
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where, with the notation a0,1 = b, a0,2 = c and a0,3 = d,

BAdS =

3
∑

i=1

∆i ln
|zint|

z2
int + (xint − a0,i)2

, BSph =

3
∑

i=1

∆i ln
ni · zint

|zint|
. (7.8)

It looks like we have essentially gone back to (3.3). However, there is an important differ-

ence: the ~x(τ) and z(τ) in (3.3) are to be evaluated at the boundary. In (7.7) the point

(xint, zint) lies at the intersection of the three strings, a point generically in the bulk. The

remaining step in performing the semiclassical evaluation of the path-integral is to evalu-

ate the saddle point of the finite-dimensional integral over the undetermined intersection

point,21

〈V1(τ1)V2(τ1)V3(τ1)〉 =

∫

dxintdzint e
−BAdS

∫

d5Ωint

3
∏

i=1

(

ni · zint

|zint|

)∆i

. (7.9)

By making use of the standard parametrisation of the five sphere

z1 + iz2
|z| = cos γeiβ1 ,

z3 + iz4
|z| = sin γ sinψeiβ2 ,

z5 + iz6
|z| = sin γ cosψeiβ3 (7.10)

we factorize the integration into an AdS part and a sphere part. We perform the saddle-

point evaluation of the AdS integral by, as discussed in (2.10), extremizing the function

BAdS. The integral over the sphere depends on the choice of vectors ni. The degenerate

case where the three vertex operators correspond to strings rotating in the same plane is

dual to the extremal three-point functions in the gauge theory. More generally the strings

can rotate in orthogonal planes or in diagonal combinations.

Extremal correlator. Let

n1 = n∗
2 = n∗

3 = (1, i, 0, 0, 0, 0) . (7.11)

In this case only the first two components of zint appear in the minimization problem

and we can take zint = (zint,1, zint,2, 0, 0, 0, 0). Let the intersection coordinates be zint,1 =

zint coshϕint and zint,2 = zint sinhϕint. Then n1 · zint = zinte
ϕint , n2 · zint = n3 · zint =

zinte
−ϕint and the boundary action becomes

B = ∆1 ln
zint

z2
int + (xint − b)2

+∆2 ln
zint

z2
int + (xint − c)2

+∆3 ln
zint

z2
int + (xint − d)2

+ (∆1 −∆2 −∆3)ϕint . (7.12)

Here we see that the action depends on the direction ϕint linearly, as the strings can intersect

anywhere along a circle. Hence there is no minima and performing the integration over the

intersection point produces a delta function for the angular momenta imposing J1 = J2+J3,

or for the solution we consider imposes the constraint

∆1 = ∆2 +∆3 (7.13)

21Here, as we have specified to the case where the vertex operators lie along a single boundary direction,

xint, the integration is over an AdS2 ⊂ AdS5. It is straightforward to generalize to the full AdS5 space.
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thus these are extremal correlators. Minimizing for xint (or really ~xint but there is only

one non-trivial component) and zint yields the result presented in (2.10). As previously

mentioned, on this solution the bulk action vanishes, the prefactors become constants and

the only contribution comes from the boundary terms yielding

〈V1(τ1)V2(τ1)V3(τ1)〉 =
CAdS

|b− c|α3 |b− d|α2 |c− d|α1
(7.14)

with

CAdS =

(

αα1
1 αα2

2 αα3
3 (α1 + α2 + α3)

α1+α2+α3

(α1 + α2)α1+α2(α2 + α3)α2+α3(α3 + α1)α3+α1

)1/2

(7.15)

and the α’s as in (2.9). This calculation is done for generic ∆i’s. We now impose the

constraint (7.13) for the extremal case and the above the result simplifies significantly

〈V1(τ1)V2(τ1)V3(τ1)〉 =
1

|b− c|α3 |b− d|α2
. (7.16)

Non-extremal correlators. The above methods are general enough to allow for the

different strings to be rotating in different intersecting planes of the S5. The AdS boundary

action, BAdS, remains the same and so the extremization is unchanged. Minimization

with respect to zint and xint yields the same result as before and thus the space-time

dependence is equivalent to (7.15), however, now the integration over the sphere is non-

trivial.22 Generically, the result is

〈V1(τ1)V2(τ1)V3(τ1)〉 =
CAdS

|b− c|α3 |b− d|α2 |c− d|α1

∫

d5Ωint

3
∏

i=1

(

ni · zint

|zint|

)∆i

. (7.17)

In general, we can expect to find non-vanishing non-extremal correlators when

n1 · n2 6= 0 , n1 · n3 6= 0 , n2 · n3 6= 0 . (7.18)

This result is reminiscent to the harmonic superspace description of the three-point vacuum

correlators in [31]. In that case the space-time super-coordinates are augmented by an

auxiliary bosonic coordinate V m, m = 1, . . . , 6 such that V 2 = 0, V · V ∗ = 1 c.f. (3.4). In

terms of the scalar fields of N = 4 SYM, Φm, the vacua are, schematically OJ = Tr(ZJ)

and thus labelled by a choice of V , Z = ΦmV
m. The three-point function of three different

vacua is given by

〈OJ1OJ2OJ3〉 = C123K
J1+J2−J3/2
12 K

J2+J3−J1/2
23 K

J1+J3−J2/2
13 (7.19)

where the leading bosonic component is

K12 ∼ δmnV
m
1 V n

2

(x1 − x2)2
. (7.20)

22For large charges this integration can also be done by saddle-point approximation. This was performed

in [64] and the explicit result was found. Here, we leave the integration unperformed.
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Comparison with weak coupling. It is also interesting to compare the normalization

of the non-extremal result (7.15) with that computed at weak coupling in gauge theory

and at strong coupling using the supergravity approximation [4]. For three chiral primary

operators, OIi , with dimensions ∆i = Ji, defined such that,

〈OI1(~a1)O
I2(~a2)〉 =

δI1I2

|~a1 − ~a2|2∆1
(7.21)

that is, with the normalization as in (5.18), the three-point function is given in the planar

limit by

〈OI1(b)OI2(c)OI3(d)〉 =
1

N

√
J1J2J3

|b− c|α3 |b− d|α2 |c− d|α1

[

(α1 + α2 + α3

2
+ 2
)

!
α1
2 !α2

2 !α3
2 !

J1!J2!J3!

]

× 1

2π3

∫

S5

Y I1Y I2Y I3dΩ (7.22)

where the Y I ’s are the ultra-spherical harmonics normalized such that23

1

π3

∫

S5

Y I1Y I2dΩ =
δI1I2

2(J1 + 1)(J1 + 2)
(7.23)

and where N is the rank of the gauge group. This expression is obviously different

than (7.17) even if we make appropriate choices for the ultra-spherical harmonics char-

acterizing the operators. For example, in the extremal limit there is a numerator factor,√
J1J2J3, absent from the string calculation. However, the string calculation assumes that

all the charges, Ji, are large, i.e. Ji =
√
λJi with Ji = O(1). Moreover, we take the αi’s to

be large which is natural from the string theory, as generically α1 = J2 + J3 − J1 ∼
√
λ.

