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In this paper the pure spinor formalism is used to obtain a compact expression for the

superstring N–point disk amplitude. The color ordered string amplitude is given by a sum

over (N − 3)! super Yang–Mills subamplitudes multiplied by multiple Gaussian hyperge-

ometric functions. In order to obtain this result, the cohomology structure of the pure

spinor superspace is exploited to generalize the Berends–Giele method of computing super

Yang–Mills amplitudes. The method was briefly presented in [1], and this paper elaborates

on the details and contains higher-rank examples of building blocks and associated coho-

mology objects. But the main achievement of this work is to identify these field-theory

structures in the pure spinor computation of the superstring amplitude. In particular, the

associated set of basis worldsheet integrals is constructively obtained here and thoroughly

investigated together with the structure and properties of the amplitude in [2].
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1. Introduction

The computation of tree-level superstring scattering amplitudes is an important prob-

lem since the birth of string theory (see e.g. [3]). But despite being already four decades

old, explicit results for tree amplitudes with more than four external legs [4] have only re-

cently been completed using the Ramond–Neveu–Schwarz (RNS) formalism at five points

[5], at six points [6] and partially up to seven points [7]. In addition to conceptual is-

sues about higher-point worldsheet integrals, the huge amount of algebraic manipulations

required to complete these calculations has proven to be a major obstacle to further de-

velopments. When written in terms of ten-dimensional momenta and polarizations, the

amplitudes simply become too big.

However, since the year 2000 a new formalism for the superstring which can be used

to compute manifestly super-Poincaré invariant scattering amplitudes in superspace is

available [8]. A general proof that the disk amplitudes in the pure spinor formalism for

an arbitrary number of bosonic and for up to four fermionic external state agree with

the standard RNS prescription was given in [9]; and the supersymmetric four-, five- and

six-point tree amplitudes have been explicitly computed in [10-13].

In this paper the general problem will be solved; i.e. the complete solution for all

N–point superstring color-ordered disk amplitude AN ≡ A(1, 2, . . . , N) is given by

AN =

∫

zi<zi+1

∏

i<j

|zij |
−sij

[N−2
∏

k=2

k−1
∑

m=1

smk

zmk
AYM (1, 2, . . . , N) + P(2, . . . , N − 2)

]

, (1.1)

where AYM (1, 2, . . . , N) is the color-ordered N–point super Yang–Mills subamplitude in

ten dimensions, P(2, . . . , N − 2) means the summation over all (N − 3)! permutations of

the labels (2, . . . , N − 2) inside the brackets, and the color ordering of the superstring

subamplitude is defined by the integration region
∫

zi<zi+1

≡
∏N−2

j=2

∫ 1

zj−1
dzj .

It is straightforward to obtain subamplitudes associated with different color orderings

(1, 2, . . . , N) 7→ (1σ, 2σ, . . . , (N − 1)σ, N) for σ ∈ SN−1 and iσ ≡ σ(i) from (1.1). The

worldsheet integrand with its (N − 3)! kinematic AYM packages stay the same, only the

integration region has to be adapted to

Iσ ≡ {zi ∈ R, 0 = z1σ
≤ z2σ

≤ . . . ≤ z(N−2)σ ≤ z(N−1)σ = 1},
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according to the σ ∈ SN−1 permutation in question,

A(1σ, 2σ, . . . , (N − 1)σ, N) =

∫

Iσ

N−2
∏

l=2

dzlσ
∏

i<j

|zij |
−sij

×

[N−2
∏

k=2

k−1
∑

m=1

smk

zmk
AYM (1, 2, . . . , N) + P(2, . . . , N − 2)

]

. (1.2)

By taking the α′ → 0 field-theory limit of (1.2) (in particular of the integrals involved using

the methods presented in [2]), it follows that all color-ordered field theory amplitudes can be

written in terms of the (N−3)! dimensional basis {AYM (1, 2σ, . . . , (N−2)σ, N−1, N) | σ ∈

SN−3}, a result which was proposed in [14] and later proved in [15,16] using monodromy

relations in string theory. Furthermore, plugging in the explicit field-theory limits of the

integrals appearing in (1.1) (using the method described in [2]), one derives the BCJ

relations among different color-ordered subamplitudes discussed in [14].

This paper is organized as follows. In section 2 a brief review of the pure spinor

formalism is given; with special emphasis to the elements necessary for the scattering

amplitude computations in the following sections. In section 3 the BRST building blocks

which encode the information of the pure spinor CFT correlator will be defined and their

BRST properties studied at length. In particular, a diagrammatic method which associates

arbitrary cubic graphs to certain building block combinations is fully presented (partial

results have already been shown in [1]). In section 4 a pure spinor generalization of the

recursive method of Berends–Giele [17] to compute super Yang–Mills in ten-dimensions is

developed which extends the previous results of [1]. In section 5 the general N–point CFT

correlator of the superstring amplitude involved in the pure spinor prescription is obtained

in a compact form using the BRST cohomology objects of the previous sections. Finally,

using a mixture of pure spinor superspace manipulations together with total derivative

relations for the superstring integrals, the superstring N–point amplitude is rewritten in

terms of the field-theory subamplitudes as in the result (1.1) presented above. In the

appendix A, the calculations involving the explicit derivation of the building block T12345

in terms of super Yang–Mills superfields (which were omitted from the main text due to

its lenghty nature) are presented in full detail. In appendix B, the explicit expressions

for the pure spinor Berends–Giele currents M123...p are written down in terms of BRST

building blocks for up to and including M1234567. Finally, in appendix C the cubic graphs

which were used to find the expressions of appendix B are depicted up to M123456 (the 132

graphs used to derive M1234567 would occupy too much space and were omitted).
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2. The pure spinor formalism

In the pure spinor formalism [8], the worldsheet action for the type IIB superstring is

S =
1

2π

∫

d2z

(

1

2
∂Xm∂Xm + pα∂θ

α + pα∂θ
α − ωα∂λ

α − ωα∂λ
α

)

, (2.1)

where [Xm(z, z), θα(z), pα(z); θ
α
(z), pα(z)] and [λα(z), ωα(z);λ

α
(z), ωα(z)] are the Green-

Schwarz-Siegel matter variables [18,19] and the Berkovits ghosts. The bosonic pure spinor

λα satisfies

λαγm
αβλ

β = 0, m = 0, . . . , 9 α, β = 1, . . . , 16 (2.2)

where γm
αβ are the symmetric 16 × 16 Pauli matrices in D = 10. The right-moving fields

have opposite chirality for the type IIA, for the heterotic superstring they are the same

as in the RNS formalism, and for the open superstring the boundary conditions relate the

two sectors. This paper only considers the open superstring, so the right-moving fields will

be ignored.

The supersymmetric momentum and Green-Schwarz constraint are given by

Πm(z) = ∂Xm +
1

2
(θγm∂θ), dα(z) = pα −

1

2
(γmθ)α∂Xm −

1

8
(γmθ)α(θγm∂θ), (2.3)

while the ghost contribution to the Lorentz currents is denoted by Nmn(z) = 1
2 (λγ

mnw).

Furthermore, the energy-momentum tensor T with vanishing central charge and the ghost-

number current J are given by

T (z) = −
1

2
ΠmΠm − dα∂θ

α + ωα∂λ
α, J = ωαλ

α. (2.4)

Finally, the physical spectrum is obtained from the cohomology of the BRST charge [8]

Q =

∮

λα(z)dα(z). (2.5)

One can show that these operators satisfy the following relations [8,19,20]

dα(z)dβ(w)→ −
γm
αβΠm

z − w
, Πm(z)Πn(w)→ −

ηmn

(z − w)2
, dα(z) θ

β(w) →
δβα

(z − w)

Nmn(z)Npq(w)→
4

z − w
N

[m
[pδ

n]
q] −

6

(z − w)2
δn[pδ

m
q] , Nmn(z)λα(w)→ −

1

2

(λγmn)α

z − w

dα(z)Π
m(w)→

(γm∂θ)α
z − w

, Πm(z)Xn(w)→ −
ηmn

z − w
, J(z)λα(w)→

λα

z − w
(2.6)
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where the antisymmetrization bracket [. . .] encompassing N indices is defined to contain

an overall factor of 1/N !. Furthermore, if f(X, θ) is a superfield containing only the zero

modes of θ and Dα = ∂α + 1
2 (γ

mθ)α∂m is the supersymmetric covariant derivative,

dα(z)f(X(w), θ(w))→
Dαf(X(w), θ(w))

z − w
, Πm(z)f(X(w), θ(w))→ −

kmf(X(w), θ(w))

z − w
.

Hence, the action of the BRST operator on superfields is Qf = λαDαf . It is easy to show

using the OPEs of (2.6) and the pure spinor constraint (2.2) that the BRST charge indeed

satisfies Q2 = 0. So, the pure spinor formalism can be covariantly quantized, is manifestly

space-time supersymmetric and contains no worldsheet spinor fields; avoiding from the

outset the issues which make the computation of scattering amplitudes with the RNS and

GS formalisms a difficult task.