We can now take the extremal limit α1 → 0 or J2 + J3 − J1 → 0 however we should be

aware that it is after having already taken the large charge limit. Using Stirling’s formula

we can approximate the factorials n! ∼ nne−n so that

〈OI1(b)OI2(c)OI3(d)〉= gs

|b−c|α3 |b−d|α2 |c−d|α1

[

(α1+α2+α3)
(α1+α2+α3)αα1

1 αα2
2 αα3

3

JJ1
1 JJ2

2 JJ3
3

]1/2

× 1

π3

∫

S5

Y I1Y I2Y I3dΩ (7.24)

which indeed reproduces (7.17) for specific choices of the three ultra-spherical harmonics24

up to the overall factor of the string coupling gs = 1
N which we have omitted. In this

approximation we have dropped all polynomial terms of order O(Jn
i ) for finite n or rather

we have set them equal to one. To find the correct prefactor agreeing with [4] it would

most likely be necessary to include the full fermionic terms in the definition of the U(τi)

appearing in the definition of the vertex operator however to the order of our considerations

it does not seem to contribute.25

23This is a different normalization than that of [4].
24In an earlier version of this paper, the dependence on the sphere was incorrect due to an insufficiently

general ansatz. The correct treatment, in conformal gauge, was found [64].
25This possibility of this necessity was stressed to us by A. Tseytlin.
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With regard to the integral over spherical harmonics, we have not considered the

vertex operators for such general configurations from the string point of view, however in

appendix B we briefly describe the point particle on AdS space as a toy model for BMN

strings and show how the semiclassical three-point function is indeed proportional to the

overlap of ultra-spherical harmonics. As a simple example we can consider the extremal

case,

Y I1 =

(

z1 − iz2
|z|

)J1

, Y I2,3 =

(

z1 + iz2
|z|

)J2,3

(7.25)

so that the overlap of three harmonics is just that of two harmonics both with J =

J2 + J3 and one can use the two-point formula (7.23) which has the required behavior

to match (7.14).

8 Circular winding strings

Here we wish to repeat the three-point analysis for the circular winding string. Such string

solutions were first considered in [58] and the general class of solutions was described in [59].

In general, one can consider rigid string solutions with angular momenta in both the AdS5,

Sr, and S5, Ji, spaces and with various windings kr, mi in both subspaces. The simplest

case is a particle in the AdS space with two equal angular momenta J and winding m on

the sphere. These strings have a particularly simple relation between their energies and

charges: E =
√

4J2 + λm2. While this solution is unstable once quantum fluctuations

are considered, it acts as an interesting probe of the integrable structures underlying the

planar limit of the AdS/CFT duality.

In [58] and [59], conformal gauge and global coordinates were used to describe the

solution. In conformal gauge, but now using Poincaré coordinates, the simplest circular

winding solution (of the Lorentzian theory) is given by, using the notation z = (z1, . . . , z6),

z1 =
1√

2 cos κτ
cos(ωτ +mσ + φ1) , z2 =

1√
2 cos κτ

sin(ωτ +mσ + φ1)

z3 =
1√

2 cos κτ
cos(ωτ −mσ + φ2) , z4 =

1√
2 cos κτ

sin(ωτ −mσ + φ2) ,

x0 = tanκτ , (8.1)

and z5 = z6 = 0. This solution has equal angular momentum in the two orthogonal planes,

1-2 and 3-4, and winding m. The Virasoro constraints, satisfied by a physical solution,

imply that κ =
√
m2 + ω2. This solution has energy and angular momentum

E =

√
λ

2π

∫

dσ
1

z2
ẋ0 =

√
λκ

J12 =

√
λ

2π

∫

dσ
1

z2

[

z2ż1 − z1ż2

]

= −
√
λ
ω

2
= J34 . (8.2)
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Euclidean Solution. One can straightforwardly check that the analytical continuation

is a solution of the Euclidean equations of motion. The corresponding solution in diagonal

gauge is, with κ2 = ω2 +m2,

z1 =
xout − xin

2
√

2 coshκτ̃
cosh(ωτ̃ + imσ + φ1) , z2 = i

xout − xin

2
√

2 coshκτ̃
sinh(ωτ̃ + imσ + φ1) ,

z3 =
xout − xin

2
√

2 coshκτ̃
cosh(ωτ̃ − imσ + φ2) , z4 = i

xout − xin

2
√

2 coshκτ̃
sinh(ωτ̃ − imσ + φ2) ,

x+ = τ , x− = −τ , s =
i
√

2κ

xout − xin
(8.3)

with

τ̃ =
1

κ
arctanh

[

2x0 − xin − xout

xout − xin

]

, x0 ≡ −i
√

2τ . (8.4)

Setting xout = 1 and xin = −1 this is exactly the analytic continuation of the global

solution written in Poincaré coordinates but we have made the generalization to more

arbitrary boundary conditions along the x0 coordinate (even more general solutions can be

found by arbitrary boosts).

This solution has the correct boundary behavior to correspond to the integrated ver-

sions of the vertex operators26

V R
∆,J,J,m(~σ,~a) =

( |z|
z2 + (~x− ~a)2

)∆(z1 + iz2
|z|

)J(z3 + iz4
|z|

)J

(8.5)

where, for physical states, we require ∆ =
√

4J2 + λm2. The specific solution above

corresponds to the vertex operators being located at positions ~a1 = (xin, 0, 0, 0) and ~a2 =

(xout, 0, 0, 0) on the four-dimensional boundary.

This vertex operator is essentially that of [14] however it is not clear that this is in fact

the correct form for the circular winding string.27 Even if we assume that the analytically

continued solution (8.3) is the correct saddle-point for the two-point function, this does

not uniquely determine the form of the vertex operator and there could be other vertex

operators which produce the same boundary action. For example, if there are non-trivial

polynomial terms,

V∆,J,J,m(~σ,~a) =

( |z|
z2 + (~x− ~a)2

)∆(z1 + iz2
|z|

)J(z3 + iz4
|z|

)J

Um(~σ) (8.6)

with, schematically,

Um(~σ) ∼
[

z2hab∂a

(

z1 + iz2
|z|

)

∂b

(

z1 − iz2
|z|

)]m[

z2hab∂a

(

z3 + iz4
|z|

)

∂b

(

z3 − iz4
|z|

)]m

,

(8.7)

26As for the BMN string there is an issue regarding how we define the integrated vertex e.g.

exp
ˆ

1
2π

R

dσ ln Vi

˜

but again, on the solution, the vertex does not depend on σ so both definitions give

the same answer.
27We are grateful to A. Tseytlin for very useful discussions on this and points related.
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the boundary action is identical and so the same classical surface will be a solution, however

the normalization of the two-point function is different. It is not clear that even this is

sufficiently general. For example another proposal, one which is perhaps better motivated,

was given in [7]. It involves T-dualized coordinates dual to the angular coordinates along

which the string is extended, β1 and β2, see (7.10). That is, we introduce variables β̃1 and

β̃2 which are related by worldsheet duality to the angles β1 and β2,

∂σβ̃1,2 = −z2∂τβ1,2 and z2∂τ β̃1,2 = ∂σβ1,2 , (8.8)

where here we have dropped the dependence on the remaining coordinates as they will not

be relevant. In terms of these variables the proposed vertex is

V∆,J,J,m(~σ,~a) =

( |z|
z2 + (~x− ~a)2

)∆

eiJβ1eiJβ2ei
√

λ m
2

β̃1e−i
√

λ m
2

β̃2 , (8.9)

which now has modified exponentially large terms. That this vertex provides a source for

the circular winding string solution was shown for the theory defined on the plane in [7].

This proposal thus suffers from the same ambiguities as that of [14], for example there

could be missing polynomial terms. However, given its explicit dependence on the winding

parameter, and the interpretation of exchanging momentum for winding by T-duality, it

seems perhaps more likely correct. For our purposes it is useful to consider the fields at

the boundary at time τi

β̃
∣

∣

∣

τ=τi

=

∫ σ

σ0

dσ′∂σβ̃(σ′, τi) = −
∫ σ

σ0

dσ′z2∂τβ(σ′, τi)

∼
∫ σ

σ0

dσ′ pβ(σ′, τi) , (8.10)

where σ0 is some reference point. Thus we interpret the vertex in our first order formalism

as

V B
∆,J,J,m(~σ,~a) =

( |z|
z2 + (~x− ~a)2

)∆

eiJβ1eiJβ2e
i
√

λ m
2

R σ

σ0
dσ′
[

pβ2
(σ′,τi)−pβ1

(σ′,τi)

]

. (8.11)

It is interesting to note that evaluated on the solution the angular momenta are equal, pβ1 =

pβ2 , which implies that portion of the vertex depending on the T-dual coordinates becomes

trivial. Moreover it implies that, again on the solution, this vertex is σ-independent and

so we can trivially interpret it as a contribution to the boundary action as in (5.3). We

can now check the equations of motion including the boundary terms, whereupon we find

that it does not satisfy the correct boundary conditions. This is essentially immediate from

the fact that the vertex contributes to the pβ equations of motion boundary terms which

cannot be canceled by corresponding terms from the bulk action, see (5.4). This is due to

the choice of boundary conditions for the bulk action (4.15), in particular there is a choice

in writing

S =

√
λ

2π

∫

dσdτ
[

pAẋ
A −H

]

6=
√
λ

2π

∫

dσdτ
[pAẋ

A − ṗAx
A

2
−H

]

. (8.12)
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If we make the second choice for the coordinates β1 and β2, we now get additional bound-

ary terms in the p equations of motion and we can satisfy the boundary conditions with

the appropriate choice of σ0’s. Given the formal nature of the T-duality and its global

consequences it is perhaps unsurprising that we must modify the boundary conditions of

our string, however in doing so we also modify the relation between the vertex operator

charges and the parameters of our solution. In particular, with the symmetric choice for

the bulk action 1
2 (pββ̇− ṗββ) we find that ω = 4J . This is a different relation than for the

analogous parameter in the physical solution and so also different than that found in [7].

In [7] a Lagrangian approach using both the original fields and the dual fields at the same

time was used. It is possible that in our first-order formalism calculation we too should

use some doubled formalism, however we will leave this to another occasion.

The ambiguity in the choice for the vertex operator is related, at least in part, to

the fact that the global charges are not sufficient to uniquely identify which state a given

string solution corresponds to. If we had a better understanding of the higher, integrable

charges of vertex operators we may be able to match them one-to-one to classical solutions.

However, we currently do not have such a description and so we evaluate the correlators of

three vertices of the type (8.5). If there are polynomial terms to be added they would have

to be evaluated on the classical solution while if the vertex is completely different even the

boundary action contributions to the correlator may be different.

There is another, related point: just as we have not proven that there is a unique

vertex operator consistent with a given solution, a given solution for a vertex operator

may not be the global minimum of the action. There can be multiple contributions from

different local minima and until one has a complete classification of solutions the saddle-

point computation may be incomplete. In certain cases, when strings are BPS or when

one can take a flat space limit it is possible to gain intuition regarding which solution

dominates the path integral however the circular winding string does not have a smooth

limit to either of these configurations.

Three-point function. Exactly parallel to the BMN case, we now consider a worldsheet

consisting of three segments, each ending on a vertex operator, V R(τi,~ai), at the boundary

with charges ∆i, Ji and mi such that ∆i = (4J2
i + λm2

i )
1/2. Our considerations would be

identical if we allowed a polynomial prefactor U(τi) or if we used the vertices V B(τi,~ai)

but with alternative definition of the boundary conditions for the bulk action. For each

segment i = 1, 2, 3, we use the general solution (8.3), so e.g.

z1,i =
xi,out − xi,in

2
√

2 cosh κiτ̃
cosh(ωiτ̃i + imiσi + φ1,i)

with τ̃i(x0) =
1

κi
arctanh

[

2x0 − xi,in − xi,out

xi,out − xi,in

]

. (8.13)

In particular, this implies

z2
i = (xi,out − x0)(x0 − xi,in) , (8.14)

so that zi = 0, i.e. the segments reach the boundary, at times x0 = xi,in and x0 = xi,out.

For simplicity, we will consider in the following the incoming string with x1,in = −a, while
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the outgoing strings end at times x2,out = 0 and x3,out = a. The range of all σi coordinates

is 0 to 2π. At the intersection time the string is alternatively parametrized by σ1 or by σ2

and σ3, where the interval σ1 ∈ [0, 2πm2
m1

] is identified with σ2 ∈ [0, 2π], and the interval

σ1 ∈ [2πm2
m1
, 2π] is identified with σ3 ∈ [0, 2π].

In the AdS part of the space-time the string solution is the same as for the BMN

string discussed in section 7. Thus, we readily know the position of the intersection point

(xint, zint) and the “virtual” end-points x1,out, x2,in and x3,in. Using ~a1 = (−a, 0, 0, 0),
~a2 = (0, 0, 0, 0), and ~a3 = (a, 0, 0, 0) in (2.10), we find

xint =
α1α2 − α2α3

α1α2 + α2α3 + 4α1α3
a , zint =

2
√

α1α2α3(α1 + α2 + α3)

α1α2 + α2α3 + 4α1α3
a . (8.15)

Now, the virtual endpoints are determined by the formulas in (7.4) and read

x1,out =
α2

α2 + 2α3
a , x2,in =

α1 + α3

α1 − α3
a , x3,in = − α2

2α1 + α2
a . (8.16)

On the sphere the string is extended in two planes. Let us consider string “1” in the

1-2 plane and at the intersection time xint

z1,1 + iz2,1

z1
=

1√
2
exp
[

ω1τ̃1,int + φ1,1 + im1σ1

]

, (8.17)

where τ̃1,int = τ̃1(xint) and where the function τ̃1(x0) was defined in (8.13). We can deter-

mine the constant phases of segments “2” and “3”, φ1,2 and φ1,3, in terms of φ1,1, x2,in,

x3,in, x1,out and τint by demanding that these segments overlap with segment “1”. Specif-

ically, we choose a parametrization so that the point σ1 = 0 on the first string coincides

with the point σ2 = 0 on the second and thus we determine

φ1,2 = −ω2τ̃2,int + ω1τ̃1,int + φ1,1 . (8.18)

While 0 ≤ σ2 ≤ 2π, the coordinate on the first string runs between 0 ≤ σ1 ≤ 2πm2
m1

. Then,

taking σ3 = 0 to coincide with σ1 = 2πm2
m1

φ1,3 = −ω3τ̃3,int + ω1τ̃1,int + φ1,1 + 2iπm2 . (8.19)

Similarly, we find

φ2,2 = −ω2τ̃2,int + ω1τ̃1,int + φ2,1 ,

φ2,3 = −ω3τ̃3,int + ω1τ̃1,int + φ2,1 − 2iπm2 . (8.20)

Now we are required to minimize the action on the remaining undetermined phases φ1,1

and φ2,1, however, as they appear linearly in the action, they simply give a delta function

imposing J1 − J2 − J3 = 0.