Throughout this paper k12...nm stands for k1m + k2m + · · ·+ knm, the dimensionless (gen-

eralized) Mandelstam invariants are given by

s12...n = α′(k1 + k2 + · · ·+ kn)2, (2.7)

and whenever an α′ is not explicitly written down the convention 2α′ = 1 has been used.

2.1. Massless vertex operators and SYM superfields

For the open superstring, the vertex operators for the massless states in unintegrated

and integrated forms are given by

V i = λαAi
α(x, θ), U i = ∂θαAi

α +ΠmAi
m + dαW

α
i +

1

2
F i

mnN
mn, (2.8)

where i denotes the label of the string whose massless modes are described by the ten-

dimensional super Yang–Mills (SYM) superfields [Aα, Am,Wα,Fmn] satisfying [20,21]

DαAβ +DβAα = γm
αβAm, DαAm = (γmW )α + kmAα

DαFmn = 2k[m(γn]W )α, DαW
β =

1

4
(γmn) β

α Fmn. (2.9)

Their θ–expansions can be computed using the gauge θαAα = 0 [10,22],

Aα(x, θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γmθ)α −

1

32
Fmn(γpθ)α(θγ

mnpθ) + · · ·

Am(x, θ) = am − (ξγmθ)−
1

8
(θγmγpqθ)Fpq +

1

12
(θγmγpqθ)(∂pξγqθ) + · · · (2.10)

Wα(x, θ) = ξα−
1

4
(γmnθ)αFmn+

1

4
(γmnθ)α(∂mξγnθ)+

1

48
(γmnθ)α(θγnγ

pqθ)∂mFpq + · · ·

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγpqθ)∂n]Fpq +

1

6
∂[m(θγ pq

n] θ)(ξγqθ)∂p + · · ·
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where am(X) = emeik·X , ξα(X) = χαeik·X are the bosonic and fermionic polarizations

and Fmn = 2∂[man] is the field-strength. Using the OPEs (2.6) and equations of motion

(2.9) one can show that

(λγmW i)(zi)U
j(zj)→

1

zj − zi

[

(λγnW j)F i
mn−(λγmW i)(ki ·Aj)+Q(W iγmW j)

]

, (2.11)

which will be frequently used in the computations below.

As shown by Howe in 1991 [23], the use of a pure spinor field simplifies the description

of ten-dimensional super Yang–Mills, and this is naturally incorporated in the pure spinor

formalism. For example, it can be shown that QV = 0 is equivalent to putting the SYM

superfields on-shell and it also implies that the BRST variation of the integrated vertex U

is given by QU = ∂V [20], and many simplifications occur due to this compact description.

In fact, it has recently been shown how the cohomology of pure spinor superspace [24,25]

is enough to fix all N–point scattering amplitudes of D = 10 SYM [26,1]. So unless

otherwise stated, all superfield manipulations in the next sections are done on-shell; where

both QV = 0 and QU = ∂V are satisfied.

2.2. Tree-level scattering amplitudes

The prescription to compute a tree-level open-string scattering amplitude with the

pure spinor formalism is given by [8] (see also [9]),

AN =

〈

V 1(0)V (N−1)(1)V N (∞)

∫

dz2 U
2(z2) · · ·

∫

dz(N−2) U
(N−2)

(

z(N−2)

)

〉

, (2.12)

where V i and U i are the massless vertex operators of (2.8) and the SL(2, R) invariance of

the disk worldsheet has already been used to fix three vertex positions to the convenient

values (z1, zN−1, zN ) = (0, 1,∞). The pure spinor bracket 〈. . .〉 appearing in (2.12) denotes

a zero-mode integration prescription for the variables λα and θα, which are the only ones

among [dα,Π
m, Nmn, θα, ∂θα, λα, wα] to contain zero modes on the disk because they have

conformal weight zero [27]. Furthermore, the integration regions of (2.12) encode the

different color orderings of the external states. For example, the ordering AN (1, 2, 3, . . . , N)

is computed when the integration region is 0 = z1 ≤ z2 ≤ · · · ≤ zN−2 ≤ zN−1 = 1.

After integrating out the conformal weight-one variables [dα,Π
m, Nmn, ∂θα] from the

tree-level amplitude (2.12) using the OPEs of (2.6) and evaluating the world-sheet integrals,

6



one is left with a generic pure spinor superspace expression containing the zero modes of

λα and θα

AN = 〈λαλβλγf i1...in
αβγ (θ, α′)〉. (2.13)

In (2.13), f i1...in
αβγ (θ, α′) is both a composite superfield in the labels [i1, . . . , in] of the external

states and a function of the string scale α′ satisfying λαλβλγλδDδf
i1...in
αβγ (θ, α′) = 0. Its

specific form in terms of the super Yang–Mills superfields [Ai
α, A

i
m,Wα

i ,F
i
mn] follows from

the OPE contractions discussed above while its functional dependence on α′ is determined

by the momentum expansion of n-point hypergeometric integrals [5,6,7]. As explained

in [8], the zero-mode integration of 〈. . .〉 selects from the θ−expansion of the enclosed

superfields the unique element in the cohomology of the pure spinor BRST operator at

ghost-number three; (λγmθ)(λγnθ)(λγpθ)(θγmnpθ). Its tree-level normalization can be

chosen as

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1, (2.14)

and although (2.14) involves only five θα out of sixteen, it can be shown to be supersym-

metric [8]. Furthermore, given the fact that there is only one scalar in the decomposition

of (λ3θ5) it is possible to compute any correlator using symmetry arguments and the

normalization condition (2.14) [28,29].

2.3. Component expansions of amplitudes: a simple example

Given a pure spinor superspace expression like in (2.13) it is straightforward to perform

the θ-expansion of the SYM superfields and select the terms according to (2.14) to obtain

the supersymmetric result of the scattering amplitude in terms of the more familiar gluon

and gluino polarizations [eim, χα
i ] and their momenta kmi . For example, let us obtain the

3-gluon scattering from the component expansion of the 3-point amplitude [8],

A3 = 〈(λA1)(λA2)(λA3)〉. (2.15)

Plugging in the θ-expansions (2.10) and selecting the terms with a total of five θ’s which

contain only gluon fields results in,

A3 = −
1

64

(

k3me1re
2
se

3
n − k2me1re

2
ne

3
s + k1me1ne

2
re

3
s

)

〈(λγrθ)(λγsθ)(λγpθ)(θγ
pmnθ)〉. (2.16)

In the appendix of [30] one finds a catalog of the most common pure spinor correlators and,

in particular, 〈(λγrθ)(λγsθ)(λγpθ)(θγ
pmnθ)〉 = 1

120δ
rsp
pmn = 1

45δ
rs
mn. Therefore the 3-gluon

amplitude (2.16) is given by

A3 = −
1

2880

(

(e1 · e2)(k2 · e3) + (e1 · e3)(k1 · e2) + (e2 · e3)(k3 · e1)
)

. (2.17)

Performing the above steps becomes a tedious task when higher-point calculations are

involved. Fortunately, this procedure is suitable for an automated handling [31,32].
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3. BRST building blocks

Only terms which are in the cohomology of the pure spinor BRST charge (2.5) con-

tribute to the n-point scattering amplitude (2.13). Therefore it will be convenient to foresee

the BRST properties of the objects which naturally appear in the tree-level calculation of

(2.12). With this intent in mind, in this section the OPEs among the massless vertex op-

erators (2.8) are used to define composite superfields L2131...p1 and their BRST properties

are studied in detail. It will be found that these superfields transform covariantly under the

BRST charge and generically contain BRST-exact parts. A prescription to consistently

remove these parts will then be given and that will define the so-called BRST building

blocks : T123...p.

In a later section these building blocks will be used to define other composite super-

fields M123...p and E123...p with well-defined BRST cohomology properties. They will turn

out to be the natural objects with which to write the superstring scattering amplitudes.

In the course of doing that, several general structures of the string tree amplitudes will

become apparent – like the fact that they can be written using a (N − 3)! dimensional

basis of integrals as conjectured some years ago in [6].