To this point most of the considerations are independent of the precise form of the

vertex operators, only in using the form of the exponentially large AdS terms to perform

the minimization have we made concrete use of the explicit form. As this string is a point

particle in the AdS space its seems reasonable that it is identical to the point particle string
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result and further one expects the same delta-functions for the angular momenta regardless

of any derivative in the sphere portions of the vertex operator. However we now wish to

evaluate the full action, including boundary terms, on the solution and this will be more

sensitive to the details of the vertex operator. It is important to note that not only does

the vertex operator (8.5) give the correct boundary conditions, but as we will see, with

the appropriate definition of ∆ in terms of J and m, it gives finite results in a non-trivial

fashion when evaluated on the solution. While this may also not be enough to fix the form

of the vertex operator, as again any polynomial terms most likely will not change this fact,

it does give another constraint.

Inserting the solution into the action, we have from the boundary terms, here using

the boundary terms BR
i ∼ − lnWR

i originating from the vertices of the type V R(~ai) = WR
i ,

and with BR =
∑

i BR
i ,

e−BR
=

1

(a+ x1,out)∆1(x2,in)∆2(a− x3,in)∆3
exp(−2ω1J1τ̃1,int − 2ω2J2τ̃2,int − 2ω3J3τ̃3,int)

×
(

a+ x0

x1,out − x0

)

∆1
2 −2J2

1
∆1

x0=−a

(

x0

x2,in − x0

)

∆2
2 −2J2

2
∆2

x0=0

(

a− x0

x0 − x3,in

)

∆3
2 −2J2

3
∆3

x0=a

. (8.21)

By itself this contribution is divergent however in this case, unlike for the BMN string,

the bulk action is non-vanishing when evaluated on this solution and moreover it cancels

against the divergent part of the boundary action.

Let us consider the first string segment where we find

S1 =

√
λ

2π

∫

dσ1

∫ τint

− ia√
2

dτ L1 = −λm
2
1

2∆1
ln

(a+ x0)

(x1,out − x0)

∣

∣

∣

∣

x0=x0
int

x0=−a

. (8.22)

This term is also divergent from the x0 = −a singularity at the boundary, however it nicely

combines with the divergence from the bulk contribution using∆2
i = 4J2

i +λm2
i . Combining

the boundary contributions (8.21), the exponential of the bulk action contribution, (8.22),

including similar terms for the other segments, S =
∑

i Si, and using the expressions for

x1,out, x2,in, x3,in we find that

〈V R
1 V

R
2 V

R
3 〉 = e−S−BR

(8.23)

=
1

a∆1+∆2+∆32∆1−∆2+∆3

√

αα1
1 αα2

2 αα3
3 (α1 + α2 + α3)α1+α2+α3

(α1 + α2)α1+α2(α1 + α3)α1+α3(α2 + α3)α2+α3
.

Quite remarkably this is exactly the same answer as for the BMN string with, however,

the dimensions ∆i being quite different. We note that while the answer is the same, it

comes about in a somewhat non-trivial fashion combining terms from the bulk action and

the boundary terms.

The form of the vertex operator and the fact that this result looks so similar to the

BMN three-point function suggests that we have rather calculated the correlator of massive

point-particle states, or perhaps merely some subleading saddle-point contribution to such

a correlator (for a genuine point particle state one would imagine that the leading saddle
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point would be a σ independent solution). Indeed, as we have already mentioned, we

are not able to identify uniquely the correct vertex operator. However, if the difference

is merely due to additional polynomial terms then (8.23) provides the exponentially large

contribution, and the remaining normalization comes from evaluating the polynomial terms

on the solution

〈V (τ1,~a1)V (τ2,~a2)V (τ3,~a3)〉S = 〈U(τ1)U(τ2)U(τ3)〉S+B(WR
1 ,WR

2 ,WR
3 ) . (8.24)

It is interesting to note that even if we take the vertices of the type V B(τi) the factors

depending on the T-dualized coordinates do not contribute and so the vertex essentially

becomes V R(τi). If we use the relations between the parameters and the charges calculated

in [7] then we find exactly the same answer, in the leading semiclassical approximation we

are working in, as (8.23). If we used the relations following from using the modified bulk

action boundary conditions the answer will again be the same as long as we use a modified

dispersion relation ∆ = ∆(J,m) to guarantee a finite result.

9 Quantum three-point function

In this section we wish to make some comments on the generalization of the considerations

of section 6 to the three-point function. Having shown that the fluctuation action for the

bosons and fermions, for extremal and non-extremal correlators, is simply that of light-cone

gauge fixed plane-wave string theory the result is almost immediate. In essence we wish to

outline how from the light-cone path integral evaluation of their correlation function one

reproduces the cubic Hamiltonian in plane-wave light-cone string field theory [65–67].

The interest in this rederivation is that we can extend our considerations to non-

extremal correlators. Moreover, while we do not address these topics in this work it is to

be hoped that these methods can be more straightforwardly generalized to higher order

worldsheet quantum corrections and to other classical string vacua. Finally, a related

point is that it is currently not clear that the prefactor for the supersymmetric vertex

operator derived for the plane wave geometry is correct when applied to the AdS/CFT

correspondence. This stems from the fact that the full AdS5 × S5 conserved charges in

the plane-wave limit, particularly the supercharges, do not correspond exactly with the

charges calculated directly in the plane-wave geometry when applied to off-shell states and

furthermore the off-shell algebra is not identical [68–71]. Thus an approach which explicitly

follows from a perturbative expansion of the full AdS5 × S5 action is useful.

As in the classical case we will consider state “1” as incoming, so that τ1 → −∞, and

states “2” and “3” as outgoing, τ2,3 → ∞. The string worldsheet is thus composed of

three segment each corresponding to the resepctive segment of the classical solution. As

the fluctuation analysis is local on the worldsheet we can trivially repeat the calculation of

section 6, thus we find three regions each of which is described by a plane wave action but

each with a different mass,

Sfluc =

∫ τint

τ1

dτ

∫ l1

0
dσ L(1) +

∫ τ2

τint

dτ

∫ l2

0
dσ L(2) +

∫ τ3

τint

dτ

∫ l3

0
dσ L(3) (9.1)
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where

L(i) =
1

2π

[

Ẋ2
i + X́2

i + µ2
iX

2
i

]

, (9.2)

with µi = Ji the mass of the fluctuations of the fields on the three regions of the worldsheet.

Here we note that the different segments are parameterized such that each segment has

worldsheet length li = 2π. On each segment we can rescale the spatial coordinate and the

worldsheet time

ζi = ξi + iηi = αiτi + i|αi|σi (9.3)

so that each mass is unity but now li = 2π|αi| with αi = Ji. In the extremal case one has

α1 = α2 + α3 (9.4)

which can be identified with the conservation of the light-cone momentum. Just as for the

N-point function we can integrate out the transverse fluctuations by introducing the Green’s

function N(σ, τ ;σ′, τ ′). In terms of the original choice for the worldsheet spatial coordinate

(where each segment has period 2π) we take as an ansatz for the general expansion of the

Green’s function in terms of the Neumann coefficients N ij
m,n,

N(σ, τi;σ
′, τj) = −δij 2

µi
− δij

∞
∑

n=1

4

ωi,n

[

cos(nσ) cos(nσ′) + sin(nσ) sin(nσ′)
]

(9.5)

+8
∑

n,m

e−ωi,m|τi|−ωj,n|τj |
√
ωi,nωj,m

[

N ij
m,n cos(mσ) cos(nσ′)+N ij

−m,−n sin(mσ) sin(nσ′)
]

where we have the individual plane-wave oscillator frequencies ωi,n =
√

n2 + µ2
i . Starting

from (6.19), and taking the normalization, including the functional determinant, to be one,

we can write the three point function as

〈V1V2V3〉 = e−Scl−Bcl C123 (9.6)

with

C123 =

∫

∏

i,n,I

dP I
i,nψki

(P I
i,n) e

P

i Hlc,i|τi|+ 1
4

P

i,j

R

dσ′dσ′′ P I
i (σ′)N(σ′,τi;σ′′,τj)P I

j (σ′′) .

Using the oscillator expressions for the wavefunctions, and recalling that we treat string

“1” as incoming, “2” and “3” as outgoing, we write the coefficients C123 in terms of the

Neumann coefficients,

C123 = 〈{k1,n, k2,n, k3,n}|exp
[

∑

n,m
i<j

N ij
m,na

I†
i,ma

I†
j,n

]

|0〉 . (9.7)

Exactly parallel considerations for the fermions produce result in a fermionic contribution

to the exponential, exp
[
∑

Qij
m,nb

†
i,mb

†
j,n

]

, where Qij
nm are the usual fermionic Neumann

matrices and our conventions for the oscillators, b†n, are defined in (A.23).
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Neumann coefficients. We have thus reproduced the three-point amplitude (for the

purely bosonic theory) in terms of the Neumann coefficients. In flat space they can be most

easily found by using the conformal invariance of the light-cone gauge fixed theory whereas

in the plane-wave theory their determination is slightly more complicated. They are found

by demanding continuity and conservation of momentum across the string junctions,28

〈X1(η) −X2(η) −X3(η)〉 = 〈P1(η) + P2(η) + P3(η)〉 = 0 . (9.8)

These equations imply that [32, 65]

N ij
mn = δijδmn − 2

√
ωi,mωj,n(X(i)TΓ−1X(j))mn (9.9)

with Γmn =
∑

i

∑

l ωi,lX
(i)
mlX

(i)
nl and

X(1)
mn = δmn , X(2)

mn =
1

π
(−1)m+n+1 sin(πmy)

n−my
, X(3)

mn =
1

π
(−1)n

sinπm(1 − y)

n−m(1 − y)
(9.10)

with y = J2
J1

. Explicit expression were given in a series of papers [65, 72] and perhaps

most efficiently in [73] hence we will not repeat the derivation here but refer the reader to

the references.

Prefactor. It is long known from the flat space case that superstring amplitudes cannot

be simply calculated in light-cone gauge as overlap amplitudes of vertex operators but that

non-trivial insertions must be made at the string interaction points [74–76]. In the RNS

formulation of open superstrings such insertions are schematically of the form Si
1∂X

i where

Si
a are the usual Grassmann valued, spacetime vectors. The explicit form of these insertions

is determined by demanding Lorentz invariance of the path integral. In the Green-Schwarz

formulation of open superstrings in flat space an ansatz for the insertion was proposed by

Mandelstam in [76]: for each joining point we include a factor of
∑

I |I〉∂XI on the single

string segment, where the state |I〉 is a vector state in the supersymmetric formalism.

For the closed string the insertion on the single string segment, our segment “1”, at the

joining point is a tensor product
∑

IJ |IJ〉∂XI ∂̄XJ . Using the complex fluctuation fermions

introduced in (A.20) we can define the tensor product state to be

|IJ〉 = δIJ +
1

2
λaλbγIJ

ab +
1

4!
(λaλbλcλd)tIJ

abcd

+
1

6!
(λcλdλeλfλgλh)γIJ

ab ǫ
ab

cdefgh +
1

8!
(λaλbλcλdλeλfλgλh)ǫabcdefgh . (9.11)

In the path integral each insertion must be contracted with a term from the boundary,

thus for example

〈(ẊI(σ1) − X́I(σ1)) . . . 〉 = 〈{k1,n, k2,n, k3,n|
[

3
∑

s=1

∑

n,m

(ωn + n) cosnσ1N
1s
n,ma

I†
1,m

]

. . . |0〉

∼ 1√
σ1 − σ1,int

〈{k1,n, k2,n, k3,n|
∑

m

K1,ma
I†
1,m . . . |0〉 (9.12)

however this divergent as σ1 → σ1,int = 0 and must be regularized.

28Here we use the rescaled worldsheet coordinates so that in the extremal case the string worldsheet

length is conserved across the interaction.
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In flat space light-cone string field theory the complete vertex function, including

the prefactor was given in [77, 78]. This was generalised to the plane-wave geometry

in [65, 66], see also [67, 79, 80] and in particular the fermionic component is morally

similar to (9.11). The prefactor is constrained by demanding that it is consistent with

the plane-wave superalgebra, however this is not sufficient to uniquely determine it and

alternative forms of the prefactor were proposed [56, 81–83]. It was shown in [55, 56] that

a linear combination of the different prefactors with equal weights is consistent with the

supergravity limit of holography. There is also an intrinsic ambiguity whereby the cubic

vertex can be modified by making a unitary transformation,29 for example adding the cubic

vertex of [83] can be seen as such a transformation [57]. Currently there does not exist a

first principles derivation of the cubic vertex.

In the case at hand a further distinction must be made: as has been explicitly shown

for the usual BMN string i.e. the Lorentzian analogue of (5.9) with c0 = 1, b0 = −1 [70, 71],

the dynamical supercharge, Q−, to quadratic order in the transverse fields is given by

Q− = −
√

2

∫

dσe
−iΠx−

2

[

2πP IγIλ− iX́IγI λ̄− iµXIγIΠλ
]

, (9.13)

which differs from the plane-wave expressions by the non-local factor, exp−iΠx−

2 . This has

two effects, firstly the superalgebra relevant for determining the prefactor is modified

{Q−
a , Q̄

−
b } = δabH − iµ(γrsΠ)Jrs + iµ(γr′s′Π)Jr′s′ ,

{Q̄−
a , Q̄

−
b } = δabP̃ , {Q−

a , Q
−
b } = δabK̃ , (9.14)

where Jrs and Jr′s′ , r, s = 1, . . . , 4 r′, s′ = 5, . . . , 8 are the SO(4) rotations and the mo-

mentum generators P̃ and K̃ are not present in the plane-wave algebra but correspond to

the central extensions of the psu(2|2) algebra introduced in the context of the AdS/CFT

duality in [68]. Such terms were considered in the calculation of the plane-wave cubic ver-

tex in [84], where under the assumption that P̃ and K̃ receive no corrections, the prefactor

was shown to be that found in [56, 80].

A second feature is that the supercharges act on products of excitations, at least

excitations of the same string segment, with a non-trivial coproduct [68–71, 85]. On the

worldsheet the definition of the coproduct made essential use of the decompactification

limit of the worldsheet. It would be very interesting to generalize this coproduct to strings

with multiple segments and to repeat the calculation of the prefactor. Unfortunately we do

not currently have such a definition, however if we additionally restrict our considerations

to excitations with momenta that are very small compared to the string charges we expect

that the plane-wave calculation of the prefactor is valid. In this limit we can take over all

the results from light-cone string field theory.