3.1. OPE residues of vertex operators

Motivated by the computations one needs to perform when computing tree-level higher-

point amplitudes [11,12,13] it is convenient to define composite superfields L2131...p1 as

lim
z2→z1

V 1(z1)U
2(z2)→

L21

z21
, lim

zp→z1
L2131...(p−1)1(z1)U

p(zp)→
L2131...(p−1)1p1

zp1
, (3.1)

which transform covariantly under the action of the pure spinor BRST charge [26]. To see

this one uses QV = 0 and QU = ∂V to obtain

QL2131...p1 = lim
zp→z1

zp1
[ (

QL2131...(p−1)1

)

(z1)U
p(zp)− L2131...(p−1)1(z1)∂V

p(zp)
]

. (3.2)

The OPE in the first term of (3.2) can be computed using the definition (3.1) recursively

while the second term evaluates to
∑p−1

j=1 sjpL2131...(p−1)1Vp; as one can easily show by

using ∂V i = (∂λα)Ai
α +ΠmkmV i + ∂θαDαV

i and the OPEs of (2.6). Therefore,

QL21 = s12V1V2,

QL2131 =(s13 + s23)L21V3 + s12(L31V2 + V1L32),

8



QL213141 =(s14 + s24 + s34)L2131V4 + (s13 + s23)(L21L43 + L2141V3)

+ s12(L3141V2 + L31L42 + L41L32 + V1L3242),

QL21314151 =(s15 + s25 + s35 + s45)L213141V5 + (s14 + s24 + s34)(L213151V4 + L2131L54)

+ (s13 + s23)(L214151V3 + L2141L53 + L2151L43 + L21L4353)

+ s12(L314151V2 + V1L324252 + L3141L52 + L3151L42 + L4151L32

+ L31L4252 + L41L3252 + L51L3242), (3.3)

while QL2131...p1 for p ≥ 6 can be also be easily obtained (the general BRST variation of

a object related to L2131...p1 will be written down in the next subsection).

The expressions for L2131...p1 in terms of SYM superfields can be obtained using the

OPEs of (2.6) in the definition (3.1). For example,

L21 ≡ lim
z2→z1

z21V
1(z1)U

2(z2) = −A
1
m(λγmW 2)− V 1(k1 ·A2) +Q(A1W 2). (3.4)

Similar calculations yield the expressions for L2131...p1 and one can show that (discarding

BRST-exact quantities for reasons to be explained in later sections) they are given by:

L21 =− A1
m(λγmW 2)− V 1(k1 ·A2),

L2131 =− L21(k
12 ·A3)−

[ (

L31 + V 1(k1 ·A3)
)

(k1 ·A2)− (1↔ 2)
]

− (λγmW 3)
(

(W 1γmW 2)− k2m(A1 ·A2)
)

L213141 =− L2131(k
123 ·A4)− (L2141 + L21(k

12 ·A4))(k12 ·A3)

−
[

(L3141 + L31(k
13 ·A4))(k1 ·A2) + (L41 + V 1(k1 ·A4))(k1 ·A3)(k1 ·A2)

−
1

4
(λγmW 4)(W 2γpqγmW 3)F1

pq − (1↔ 2)
]

+ (λγmW 4)
(

(W 1γnW 2)− kn2 (A
1 ·A2)

)

F3
mn (3.5)

L21314151 =− L213141(k
1234 ·A5)−

(

L213151 + L2131(k
123 ·A5)

)

(k123 ·A4)

−
[

L214151 + L2141(k
124 ·A5) +

(

L2151 + L21(k
12 ·A5)

)

(k12 ·A4)
]

(k12 ·A3)

−
[

[

L314151 + L3141(k
134 ·A5) + (L3151 + L31(k

13 ·A5))(k13 ·A4)

+
(

L4151 + L41(k
14 ·A5) + (L51 + V 1(k1 ·A5))(k1 ·A4)

)

(k1 ·A3)
]

(k1 ·A2)

+ (λγmW 5)
[1

4
(W 1γpqγnW 3)F2

pqF
4
mn +

1

16
(W 4γmγpqγrsW 1)F2

rsF
3
pq

]

− (1↔ 2)
]

+ (λγmW 5)
[

(W 1γnW 2)(F4
mpF

3
np − (W 3γmW 4)k3n −

1

2
(W 4γmγnγ

pW 3)k12p )

−
1

2
(W 3γpqγmW 4)F1

paF
2
qa + (A1 ·A2)

(

F3
pqF

4
mpk

2
q + (W 3γmW 4)(k2 · k3)

)

]

,
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and can be checked to satisfy the BRST identities (3.3).

Due to the recursive definition of L2131...p1 care must be taken when discarding BRST-

exact terms when evaluating the OPEs for the next p+1 step. For example, if the BRST-

exact term in L21 is kept then it follows that [12]

L2131 =
[

A1
m(λγmW 2) + V 1(k1 ·A2)

]

(k12 ·A3)

+(λγmW 3)
[

A1
m(k1 ·A2) +A1nF2

mn − (W 1γmW 2)
]

+s12
[

(A1W 3)V 2 − (A2W 3)V 1
]

+ (s13 + s23)(A
1W 2)V 3. (3.6)

Equation (3.3) implies that after discarding Q(AiW j) from Lji the last line of (3.6) must

be discarded as well, in order for QL2131 = s12(L31V2+V1L32)+(s13+s23)L21V3 continue

to hold. Equivalently, one can consider the expressions in (3.5) as an explicit representation

for composite superfields L2131...p1 which satisfy the BRST identities of (3.3).

It is worth mentioning that the BRST-exact terms dropped from Lji, Ljiki and Ljikili

were observed to cancel out in the final superspace expressions for the five- and six-point

computations of [12,13]. This seems natural in view of the requirement that the over-

all amplitude should live in the BRST cohomology like its basic ingredients, the vertex

operators. This will be the main idea to be exploited in the next subsection.

Furthermore, the energy-momentum tensor and the ghost-number current of (2.4) can

be used together with the OPEs of (2.6) to show that the conformal weight h of L2131...p1

and its ghost number are given by,

h (L2131...p1) = (k1 + · · ·+ kn)2 6= 0, ghost #(L2131...p1) = +1. (3.7)

This will prove essential to argue that the BRST cohomology for composite superfields it

generically empty.

3.2. Definition of BRST building blocks T123...p

The definition of a rank-q BRST building block T123...q follows from two steps

L2131...q1
(i)
−→ T̃123...q

(ii)
−→ T123...q (3.8)

which are designed to remove BRST-exact terms in L2131...q1 and in T̃123...q while still

preserving the fundamental BRST variation identities (3.3) when the combined redefinition

L2131...q1 −→ T123...q is used in both sides of (3.3).

10



The first step (i) of (3.8) to obtain T̃123...q1 from the composite superfield L2131...q1

depends on all the previous redefinitions of L2131...p1 with p < q which were made to get the

BRST building blocks T123...p. Its purpose is to absorb the extra terms (in the left-hand

side) when the substitutions L2131...p1 → T123...p are made in the right-hand side of the

BRST variation identity for QL2131...q1. Therefore the first step (i) ensures that QT̃123...q

is written in terms of T123...p rather than L2131...p1,

QT̃123 = s12(T13V2 + V1T23) + (s13 + s23)T12V3

QT̃1234 = (s14 + s24 + s34)T123V4 + (s13 + s23)(T12T34 + T124V3)

+ s12(T134V2 + T13T24 + T14T23 + V1T234), (3.9)

and similarly for T̃123...q with q ≥ 5.

One can check using (3.9) that there are certain specific combinations of T̃ ’s which

are BRST-closed, like for example Q(T̃123+ T̃231+ T̃312) = 0. Furthermore, it was shown in

(3.7) that the composite superfields L2131...p1 (and therefore also T̃123...p) have conformal

weights h 6= 0, so those combinations must also be BRST-exact – because the cohomology

of Q at ghost-number +1 is non-trivial only at zero conformal weight4.

So the second step (ii) of (3.8) will involve searching for sums of T̃123...q which are

BRST-closed in order to subtract the corresponding BRST-exact parts from T̃123...q. In

principle these sums can be found by a brute-force analysis of the identities in (3.9), but

in subsection 3.4 a simple diagrammatic method to find all those sums will be presented.

That in turn allows one to obtain the explicit expressions for all q − 1 BRST-exact parts

R
(I)
123...q of T̃123...q;

∑

T̃123...q = QR
(I)
123...q, I = 1, 2, 3, . . . , q − 1, (3.10)

where the q − 1 different sums will involve different label permutations of T̃123...q with

± signs, see subsection 3.4 for their precise forms.

The prescription to remove the BRST-exact parts from T̃123...q – which completes the

second step (ii) of (3.8) – will be explained in subsection 3.5. After doing that, the previous

BRST-closed sums of T̃123...q become BRST-symmetries of the building blocks T123...q, i.e.,

∑

T123...q = 0. (3.11)

4 We thank Nathan Berkovits for illuminating discussions on this point.
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In summary, the two steps in (3.8) are:

(i) Redefine L2131...q1 → T̃123...q such that QT̃123...q is expressed in terms of building

blocks T123...p of lower-level p < q.

(ii) Remove the BRST-exact parts of T̃123...q given by (3.10) such that T123...q satisfies the

symmetry properties (3.11).