29This ambiguity is also present in flat space as one can make similar unitary transformations, however

such ambiguities do not contribute to S-matrix elements, the observables in flat space, at least to leading

order in perturbation. We thank H. Shimada for this point.
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10 Conclusions and discussion

In this work we considered the light-cone gauge approach to the study of worldsheet cor-

relation functions of vertex operators for strings in AdS5×S5. For the case of two-point

functions, we showed that the family of euclidean BMN strings provide the saddle-point

approximation to the path integral where the boundary conditions are given by the compo-

nents of the vertex operators that scale as (. . . )
√

λ. The action, both the bulk and boundary

contributions, evaluated on these solutions is completely finite, a result due to the fact that

the vertex operators describe physical on-shell states satisfying the Virasoro constraints.

We then analyzed the fluctuations around the saddle point and showed that, as expected,

the fluctuations are described by the plane-wave action with the masses depending only on

the total charge ∆ of the solution. As is expected, the quantum corrections do not effect

the space-time dependence of the correlator, but additionally the dependence on the par-

ticular orientation of the solution on the compact S5 drops out. Including the fluctuations

about the classical solutions we can also define the vertex operators for near-BMN states

with non-vanishing worldsheet momentum. At the quadratic level it is straightforward to

see that the vertex operators do not mix, and we can identify this worldsheet calculation

as the holographic two-point function of the gauge theory near-BMN operators.

We then studied the saddle-point calculation of the worldsheet correlator of three BMN

string vertices. Following a similar calculation in Lorentzian signature [10], the saddle point

is given by finding the intersection of three euclidean BMN strings. We were able to ex-

plicitly determine the coordinates of the intersection point and evaluate the action on the

solution reproducing the standard space-time dependence for three-point functions in a

conformal theory. An important issue is that a given solution, even one consistent with

the correct boundary conditions, may not be the global minimum of the action. There

can be multiple contributions from different local minima and until one has a complete

classification of solutions the saddle-point computation may be incomplete. Relatedly one

could question whether our procedure for sewing solutions together, which corresponds to

imposing conditions at the intersection point, is correct.30 That our procedure matches

the known exact answer, in the limit of large charges, strongly suggests that, at least to

order λ−1/2, this is the case. To completely determine all saddle-points with the appro-

priate boundary conditions it would be necessary to have a complete specification of all

classical solutions and not just those following from our ansatz. This may be possible by

methods making use of the hidden structures of the worldsheet, in particular the world-

sheet integrability, something which has not played an overt role in our considerations. We

discussed both extremal correlators, where all three strings rotate in the same plane, and

non-extremal correlators, where the strings move in orthogonal planes and intersecting at

a single point. In the first case we found the usual extremal relation, ∆1 = ∆2 +∆3 and

the solution degenerates so that the intersection point in fact lies on the boundary. In the

non-extremal case, the intersection point is generically in the bulk.

30However we should again note that while we do not impose continuity of derivatives across the intersec-

tion point we do demand that the action is minimized, which completely fixes the solution. This is related

to the definition of the path-integral; we choose our functions to be continuous and piecewise differentiable.
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We further extended these results to circular winding strings, which are described by

point-like geodesics in the AdS subspace but are extended along great circles of the S5.

Here, once again we found a finite result and one that surprisingly has the same form as

that for the BMN strings. In this case, we used the proposed vertex of [14] in evaluating

the correlator, however it is not certain that this is the final correct form. If there are

additional polynomial terms, then their contribution, evaluated on the solution, must be

included. We also considered the vertex operator proposed earlier in [7] which involved

T-dualized angles on the sphere. This vertex sourced the same saddle point solution in

our formulation after changing the boundary conditions on the bulk action. Moreover,

the form of the correlation function was essentially identical. Regardless of the ultimately

correct form of the vertex operator it should provide the same boundary conditions and

thus the same classical solution should provide a saddle-point contribution to the three-

point correlator.

Returning to the BMN strings, it is straightforward to study the quantum corrections

to the three-point functions. Following the standard light-cone approach to the evaluation

of the string path integral and using the earlier fluctuation analysis, we made contact with

the results of string field theory and earlier holographic calculations of three-point structure

constants. As mentioned, the fluctuations only depend on the total charges of the vertices

and not their specific orientation. This implies that, as is to be expected from conformal

invariance, the structure constants have no dependence on the boundary locations of the

vertex operators but also that they do not depend on the relative orientations of the charges

in the compact directions i.e. on the n vectors. This appears to agree with the results from

the gauge theory. It also suggests that the structure constants for the extremal and non-

extremal correlators are smoothly related i.e. given the structure constants for a generic

non-extremal correlator C123(∆1,∆2,∆3; {ki}), we can then find the extremal expression

by analytic continuation, as was suggested in [61] and which is the philosophy taken in

recent weak coupling calculations [42, 43]. Under this assumption, we made direct contact

with the results of light-cone string field theory. The leading quantum corrections to the

structure constants are thus found by calculating matrix elements between oscillator states

with contractions made using the Neumann matrices and including an appropriate insertion

at the intersection point.

An obvious and important open direction is how to include further quantum corrections

to the correlation functions of near-BMN operators. To this end, it may be useful to take a

slightly different perspective, one which proved useful in the study of the spectral problem,

and consider the decompactification limit of all three strings. That is, rescale the worldsheet

spatial coordinate on all three segments so that 0 ≤ σi ≤ 2πJi and take Ji → ∞ while

keeping the ratios fixed and then study the worldsheet theory perturbatively in a small

momentum expansion. This would involve including further terms in the expansion of the

action which can be found straightforwardly, and which in turn would give rise to at least

three sources of correction,

• Corrections to the vertex operators: Just as one calculated the corrections to the

energies of string states [86–88], one can perturbatively calculate the corrections to the
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string states themselves. In effect one would need to calculate the corrections to the

two point functions of vertex operators and diagonalize the resulting mixing matrix.

• Corrections to the prefactor: To find corrections to the prefactor one would need

to repeat the supersymmetry analysis of [56, 80, 84] but allow for a more general

ansatz for invariants presumably involving more powers of bosonic fields. One may

likely need to allow for the non-trivial coproduct action for the supercharges. If this

is insufficient to fix any ambiguities, it would be very desirable to have a definition

of the higher, non-local charges which may fix the prefactor uniquely. In flat space

and for the RNS string, an alternative to insertions at the interaction points was to

introduce N = 1 worldsheet supersymmetry i.e. supersheets [89, 90]. A similar result

was shown for flat space Green-Schwarz strings in [91] and for plane waves in [92],

whether this can be repeated for the full AdS5×S5 case remains an open question.

• Corrections to the worldsheet propagator and correspondingly the Neumann matrices.

Regarding the last point, for the two-point function it is known that, in the decompact-

ification limit, the exact propagator for a single magnon is found by the replacement

ωp =
√

1 + p2 →
√

1 + 4 sin2(p/2). As the Neumann matrices are determined simply

by the mode expansion and continuity it is tempting to conjecture, and so we shall, that

a similar replacement will produce the correct, all-order Neumann matrices via the usual

relation

N ij
mn = δijδmn − 2

√
ωi,mωj,n(X(i)TΓ−1X(j))mn , (10.1)

but using the exact dispersion relations. It would be interesting to ask if such equations

can be solved, along the lines of [73] in terms of generalized µ-deformed Gamma-functions

but again with ωp =
√

1 + 4 sin2(p/2) and pn = n/L. In any case, it should be possible

to determine, at least perturbatively, the corrections by including higher order terms from

the worldsheet action.