The composite superfields T123...q defined in this way are the BRST building blocks and

obey the following identities,

QT12 = s12V1V2,

QT123 = (s13 + s23)T12V3 + s12(T13V2 + V1T23),

QT1234 = (s14 + s24 + s34)T123V4 + (s13 + s23)(T12T34 + T124V3)

+ s12(T134V2 + T13T24 + T14T23 + V1T234),

QT12345 = (s15 + s25 + s35 + s45)T1234V5 + (s14 + s24 + s34)(T1235V4 + T123T45)

+ (s13 + s23)(T1245V3 + T124T35 + T125T34 + T12T345)

+ s12(T1345V2 + V1T2345 + T134T25 + T135T24 + T145T23

+ T13T245 + T14T235 + T15T234) (3.12)

and so forth. The relations (3.12) can be generalized as follows,

QT12...n =

n
∑

j=2

∑

α∈P (βj)

(s1j + s2j + · · ·+ sj−1,j)T12...j−1,{α} Tj,{βj\α}, (3.13)

where βj = {j +1, . . . , n}, P (βj) is the powerset of βj and Vi ≡ Ti. Furthermore, the first

few BRST symmetries of (3.11) are given by

0 = T12 + T21,

0 = T123 + T231 + T312,

0 = T1234 − T1243 + T3412 − T3421,

0 = T12345 − T12354 + T12543 − T12453 + T45321 − T45312,

(3.14)

where each higher-order building block T123...q inherits all the lower-order identities in

its first q − 1 labels (this can be seen from the recursive definition of L2131...p1 in (3.1)).

For example, T1234 not only satisfies the third equation of (3.14) but also the previous

two in the form of T1234 + T2134 = T1234 + T2314 + T3124 = 0. Using the diagrammatic

12



method explained below, the following general BRST symmetries for building blocks will

be derived,

p = 2n+ 1 : T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] = 0

p = 2n : T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0.
(3.15)

The notation [i[jk]] means consecutive antisymmetrization of pairs of labels starting from

the outermost label, e.g. [i[jk]] = 1/2(i[jk]− [jk]i) = 1/4(ijk − ikj − jki+ kji)

3.3. Diagrammatic interpretation of T123...p building blocks

As discussed in [14], every color-ordered tree-level field theory amplitude can be ar-

ranged into a form which manifests the kinematic poles that appear,

AYM (1, 2, . . . , N) =
∑

i

ni
∏

αi
p2αi

(3.16)

where the sum is over the set of (2N − 4)!/((N − 1)!(N − 2)!) diagrams with only cubic

vertices, ni represent some kinematic numerator factor and p2αi
are the propagators of

each diagram. Using this representation for the N–point amplitudes it was suggested

in [26] that the BRST cohomology of the pure spinor formalism might be enough to fix

the ten-dimensional SYM amplitudes, bypassing the need to perform the α′ → 0 limit

of their corresponding open superstring amplitudes. To that end it is useful to require

that the numerator factors ni have BRST transformations which are proportional to the

Mandelstam invariants associated to their poles, Qni =
∑

j p
2
αj
mj for somemj . This makes

sure that each term in Qni cancel one of the poles and different terms can be concocted to

yield an overall BRST-closed amplitude. So in order for the empirical cohomology method

of [26] to work, one needs to have explicit mappings between cubic diagrams and ghost-

number three pure spinor superspace expressions. Although some lower-order examples

were presented in [26], a general solution was still missing. But as it became clear later,

it is better to have mappings between cubic diagrams and ghost-number one composite

superfields; the BRST building blocks. This realization led to the discovery in [1] of a

general recursive method to construct expressions in the cohomology of the BRST charge

with the correct properties of N–point SYM amplitudes. So in this section we describe in

detail the solution of [1] to find the general dictionary between cubic-vertex diagrams and

ghost-number one pure spinor building blocks.
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i2

i1

si1i2

i3

si1i2i3

i4

. . .

in

si1...in
. . . ←→ Ti1i2i3...in...

(a)

. . . . . .

i1 i2

T...[i1i2]...

. . . . . .

i1 i2

i3

T...[[i1i2]i3]...

(b)

. . . . . .

i1 i2

i3

i4

T...[[[i1i2]i3]i4]...

. . . . . .

i1 i2

i3
...
in

T...[[...[[i1i2]i3]...]in]...

Fig. 1 (a) A tail-end cubic diagram with kinematic poles {si1i2 , . . . , si1i2...in} cor-

responds to the building block Ti1i2...in... . (b) Branches of cubic diagrams and their

associated building blocks. The motivation behind this dictionary lies on the fact that

all kinematic invariants specified by the cubic graphs are present in the BRST variation

of their corresponding building blocks.

The idea to obtain the dictionary is to find the precise sums of building blocks whose

BRST variation contains the same set of Mandelstam variables associated to a particular

cubic diagram. And this problem can be solved by understanding the patterns present in

the BRST variation identities of (3.13).

To see this consider the diagram (a) of Fig. 1 where one leg has been removed and

which contains the set of kinematic poles {si1i2 , si1i2i3 , . . . , si1...in}. From equation (3.13)

one checks that all terms in the BRST variation of Ti1i2i3...in... contain at least one of those

Mandelstam variables without exception, schematically

QTi1i2i3...in... −→ {si1i2 , si1i2i3 , . . . , si1i2i3...in...} (3.17)

where the trailing dots on the labels of the building block correspond to the amputated

part of the diagram. Given this match, we associate the building block of (3.17) to the

cubic graph of Fig. 1 (a).

To find the appropriate BRST building blocks which can be associated with the branches

containing two amputated legs in Fig. 1 (b), note the pattern that certain sums of T123...p

14



2

1

3

. . . =

{

T123

T321 − T312

Fig. 2 Two different ways to interpret the same diagram give rise to an identity for

Tijk. In the first expression it is viewed as a tail-end graph, while in the second it is

interpreted as a branch.

with different label orderings have a different set of Mandelstam invariants in their BRST

variation. As seen on (3.17), the BRST variation of Ti1i2...in contains all elements of the set

{si1i2 , si1i2i3 , . . . , si1...in} but antisymmetrization in certain labels replaces some elements

by others, e.g.

QTi1...ip[jk]r1...rq −→ sjk instead of si1i2...ipj

QTi1...ip[j[kl]]r1...rq −→ skl, sjkl instead of si1...ipj , si1...ipjk (3.18)

QTi1...ip[j[k[lm]]]r1...rq −→ slm, sklm, sjklm instead of si1...ipj , si1...ipjk, si1...ipjkl ,

where the two sets of dots in the building blocks correspond to the amputated parts of the

graphs (b) in Fig. 1. The patterns shown in (3.18) therefore justify the general dictionary

given in Fig. 1(b).

3.4. BRST symmetries of building blocks

It is not difficult to use the BRST variations of T̃123...q in (3.9) to find their BRST-

closed sums for small q by trial and error. Since the cohomology at conformal weight h 6= 0

is empty, these same BRST-closed combinations of T̃ ’s are also BRST-exact. As explained

in the previous subsection, the removal of the BRST-exact parts of T̃123...q gives rise to

the definition of the building block T123...q and at the same time the BRST-closed sum of

T̃ ’s translates into a symmetry of the associated T12...n (see equation (3.11)). Therefore

it is imperative to find the general BRST-closed sums of T̃ ’s, or equivalently, the general

symmetries of T ’s.

So in this subsection we use the diagrammatic interpretation of building blocks to

predict the symmetry properties of T12...n which in turn allow the BRST-exact parts of

T̃123...n to be found (see subsection 3.5).

As a first example, consider the diagram of Fig. 2. In the first expression the diagram is

interpreted as a tail-end graph like the one depicted in (a) of Fig. 1 and is associated with

15



. . .

1

4

2

3

=

{

2T12[34]

−2T43[21]

. . .

1

5

2
3

4

=

{

2T123[45]

4T54[3[21]]

. . .

1

6

2
3

5
4

=

{

4T123[4[56]]

−4T654[3[21]]

. . . 4 3

1

2

5

7

6
=

{

4T1234[5[67]]

8T765[4[3[21]]]

. . . 4 3

1

2

5 6

8

7
=

{

8T1234[5[6[78]]]

−8T8765[4[3[21]]]

Fig. 3 Diagrammatic derivation of the BRST symmetries of higher-order building

blocks. The top (bottom) line corresponds to the building block association which

follow from reading the diagram in a counter-clockwise (clockwise) direction.

the building block T123. However, in the second expression the diagram is viewed as a

branch like the first graph of (b) in Fig. 1, where one of the “missing” legs now contains

the label 3 and it is therefore associated with 2T3[21] = T321 − T312. The fact that both

interpretations have to agree implies the symmetry identity (3.14) for Tijk,

0 = T123 − T321 + T312 = T123 + T231 + T312.

The relative sign between the two viewpoints is fixed by the fact that diagram associated

with T12...n catch a (−1)n−1 sign under inversion (1, 2, 3, . . . , n− 1, n)↔ (n, n− 1, . . . , 1).

Hence, we have to make sure that the sign of T123...n relative to Tn,n−1,...21 is (−1)n in

(3.11), e.g. T123 + (−1)3T321 + · · · = 0.

This same idea can be used to obtain the BRST symmetries for higher-order building

blocks. For example, the symmetries of T123...n for n = 4, 5, 6, 7, 8 are obtained from the

diagrams of Fig. 6,
0 = 2T12[34] + 2T43[21],

0 = 2T123[45] − 4T54[3[21]],

0 = 4T123[4[56]] + 4T654[3[21]],

0 = 4T1234[5[67]] − 8T765[4[3[21]]],

0 = 8T1234[5[6[78]]] + 8T8765[4[3[21]]].

(3.19)
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Using the BRST variations (3.12) we checked up to T12345678 that these relations

are indeed BRST-closed and obtained their explicit BRST-exact parts for up to T̃12345.

The latter was made using the explicit expressions of T̃123...p in terms of super Yang–

Mills superfields to find the explicit solutions R
(n)
123...p of equation (3.10), and that will be

presented in the next section.

To write down the generalization of (3.19) to higher p > 8, let us distinguish between

odd and even ranks for ease of notation:

p = 2n+ 1 : T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] = 0

p = 2n : T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0
(3.20)

The relations for p = 2n+ 1 and p = 2n involve 3 · 2n−1 and 2n terms, respectively.

We should emphasize again that the lower rank identities for T12...q carry over to

T12...p with p > q. The last labels q + 1, . . . , p are then simply left untouched, e.g. 0 =

T(12)345 = T[123]45 = T12[34]5 + T43[21]5 at rank p = 5. By applying the p − 1 symmetries

available at rank p, one can successively move a particular label to the first position, i.e.

express Ti1i2...ip as a combination of T1j1j2...jp−1
. Hence, there are (p − 1)! independent

rank-p building blocks Ti1i2...ip .

3.5. Explicit construction of T12...p

The definition of the first BRST building block T12 requires only the step (ii) in (3.8),

as there are no lower-order redefinitions to take into account in the first step (i); that is

T̃12 ≡ L21. From the BRST variation of T̃12 in (3.3) together with the equations of motion

(2.9) one sees that its symmetric part is BRST-closed; Q(T̃21+T̃12) = s12(V1V2+V2V1) = 0,

and also BRST-exact [26]

T̃21 + T̃12 = −Q(A1 ·A2) ≡ −QD12. (3.21)

As discussed in (3.11), the definition of the BRST building block T12 must be made to

satisfy T12 + T21 = 0. This is accomplished by

T12 = T̃[21] = T̃21 +
1

2
QD12. (3.22)

The definition of the building block T123 now proceeds using both steps of (3.8). The

first redefinition L2131
(i)
→ T̃123 is found by substituting Lji = T̃ij = Tij −

1
2QDij in the

right-hand side of QL2131 in (3.3), which leads to:

Q

(

L2131 +
1

2
s12
[

D13V2 −D23V1

]

+
1

2
(s13 + s23)D12V3

)

= s12(T13V2 + V1T23) + (s13 + s23)T12V3.
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Therefore by defining

T̃123 = L2131 +
1

2
s12
[

D13V2 −D23V1

]

+
1

2
(s13 + s23)D12V3, (3.23)

one obtains the desired identity QT̃123 = s12(T13V2 + V1T23) + (s13 + s23)T12V3.

Two BRST-closed combinations of T̃ijk are easily identified,

Q(T̃123 + T̃213) = 0, Q(T̃123 + T̃312 + T̃231) = 0, (3.24)

and one can show using SYM equations of motion (2.9) that they originate as the BRST

variation of ghost number zero superfields R
(1)
123, R

(2)
123 [13,1]

T̃123 + T̃213 = QR
(1)
123, T̃123 + T̃312 + T̃231 = QR

(2)
123, (3.25)

where R
(1)
123 = D12(k

12 ·A3), R
(2)
123 = D12(k

2 ·A3)+cyclic(123). The BRST building block

T123 is obtained by removing these BRST-exact pieces

T123 = T̃123 −QS
(1)
123, S

(1)
123 =

1

2
R

(1)
123 +

1

3
R

(2)
[12]3, (3.26)

which implies the following BRST symmetries for Tijk:

T123 + T213 = T123 + T312 + T231 = 0. (3.27)

The definition of T1234 is done similarly and uses the information from the lower-order

redefinitions of L21 and L2131. First one rewrites Lji and Ljiki in terms of Tij and Tijk in

the RHS of the identity for QL213141 given in (3.3). After some algebra one finds

T̃1234 = L213141 −
1

4

[

(s13 + s23)D12QD34 + s12 (D13QD24 +D14QD23)
]

(3.28)

+
1

2

[

(s13 + s23) (D12T34 −D34T12) + s12 (D13T24 +D14T23 −D23T14 −D24T13)
]

− (s14 + s24 + s34)S
(1)
123V4 − (s13 + s23)S

(1)
124V3 + s12(S

(1)
234V1 − S

(1)
134V2)

which satisfies the required property of

QT̃1234 = s12(T134V2 + T13T24 + T14T23 + V1T234) (3.29)

+ (s13 + s23)(T12T34 + T124V3) + (s14 + s24 + s34)T123V4.
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Using (3.29) it is easy to check that the lower-order identities of T̃123 given by (3.24) are

inherited by the first three labels of T̃1234 and that there is one additional BRST identity

involving the fourth label,

Q
(

T̃1234 + T̃2134

)

= Q
(

T̃1234 + T̃3124 + T̃2314

)

= Q
(

T̃1234 − T̃1243 + T̃3412 − T̃3421

)

= 0,

in accord with the discussions of section 3.4. Using the SYM equations of motion in a long

sequence of calculations shows that these combinations are indeed BRST-exact,

T̃1234 + T̃2134 = QR
(1)
1234

T̃1234 + T̃3124 + T̃2314 = QR
(2)
1234

T̃1234 − T̃1243 + T̃3412 − T̃3421 = QR
(3)
1234,

(3.30)

where

R
(1)
1234 =−R

(1)
123(k

123 ·A4)−
1

4
s12
[

D13D24 +D14D23

]

, (3.31)

R
(2)
1234 =−R

(2)
123(k

123 ·A4)−
1

4

[

s12D23D14 + s23D24D13 + s13D34D12

]

,

R
(3)
1234 = (k1 ·A2)

[

D14(k
4 ·A3)−D13(k

3 ·A4)
]

− (k2 ·A1)
[

D24(k
4 ·A3)−D23(k

3 ·A4)
]

+
1

4
D12D34(s14 + s23 − s13 − s24) +D12

[

(k4 ·A3)(k2 ·A4)− (k3 ·A4)(k2 ·A3)
]

+D34

[

(k2 ·A1)(k4 ·A2)− (k1 ·A2)(k4 ·A1)
]

+ (W 1γmW 2)(W 3γmW 4).

Removing these BRST-exact parts leads to the rank-four BRST building block—which is

accomplished with the second redefinition T̃1234
(ii)
−→ T1234,

T1234 = T̃1234 −QS
(2)
1234, (3.32)

where S
(2)
1234 is defined recursively by

S
(2)
1234 =

3

4
S
(1)
1234 +

1

4
(S

(1)
1243 − S

(1)
3412 + S

(1)
3421) +

1

4
R

(3)
1234

S
(1)
1234 =

1

2
R

(1)
1234 +

1

3
R

(2)
[12]34. (3.33)

To see that (3.32) and (3.33) imply the BRST symmetries of

T1234 + T2134 = T1234 + T3124 + T2314 = T1234 − T1243 + T3412 − T3421 = 0, (3.34)
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it suffices to check that the following identities hold,

S
(2)
1234 + S

(2)
2134 = R

(1)
1234

S
(2)
1234 + S

(2)
3124 + S

(2)
2314 = R

(2)
1234 (3.35)

S
(2)
1234 − S

(2)
1243 + S

(2)
3412 − S

(2)
3421 = R

(3)
1234.

Following this same procedure for L21314151 is straightforward but somewhat tedious,

therefore the calculations leading to the explicit superfield expression for the building block

T12345 will be deferred to the Appendix A.

As will be explained in subsection 4.4, the explicit superfield expressions for Tij , Tijk,

Tijkl and Tijklm allows one to obtain the expansions of any superstring or field-theory

amplitudes up to N = 11 legs in terms of momenta and polarization [31].

4. Supersymmetric Berends–Giele recursions

In subsection 3.3 we have given a superfield representation in terms of Ti1...ip for each

color ordered diagram made of cubic vertices with p on-shell external leg and one off-shell

leg. In this section, we combine these diagrams to p+1 point field theory amplitudes with

one off-shell leg. These objects were firstly considered in [17] in order to derive recursion

relations for gluon scattering at tree-level and were referred to as “currents”. The pure

spinor supersymmetric analogue of the p-point Berends–Giele current Jp will be referred

to as M12...p.

These M12...p allow for a compact representation of the ten-dimensional N–point SYM

amplitude AYM (1, . . . , N) which nicely exhibits its factorization channels. The recursive

nature of the Berends–Giele currents is inherited by the amplitudes and leads to the

recursive method to compute higher-point SYM amplitudes presented below.