A related direction is to study whether the method of patching together two-point

classical string solutions to find three-point solutions can be generalized to a wider range

of configurations. In this work we considered the simplest circular winding strings on the

sphere and on the sphere it should be straightforward to consider more general strings, with

more general angular momenta, etc. Whether the same can be done for strings extended in

the AdS space, for example folded spinning strings, remains to be seen. Similarly it would

be worthwhile to calculate the quantum corrections to more general configurations, even

for the simplest circular string. Here finding the fluctuation action and calculating the

corrections to the non-excited vacua should be straightforward though understanding the

definition of the vertex operator, particularly the explicit form of the U∆,J ;m(~σ) function,

becomes essential.

As mentioned, our considerations are always for Euclidean worldsheet signature and

Euclidean AdS, corresponding to the calculation of Euclidean correlation functions in the

boundary theory. The proposals of [10] included using physical strings with Lorentzian
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worldsheets to holographically calculate correlators in Minkowski space-time, which re-

quires finding classical solutions describing the joining and splitting of physical strings.

Such classical solutions have been found in [93–96] and a complete general solution on the

R × S3 subspace has recently been given in [97]. Our calculation differs not only in using

Euclidean worldsheets but also in the construction of the saddle points. While we demand

that the string segments overlap, we do not separately demand that the time-derivatives

also match. Rather, we determine the remain parameters by minimizing the action upon

varying the intersection point. Nonetheless, it would be very interesting to see if similar

methods can be used in the Euclidean theory.
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A Fermionic fluctuation action

For the most part we have neglected to include the fermions however even at the level

of quadractic fluctuations they play a crucial role. Here we will analyze the quadratic

fermionic fluctuations about the classical solution (5.9).31 As previously discussed the

light-cone gauge action is equivalent to using the diagonal gauge fixed Lagrangian where

the length of the worldsheet is determine by the light-cone momentum. Thus we start from

the action of [46] for the fermions θi and ηi, i = 1, 2, 3, 4, and their conjugates θi = (θi)
†,

ηi = (ηi)
†,32 which to quadratic order in the fermions is,

Lferm = i(θiθ̇i + θiθ̇
i + ηiη̇i + ηiη̇

i) + 2i
żMzN

z2
ηi(ρ̄

MN )ijη
j

+2i
zM

sclz3
ηi(ρM )ij θ́

j + 2i
zM

sclz3
ηi(ρ̄

M )ij θ́j . (A.1)

The 4 × 4 matrices ρM = (ρM )ij are the off-diagonal blocks of the Dirac matrices in six

dimensions in chiral representation, we will not need explicit expression but a convenient

representation can be found in [46]. We have also defined ρ̄M = (ρM )ij = (ρM
ij )†, and

ρ̄MN = (ρ̄MN )ij =
1

2
(ρ̄MρN − ρ̄NρM ) , ρMN = (ρMN )i

j =
1

2
(ρM ρ̄N − ρN ρ̄M ) . (A.2)

These matrices satisfy the Clifford algebra

ρ̄MρN + ρ̄NρM = 2δMN , ρM ρ̄N + ρM ρ̄N = 2δMN . (A.3)

31As for the bosonic fluctuations, we focus on the solution corresponding to the two-point function with

n1 = −n
∗
2 = n. As we will see, this is not a significant assumption as the fluctuation spectrum depends

only on the overall charge ∆ and not the boundary position or plane of rotation.
32Due to our specific gauge fixing, worldsheet time coordinates are rescaled by inverse powers of scl

compared to [46].
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The matrix part of the expressions we are dealing with in this section is always an alter-

nating product of some number of factors ρM and ρ̄N whose SO(6) indices are contracted

either to n or n∗. Therefore, it is useful to define the notation (n · ρ) = nMρM . Using the

properties of n given in (3.4) and the Clifford algebra, it follows that

(n · ρ)(n · ρ̄) = (n∗ · ρ)(n∗ · ρ̄) = 0 , (n · ρ)(n∗ · ρ̄) + (n∗ · ρ)(n · ρ̄) = 4 , (A.4)

and the same formulas with ρ ↔ ρ̄ exchanged. We now substitute the classical solution

into the action. In order to make the formulas more compact, we introduce an angle α by

eiα =
(c0 − x0)e

φ

√

(x0 − b0)(c0 − x0)
, e−iα =

(x0 − b0)e
−φ

√

(x0 − b0)(c0 − x0)
, (A.5)

and the function F (τ) = (x0 − b0)(c0 − x0), which allows us to write

zcl =
1

2

√
F
(

e−iαn∗ + eiαn
)

. (A.6)

The action becomes

Lferm = i(θiθ̇i + θiθ̇
i + ηiη̇i + ηiη̇

i) +
c0 − b0√

2F
ηi(n

∗MnNρMN )ijη
j (A.7)

+
i

Fscl
ηi
[

(n∗ · ρ)e−iα + (n · ρ)eiα
]

ij
θ́j +

i

Fscl
ηi

[

(n∗ · ρ̄)e−iα + (n · ρ̄)eiα
]ij
θ́j .

We can remove the explicit time dependence by rotating the fermions. To this end, we

define the matrices

R = Ri
j =

1

2
n∗MnN ρ̄MN , S = Si

j = cos
α

2
− iR sin

α

2
, (A.8)

which satisfy

R† = R , R2 = 1 , S† = S−1 . (A.9)

Using these rotation matrices, we redefine the fermions as

θi = Si
j θ̃

j , ηi = Si
j η̃

j , (A.10)

and the same for η. By virtue of the identities S†RS = R and

ST(n · ρ)S = e−iα(n · ρ) , S†(n · ρ̄)S†T = e−iα(n · ρ̄) , (A.11)

ST(n∗ · ρ)S = eiα(n∗ · ρ) , S†(n∗ · ρ̄)S†T = eiα(n∗ · ρ̄) , (A.12)

the α(τ) dependence of the last three term in the Lagrangian disappears. However, the

redefinition of the fermions introduces extra contibutions from the time derivative terms.

Using

S†Ṡ = − iα̇
2
R , α̇ =

c0 − b0√
2F (τ)

, (A.13)
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we find

θiθ̇
i = θ̃iS

†i
j∂τ (Sj

kθ̃
k) = θ̃i

˙̃
θi − i

c0 − b0

2
√

2F (τ)
θ̃iR

i
j θ̃

j , (A.14)

and similarly for the other kinetic terms. Combining all contributions, we have

Lferm =
1

sclF (τ)

[

isclF (τ)(θ̃i ˙̃
θi+θ̃i

˙̃
θi+η̃i ˙̃ηi+η̃i

˙̃ηi)+iη̃i(n∗+n) · ρij
´̃
θj+iη̃i(n

∗+n) · ρ̄ij ´̃
θj

+
scl(c0 − b0)√

2
θ̃iR

i
j θ̃

j + 3
scl(c0 − b0)√

2
η̃iR

i
j η̃

j
]

. (A.15)

Finally we can redefine the worldsheet time in the same manner as for the bosonic fluc-

tuations dτ̃ = dτ/(sclF (τ)). We thus find the plane-wave Lagrangian for eight complex

fermions with masses depending on the solution parameters,

scl
(c0 − b0)√

2
= i

∆√
λ

(A.16)