4.1. Construction of Berends–Giele currents M123...p

The Berends–Giele currents M123...p are written in terms of building blocks T123...p

and Mandelstam invariants {s12, s123, . . . , s123...p} and follow from the recursive definition

E123...p ≡

p−1
∑

j=1

M12...jMj+1...p

QM123...p ≡ E123...p, (4.1)
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M1234 =

2

1

s12

3

s123

4

s1234
. . .

3

2

+
s23

1

s123

4

s1234
. . .

4

3

+
s34

2

s234

1

s1234
. . .

3

2

+
s23

4

s234

1

s1234
. . .

2

1

+

3

4

...

s12 s34

s1234

=
1

s1234

( T1234

s12s123
+

T3214

s23s123
+

T3421

s34s234
+

T3241

s23s234
+

2T12[34]

s12s34

)

Fig. 4 Diagrammatic construction of the Berends–Giele current M1234 in terms of the

cubic graphs of the five-point amplitude with one leg off-shell.

where M1 = V1. Although the defining system (4.1) is purely algebraic, it can be conve-

niently solved with the recourse of a diagrammatic interpretation for M123...p. To see this,

the current M123...p is first associated to the sum of (2p − 2)!/(p!(p − 1)!) cubic graphs

which enter the p+ 1 amplitude where the leg p+ 1 is put off-shell. Using the dictionary

of subsection 3.3 each one of these cubic graphs can be written in terms of building blocks

T123...p and their relative signs are fixed by requiring the system (4.1) to be satisfied. For

example, using the cubic graphs for the three- and four-point amplitudes the currents M12

and M123 are interpreted as

M12 =

2

1

s12
. . . M123 =

2

1

s12

3

s123
. . . +

3

2

s23

1

s123
. . .

while M1234 is associated to the graphs of the color-ordered five-point amplitude shown

in Fig. 4. Under the dictionary of subsection 3.3 these graphs correspond to the following

expressions in terms of building blocks

M12 =
T12

s12
, M123 =

1

s123

(

T123

s12
+

T321

s23

)

, (4.2)

M1234 =
1

s1234

(

T1234

s12s123
+

T3214

s23s123
+

T3421

s34s234
+

T3241

s23s234
+

2T12[34]

s12s34

)

,

21



where their signs can be fixed by requiring that they form a solution of (4.1). To see this

one uses the BRST variations (3.13) to obtain

QM12 = V1V2 = M1M2,

QM123 =
V1T23

s23
+

T12V3

s12
= M1M23 +M12M3,

QM1234 =
V1

s234

(T234

s23
+

T432

s34

)

+
T12T34

s12s34
+
(T123

s12
+

T321

s23

) V4

s123
= M1M234 +M12M34 +M123M4 (4.3)

and therefore the expressions for M12, M123 and M1234 given above form a solution of the

system (4.1) up to this order. Using this method it is straightforward to obtain higher-

point currents, and the explicit expressions of currents up to M1234567 will be given in the

Appendix B.

Therefore by using the diagrammatic interpretation of M123...p in terms of the p + 1

amplitude with one leg off-shell one is able to efficiently construct any higher-order current

in terms of building blocks. However, in the later section 5.2 we will derive a formula for

M123...p in terms of the field-theory limit α′ → 0 of hypergeometric integrals occurring

in a p+ 2 point string theory amplitude. This allows for a direct computation of M12...p,

therefore bypassing the need to draw the cubic diagrams of the (p+1)-point SYM amplitude

to find their corresponding building blocks.

Note that (4.1) can be written as

QM12...p =

p−1
∑

j=1

M12...jMj+1...p (4.4)

and therefore one can interpret the action of Q as cutting M12...p in each way compatible

with the color ordering, see Fig. 5. Furthermore, equation (4.4) is the supersymmetric

pure spinor analogue of the recursive construction of the Berends–Giele gluon currents in

[17], whose schematic form is

Jn ∼
1

s12...n

(

n−1
∑

m=1

Jm, Jn−m +
n−2
∑

m=1

n−1
∑

k=m+1

JmJk−mJn−k

)

. (4.5)

The cubic term in the lower order currents represents the four gluon vertex in the QCD

action. It does not enter into our supersymmetric version (4.4) which encompasses dia-

grams with cubic vertices only. After multiplying the external propagator 1/s12...n to the

left hand side of (4.5) one could symbolically reproduce (4.4) by identifying s12...n ≡ Q.
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Q . . . =

p−1
∑

j=1

2

p− 1

13

p

Mp

1
2

j

M j . . . ×

E12...p

. . .

p

j + 1
j + 2

Mp−j

Fig. 5 Decomposition of M12...p into its factorization channels under the action of the

pure spinor BRST charge; QM12...p =
∑p−1

j=1
M12...jMj+1...p.

4.2. Symmetry properties of M12...p

As a further motivation for identifying M12...p with supersymmetric Berends–Giele

currents, we discuss their symmetry properties in this subsection. First of all, M12 trivially

satisfies M12+M21 = 0 because the building block Tij is antisymmetric. Similar identities

hold for M123

M123 +M231 +M312 = 0, M123 −M321 = 0, (4.6)

as one can easily check by plugging in the expression for Mijk given in (4.2).

At higher n ≥ 4, this generalizes as follows:

M12...n = (−1)n−1Mn...21
∑

σ∈cyclic

Mσ(1,2,...,n) = 0. (4.7)

The proof of these identities is most conveniently carried out on the level of the correspond-

ing E12...n = QM12...n =
∑n−1

p=1 M12...pMp+1...n. Since all the BRST closed components of

the M12...n have been removed by construction of its T12...n constituents, the BRST vari-

ation E12...n contains all information on the symmetry properties of its M12...n ancestor.

The reflection identity can be easily checked by induction, and the vanishing cyclic sum

follows from

∑

σ∈cyclic

Eσ(1,2,...,n) =
∑

σ∈cyclic

n−1
∑

p=1

Mσ(1,2,...,p)Mσ(p+1,...,n)

=
∑

σ∈cyclic

n−1
∑

p=1

1

2
(Mσ(1,2,...,p)Mσ(p+1,...,n) +Mσ(p+1,...,n)Mσ(1,2,...,p)) = 0

(4.8)
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where the last step exploits the overall cyclic sum to shift all labels of the second term

by p and that the M12...p anticommute.

The properties (4.7) are shared by the n-gluon Berends–Giele currents Jn of [17]

and can be naturally explained by the construction of currents M123...n as (n + 1)-point

amplitudes with one off-shell leg. Inspired by this explanation, we explicitly checked using

the expressions of Appendix B that M12...n for n ≤ 7 also satisfy an additional relation –

obtained by removing the (n+ 1)-th leg from the (n+ 1)-point Kleiss-Kuijf identity [33]:

M{β},1,{α} = (−1)nβ

∑

σ ∈OP({α},{βT })

M1,{σ}. (4.9)

The summation range OP({α}, {βT }) denotes the set of all the permutations of {α}
⋃

{βT }

that maintain the order of the individual elements of both sets {α} and {βT }. The notation

{βT } represents the set {β} with reversed ordering of its nβ elements. The Kleiss-Kuijf

identity is well known to reduce the number of independent color ordered n + 1 point

amplitudes down to (n− 1)! .

The specialization of (4.9) to sets {β} with one element only, say {β} = {n}, re-

produces the second property of (4.7). However, this so-called dual Ward identity or

photon decoupling identity by itself is not sufficient for a reduction to (n−1)! independent

Mi1i2...in at n ≥ 6 [33]. Since there are only (n−1)! independent Ti1i2...in which constitute

the Mi1i2...in , also the latter must have a basis of no more than (n − 1)! elements. This

suggests the Kleiss-Kuijf identity (4.9) to hold beyond our checks for n ≤ 7.

The reflection- and Kleiss-Kuijf identity for the M12...n are inherited from their as-

sociated n + 1 point amplitudes with one leg off-shell. The off-shellness of one leg is

no obstruction for the aforementioned identities to hold because they do not involve any

kinematic factors. However, the field theory version of the monodromy relations [15,16]

s12AYM (2, 1, 3, . . . , N) + (s12 + s13)AYM (2, 3, 1, . . . , N) + · · ·

+ (s12 + · · ·+ s1,N−1)AYM (2, 3, . . . , N − 1, 1, N) = 0
(4.10)

rely on having on-shell momenta, so the M12...n do not obey any analogue of (4.10) and

cannot be reduced to (n− 2)! independent permutations.
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4.3. The N–point field-theory tree amplitude

The expressions found for QM12...p = E12...p might look familiar from lower order field

theory amplitudes such as

AYM (1, 2, 3) = 〈V1V2V3〉 = 〈E12V3〉

AYM (1, 2, 3, 4) = 〈

(

V1T23

s23
+

T12V3

s12

)

V4〉 = 〈E123V4〉
(4.11)

From QV = 0, one might naively expect that the three-point amplitude would be BRST-

exact, A(1, 2, 3) = 〈Q(T12V3/s12)〉, and thus doomed to vanish. However, all Mandelstam

invariants sij vanish in the momentum phase space of three massless particles – therefore

writing V1V2 = Q(T12/s12) is not allowed and BRST triviality of the amplitude is avoided.

More generally, the prefactor M12...p ∼ 1/s12...p in the p point current is incompatible

with putting the external state with kp+1 = −
∑p

i=1 ki on-shell k
2
p+1 = 0. Since N particle

kinematics forbids the existence of M12...N−1, the corresponding E12...N−1 is not BRST

exact. Hence, the following expression for the N–point field theory amplitude is in the

cohomology of the pure spinor BRST charge5[1]

AYM (1, 2, . . . , N) = 〈E12...N−1VN 〉 =
N−2
∑

j=1

〈M12...jMj+1...N−1VN 〉. (4.12)

The diagrammatic representation of
∑p−1

j=1 M12...jMj+1...p in Fig. 5 can be uplifted to the

on-shell N = p + 1 point amplitude AYM (1, . . . , N) where an additional cubic vertex

connects the N th leg with the two currents of rank j and N − 1− j, respectively.

TheN–point formula (4.12) is analogous to the Berends–Giele formula for the color ordered

N gluon amplitude of [17]. The latter is written as a product of a rank N − 1 current

JN−1 and another J1 for the N th leg, multiplied by the Mandelstam factor s12...N−1 to

cancel the divergent propagator; AYM = s12...N−1J(1, . . . , N − 1) J(N). In our case, the

somewhat artificial object s12...N−1JN−1 is replaced by E12...N−1, which could be written

as QM12...N−1 in a larger momentum phase space. Therefore this parallel also suggests

the schematic identification s12...N−1 → Q mentioned after (4.5).

5 It is interesting to note that the cohomology formula (4.12) together with the property of

En(n−1)...1 = (−1)n−1E12...n (which follows from (4.7)) imply that if the amplitude satisfies the

reflection property of A(n, n− 1, . . . , 1) = (−1)nA(1, 2, . . . , n) then it is also cyclically symmetric,

A(2, 3, . . . , n, 1) = A(1, 2, . . . , n).
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AYM (1, 2, . . . , N) =

N−2
∑

j=1

j

1

2

M j

VN

j + 1

j + 2

N − 1

MN−j−1

Fig. 6 Berends–Giele decomposition of AY M according to the pure spinor cohomology

formula (4.12).

4.4. BRST integration by parts and cyclic symmetry

The strength of our presentation (4.12) of the N–point field theory amplitude is the

manifestation of its factorization properties. But singling out a particular leg VN obscures

the cyclic symmetry required for color stripped amplitudes. The essential tool to restore

manifest cyclicity is BRST integration by parts,

〈Mi1...ipEj1...jq 〉 = 〈Ei1...ipMj1...jq 〉. (4.13)

Using the definition of E123...p in (4.1) it follows that,

E12...N−1VN = E23...NV1 +
N−2
∑

j=2

(

M12...jEj+1...N − E12...jMj+1...N

)

, (4.14)

therefore 〈E12...N−1VN 〉 = 〈E23...NV1〉 and the N–point subamplitude (4.12) is cyclically

invariant. However, to obtain a formula with manifest cyclic symmetry one needs to

explicitly use BRST integration by parts in (4.12). And as a byproduct of that, the

maximum rank of the Berends–Giele currents needed for theN–point amplitude is reduced.

To see this, note that the term containing the maximum rank of Mi1...ip appearing in the

N–point amplitude (4.12) is p = N − 2 and has the form 〈Mi1...iN−2
ViN−1

VN 〉, therefore

the use of (4.14) leads to

〈Mi1...iN−2
ViN−1

VN 〉 = 〈Mi1...iN−2
QMiN−1N 〉 = 〈Ei1...iN−2

MiN−1N 〉, (4.15)

so the BRST integration reduced the maximum rank to p = N − 3 (because E12...(N−2)

contains at mostM12...N−3). It turns out that the cohomology formula (4.12) allows enough
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BRST integration by parts as to reduce the maximum rank of the currents to p = [N/2],

leading to manifestly cyclic-symmetric amplitudes

AYM (1, 2, . . . , 5) = 〈M12V3M45〉 + cyclic(12345)

AYM (1, 2, . . . , 6) =
1

3
〈M12M34M56〉+

1

2
〈M123E456〉 + cyclic(123456)

AYM (1, 2, . . . , 7) = 〈M123M45M67〉+ 〈V1M234M567〉 + cyclic(1234567)

AYM (1, 2, . . . , 8) = 〈M123M456M78〉+
1

2
〈M1234E5678〉 + cyclic(12345678)

(4.16)

The fractional prefactors 1
2 or 1

3 compensate for the fact that cyclic orbits for particularly

symmetric superfield kinematics are shorter than the number N of legs. At N = 6,

for instance, M12M34M56 has just one distinct cyclic image M23M45M61, hence the full

cyclic(123456) overcounts the occurring diagrams by a factor of three.

4.5. Factorization in cyclically symmetric form

In this subsection, we introduce a cyclically symmetric presentation of SYM am-

plitudes where their factorization into two Berends–Giele currents becomes even more

obvious.

One can check by evaluating the BRST variations that the amplitudes in (4.16) can

be equivalently written as

AYM (1, 2, . . . , 4) =
1

2
〈M12QM34〉+ cyclic(1234)

AYM (1, 2, . . . , 5) =
1

4

(

〈M12QM345〉+ 〈M123QM45〉
)

+ cyclic(12345)

AYM (1, 2, . . . , 6) =
1

6

(

〈M12QM3456〉+ 〈M123QM456〉+ 〈M1234QM56〉
)

+ cyclic(123456)

AYM (1, 2, . . . , 7) =
1

8

(

〈M12QM34567〉+ 〈M123QM4567〉+ 〈M1234QM567〉

+ 〈M12345QM67〉
)

+ cyclic(1234567) (4.17)

AYM (1, 2, . . . , 8) =
1

10

(

〈M12QM345678〉+ 〈M123QM45678〉+ 〈M1234QM5678〉

+ 〈M12345QM678〉+ 〈M123456QM78〉
)

+ cyclic(12345678)

Note that some terms in the formulæ are naively overcounted by a factor of 2 because

the cyclic orbits of 〈M12...jQMj+1...N 〉 and 〈M12...N−jQMN−j+1...N 〉 are the same. The
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AYM (1, 2, . . . , N) =
1

2(N − 3)

N−2
∑

j=2

+ cyclic(1 . . .N)

1
2

j

QM j

N

j + 1
j + 2

MN−j

Fig. 7 Cyclic factorization of the N–point field-theory amplitude AY M (1, 2, . . . , N)

into different Berends–Giele partitions according to equation (4.18).

purpose of including both of them is to obtain a uniform overall coefficient in (4.17) and

to simplify the transition to the general N–point formula,

AYM (1, 2, . . . , N) =
1

2(N − 3)

N−2
∑

j=2

〈M12...jQMj+1...N 〉 + cyclic(1 . . .N) (4.18)

whose graphical representation is shown in Fig. 7. We have explicitly checked up to N = 10

points that the formula (4.18) exactly reproduces the expression AYM = 〈E12...N−1VN 〉 of

[1], including prefactors.

The factorization formula (4.18) can also be interpreted as coming from the factoriza-

tion channels of two amplitudes with one leg x off-shell each with the form 〈E12...jVx〉 and

〈VxEj+1...N 〉 that are connected by a pure spinor propagator which effectively replaces6

Vx Vx →
1
Q , resulting in

AYM (1, 2, . . . , N) =
1

2(N − 3)

N−2
∑

j=2

〈E12...j
1

Q
Ej+1...N 〉+ cyclic(1 . . .N)

=
1

2(N − 3)

N−2
∑

j=2

〈M12...jQMj+1...N 〉+ cyclic(1 . . .N)

which reproduces the formula (4.18).

5. The superstring tree amplitude in pure spinor superspace

This section derives our central result (5.22) for the superstring N point tree amplitude

of the massless gauge multiplet. The BRST building blocks T12...p and their combinations

6 CM thanks Nathan Berkovits for suggesting back in 2006 how one could view an operation

like Vx Vx → 1
Q

as possibly being related to a massless propagator in pure spinor superspace.
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to form supersymmetric Berends–Giele currents M12...p turn out to be very efficient book-

keeping devices to handle the kinematic structures of a superstring amplitude in a universal

way, i.e. for any number N of external legs.

According to the tree level prescription (2.12), the task in computing superstring

amplitudes in the canonical color ordering (1, 2, . . . , N) is to evaluate the CFT correlator

N−2
∏

j=2

∫

dzj〈V
1(0)V (N−1)(1)V N (∞)U2(z2)U

3(z3) . . . U
(N−2)(z(N−2))〉 (5.1)

integrated over z1 = 0 ≤ z2 ≤ · · · ≤ zN−2 ≤ zN−1 = 1. We will first of all give a

representation of (5.1) in terms of (N − 2)! different zi polynomials in the integrand.