We can redefine fermions once more

ζ̃i =
1

2
η̃j(n∗ + n) · ρji (A.17)

so that

ζ̃i
˙̃ζi = η̃i ˙̃ηi , ζ̃iR

i
j ζ̃

j = −η̃iR
i
j η̃

j (A.18)

and then make a final time dependent rotation θ̃i = (e−iωRτ̃ )ij θ̂
j and ζ̃i = (e−iωRτ̃ )ij ζ̂

j.33

Choosing ω = scl(c0 − b0)/2
√

2, and dropping hats and tildes we have,

Lferm = i(θiθ̇i + θiθ̇
i + ζiζ̇i + ζiζ̇

i)+ 2i(ζiθ́
i − ζiθ́i)+ 2i

∆√
λ
θiR

i
jθ

j − 2i
∆√
λ
ζiR

i
jζ

j (A.19)

which is the action in terms of two 4-component complex spinors. We note that the

hermitian matrix R has eigenvalues 2 × +1 and 2 × −1. We can thus bring it to the

form Π̃ = diag(1, 1,−1,−1) by a unitary transformation on the fields θ and ζ.34 We can

introduce ϑa, a = 1, . . . , 8, with ϑ = 1√
2
(ϑ1 − iϑ2), ϑ̄ = 1√

2
(ϑ1 + iϑ2) where

ϑ1 =

(

θi + θi

ζi + ζi

)

, ϑ2 =

(

i(ζi − ζi)

−i(θi − θi)

)

, (A.20)

so that we can rewrite the action in terms of an 8-component complex spinor

Lferm =
i

2
(ϑ̄ϑ̇+ ϑ ˙̄ϑ) +

i

2
(ϑ̄ ´̄ϑ− ϑϑ́) − iϑ̄Mϑ , (A.21)

where the mass matrix is symmetric, block off-diagonal with (∆/
√
λ)Π̃ on the off-diagonals.

We can make a further change of basis so that M = (∆/
√
λ)Π with Π = diag(14,−14).

In terms of SO(8) gamma matrices, with an appropriate choice of representation, Π =

γ1γ2γ3γ4. This is simply the plane-wave fermionic action of [29].

33As usual there is an issue with reality conditions for the fermions, here we assume that ωτ̃ is real.
34 As both of these fields have the same mass matrix they are both diagonalised by the same transfor-

mation.
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Oscillator expansion. The oscillator expansion of the fermionic field ϑ and its conjugate

momentum λ = 1
2π ϑ̄ is given by

ϑ = ϑ0 +
√

2
∞
∑

n=1

(ϑn cosnσ + ϑ−n sinnσ) ,

λ =
1

2π

[

λ0 +
√

2

∞
∑

n=1

(λn cosnσ + λ−n sinnσ)
]

. (A.22)

In terms of BMN creation and annihilation operators we have

ϑn =
1

2
√
µ

(

Anbn +Bnb
†
−n

)

, with (A.23)

An =
1√
ωn

(
√
ωn − n+Π

√
ωn + n) , Bn =

i√
ωn

(−√
ωn + n+Π

√
ωn − n)

B A toy model for non-extremal correlators

Although we do not have a general description for the intersection of solutions correspond-

ing to generic non-extremal correlators we can consider an appropriate ansatz/toy model.

In essence, we consider a general point particle ansatz, however rather than solving the

equations of motion we simply insert this ansatz into into the action and drop the σ depen-

dence. We can expect this to capture the leading semiclassical approximation for point-like

BMN strings but nonetheless we are only looking at a toy model.

As we have discussed in the main text, the BMN geodesics we are interested in corre-

spond to straight line trajectories in Euclidean six-dimensional space. The path integral

approach to point particles in spherically symmetric potentials is well studied, see [98],

and making the usual change to spherical coordinates, while slightly subtle, is naturally

useful. For a point particle of mass M , moving in D flat dimensions, with coordinate

vector z, we can expand the path integral calculation of a quantum mechanical amplitude

in ultra-spherical harmonics Yl,m(ẑ) with ẑ a D-dimensional unit vector, z2 = z2, ẑ = z

z2 ,

i.e.

〈zb, τb|za, τa〉 =
1

(zazb)(D−1)/2

∞
∑

l=0

〈zb, τb|za, τa〉l
∑

m

Ylm(ẑb)Ylm(ẑa)
∗ (B.1)

where the radial amplitude is defined by

〈zb, τb|za, τa〉l =

∫ z=zb

z=za

Dz e−Sradial,l (B.2)

with the effective radial action being

Sradial,l =
M

2

∫

dτ
[

ż2 + “
1

M2

(l +D/2 − 1)2 − 1/4

z2
”
]

(B.3)

and where the quotation marks imply that one cannot naively consider this action in the

path integral when z goes to zero but rather one must perform the time slicing of the
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Cartesian action and then change variables. In effect this changes the numerical constant

in the numerator however for our immediate semiclassical considerations this is not relevant

and results in a subleading correction.

Returning to the light-cone worldsheet theory, we consider the point particle limit and

perform the above expansion for the six dimensional space spanned by zM , M = 1, . . . , 6.

Defining the shorthand for the radial partial amplitude from the i-th boundary to the

intersection point

〈{xi, x̄i, zi}, τi|{xint, x̄int, zint}, τint〉li = 〈i|int〉li , (B.4)

we can now make the same expansion for the path integral but include the vertex operators

at the boundary. The correlator for incoming particle “1” and outgoing particles “2” and

“3” is

〈V (3)V (2)V (1)〉=
∫ 3
∏

i=1

dX(i)I
∫

dXI
inte

B(3)
eB

(2)
eB

(1)∗ ∑

l1,l2,l3

〈3|int〉l3〈2|int〉l2〈1|int〉∗l1
∑

m1,m2,m3

Yl3m3(ẑ3)Yl3m3(ẑint)
∗Yl2m2(ẑ2)Yl2m2(ẑint)

∗Yl1m1(ẑint)Yl1m1(ẑ1)
∗.

For the boundary terms coming from the vertex operators we take the AdS part to be

given by the usual expression while for the sphere part we take a specific ultra-spherical

harmonic (3.5),

B(1) = B
(1)
radial +B

(1)
sphere

= ∆(1) ln

(

z1
z12 + (~x1 − ~a1)2

)

+ lnYl′1,m′
1
(ẑ1) (B.5)

and outgoing

B(2,3) = ∆(2,3) ln

(

z2,3

z2,3
2 + (~x2,3 − ~a2,3)2

)

+ lnY ∗
l′2,3,m′

2,3
(ẑ2,3) . (B.6)

Using the orthogonality of the ultra-spherical harmonics

∫

d5ẑ Y ∗
l,m(ẑ)Y∗

l′,m′(ẑ) = δll′δ
(4)
m,m′ (B.7)

we have

〈V (3)V (2)V (1)〉 =

∫ 3
∏

i=1

d2xidzi

∫

d2xτint
dzinte

B
(3)
radialeB

(2)
radialeB

(1)∗
radial〈3|int〉l3〈2|int〉l2〈1|int〉∗l1

×
∫

d5ẑint Y
∗
l′3,m′

3
(ẑint) Yl′2m

′
2
(ẑ2) Yl′1m

′
1
(ẑ1) . (B.8)

The radial component of the path integral can be evaluated using the saddle-point ap-

proximation and the earlier expressions for the BMN geodesic in the AdS5 subspace; this

will reproduce the standard space-time dependence. The angular part corresponds to the
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three-point function structure constants and thus we see that generically the non-extremal

correlator is proportional to
∫

d5ẑint Y
∗
l3,m3

(ẑint) Yl2m2(ẑint) Yl1m1(ẑint) (B.9)

which is as expected see e.g. appendix B of [4]. We should emphasize again that here we

are only treating the point particle part of the path integral and we should really find the

appropriate classical solutions to the full path integral.
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