Then, performing manipulations on the level of both the building blocks and the associated

integrals reduces the number of distinct integrals to (N − 3)! each of which multiplies a

full-fledged SYM amplitude (4.12) in a color ordering specific to the integral.

5.1. The CFT correlator

Since the conformal h = 1 primaries [∂θα,Πm, dα, N
mn] within the integrated vertex

do not have zero modes at tree level, the correlator (5.1) can be computed by summing all

their OPE singularities. Generically, this gives rise to a set of (N−2)! worldsheet functions

where all the zij appear as single poles, and additionally to a set of double pole integrands

∼ z−2
ij . It has been observed in [13] that the role of the double pole integrals is to correct

the numerators of the (N − 2)! single pole integrals such that any OPE residue Ljiki...li

is transformed to the associated BRST building block Tijk...l. This is the consequence of

a subtle interplay between the integrals along the lines of subsection 5.4, in particular the

tachyon poles due to double pole integrals are cancelled by the superfield kinematics in a

highly nontrivial way.

A bit of care is needed to reduce the single pole residue among two integrated vertices

U i(zi)U
j(zj) to the more basic Ljiki...li superfields which appear when U jUk . . . U l succes-

sively approach an unintegrated vertex V i. The required manipulations are based on the

independence of correlation functions on the order of integrating out the h = 1 fields [12].

The relations up to the six point case can be found in [12,13],

V 1(z1)U
2(z2)U

3(z3) ∼
L3121 − L2131

z23z31
=:

2L[31,21]

z23z31

V 1(z1)U
2(z2)U

3(z3)U
4(z4) ∼

L413121 − L412131 + L213141 − L312141

z23z34z41
=:

4L[41,[31,21]]

z23z34z41
,

(5.2)
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we are picking out one particular residue here when the arguments approach each other in

the order z2 → z3 → z1 and z2 → z3 → z4 → z1, respectively. This order is reflected in

the specific zij in the denominator.

Higher order analogues of (5.2) involve nested antisymmetrizations:

V 1(z1)U
2(z2)U

3(z3)U
4(z4)U

5(z5) ∼
8L[51,[41,[31,21]]]

z23z34z45z51

V 1(z1)U
2(z2)U

3(z3) · · ·U
p(zp) ∼

2p−2L[p1,[(p−1)1,[...,[41,[31,21]]...]]]

z23z34 · · · zp−1,pzp1

(5.3)

When all the single pole numerators are reduced to Ljiki...li and the double pole corrections

are absorbed into Ljiki...li 7→ Tijk...l, the integrated correlator (5.1) assumes a manifestly

symmetric form in the labels 2, 3, . . . , N − 2 of the U j vertices

N−2
∏

j=2

∫

dzj〈V
1(0)V (N−1)(1)V N (∞)U2(z2)U

3(z3) · · ·U
(N−2)(z(N−2))〉 (5.4)

=
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

N−2
∑

p=1

〈

T12...p TN−1,N−2,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2zN−2,N−3 · · · zp+2,p+1)

+ P(2, 3, . . . , N − 2)

〉

,

where P(2, 3, . . . , N − 2) denotes a symmetric sum over the (N − 3)! permutations of the

labels (2, 3, . . . , N−2). The zij polynomials associated with a specific BRST building block

Tij1j2...jp follow an intriguing pattern (where the first label i belongs to an unintegrated

vertex V 1 or V N−1 and the remaining ones to the integrated vertices jk ∈ {2, 3, . . . , N−2}):

Tij1j2...jp ↔
1

zij1zj1j2zj2j3 · · · zjp−1,jp

(5.5)

Since there are (N −3)! permutations of the (2, 3, . . . , N −2) labels and the p sum collects

(N −2) distinct permutation orbits, (5.4) yields an expression for the N–point superstring

amplitude (2.12) in terms of (N − 2)! kinematic numerators and hypergeometric integrals,

AN ≡ A(1, 2, . . . , N) =
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

N−2
∑

p=1

〈

T12...pTN−1,N−2,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2 · · · zp+2,p+1)
+ P(2, . . . , N − 2)

〉

. (5.6)

The cases N = 5 and N = 6 of (5.6) reproduce the formulæ obtained in [13,26] and (5.6)

has also been used in [34] to obtain (via the field-theory limit α′ → 0) local expressions

for all (2N −5)!! kinematic numerators entering the field-theory N–point amplitude which

manifestly satisfy all BCJ numerator identities [14].
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5.2. A closed formula for M12...p from the superstring

In this subsection we will show that the result (5.6) for the N–point superstring

amplitude allows to extract a closed formula for the Berends–Giele current M12...p. The

p sum in (5.6) partitions the legs 2, 3, . . . , N−2 into two groups – one of them gets connected

to leg 1, the other to leg N − 1. The same structure is also present in the cohomology

formula (4.12) for the field-theory amplitude; AN
YM =

∑N−2
p=1 〈M12...pMp+1...N−1VN 〉.

Since the kinematic factors within individual terms of the p sum are linearly indepen-

dent, we can directly compare the p = N − 2 term on both sides of AN
α′→0
−→ AN

YM – with

the string- and field-theory amplitudes given respectively by (5.6) and (4.12):

AN = (2α′)N−3
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−2α′sij

〈

T12...N−2VN−1VN

z12z23 · · · zN−3,N−2
+ P(2, . . . , N − 2) + · · ·

〉

α′→0
−→ 〈M12...N−2VN−1VN 〉 + · · · (5.7)

This yields a closed-formula solution for the rank p = N − 2 current M12...p,

M12...p = lim
α′→0

(2α′)p−1

p
∏

j=2

∫ 1

zj−1

dzj

p+1
∏

i<j

|zij |
−2α′sij

(

T12...p

z12z23 · · · zp−1,p
+ P(2, 3, . . . , p)

)

,

(5.8)

where z1 = 0 and zp+1 = 1 as customary for a (p + 2)−point amplitude. For example,

using the momentum expansion of the five-point superstring integrals [5] and the BRST

symmetry T123 + T231 + T312 = 0 of (3.14) the following M123 is generated

M123 = lim
α′→0

(2α′)2
∫ 1

0

dz2

∫ 1

z2

dz3

4
∏

i<j

|zij |
−2α′sij

(

T123

z12z23
+

T132

z13z32

)

=
T123

s12s123
+

T123

s23s123
−

T132

s23s123
=

T123

s12s123
+

T321

s23s123
, (5.9)

which is easily shown to satisfy QM123 = E123. Similarly, we checked that the formula

(5.8) correctly generates solutions of (4.4) up to and including M1234567.

5.3. Trading T12...p for M12...p

As will be shown in the next subsections, in order to simplify even further the expres-

sion (5.6) of the superstring N–point amplitude it will be convenient to trade the BRST

building blocks T12...p for the Berends–Giele currents M12...p.
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This exchange will be possible because of the particular pattern (5.5) of zij dependence

along with the T12...p. The lowest order example of T ↔ M conversion is a triviality
T12

z12
= s12

z12
M12, but already the simplest generalization is a result of partial fraction relations

and the symmetry properties of Tijk:

T123

z12z23
+ P(2, 3) =

s12
z12

(

s13
z13

+
s23
z23

)

M123 + P(2, 3). (5.10)

Similar identities have been checked at p = 4 and p = 5 level:

T1234

z12z23z34
+ P(2, 3, 4) =

s12
z12

(

s13
z13

+
s23
z23

)(

s14
z14

+
s24
z24

+
s34
z34

)

M1234 + P(2, 3, 4)

T12345

z12z23z34z45
+ P(2, 3, 4, 5) =

s12
z12

(

s13
z13

+
s23
z23

)(

s14
z14

+
s24
z24

+
s34
z34

)

×

(

s15
z15

+
s25
z25

+
s35
z35

+
s45
z45

)

M12345 + P(2, 3, 4, 5). (5.11)

These identities heavily rely on the interplay of different terms in the permutation sum

and on the symmetry properties (3.20) of the BRST building blocks which leave no more

than (p− 1)! independent permutations of Ti1...ip at level p.

The natural n point generalization of (5.10) and (5.11) reads as follows:

T12...p

z12z23 · · · zp−1,p
+ P(2, . . . , p) =

p
∏

k=2

k−1
∑

m=1

smk

zmk
M12...p + P(2, . . . , p)

TN−1,N−2,...,p+1

zN−1,N−2 · · · zp+2,p+1
+ P(2, . . . , p) =

N−2
∏

k=p+1

N−1
∑

n=k+1

snk
znk

MN−1,N−2,...,p+1 (5.12)

+ P(2, . . . , p) =
N−2
∏

k=p+1

N−1
∑

n=k+1

skn
zkn

Mp+1,p+2,...,N−1 + P(2, . . . , p),

where in the last line the rank N − 1 − p Berends–Giele current with leg N − 1 involved

was reflected via (4.7); MN−1,...,p+1 = (−1)N−p−2Mp+1,...,N−1.

5.4. Worldsheet integration by parts

This subsection focuses on the integrals rather than the kinematic factors in the su-

perstring amplitude. The chain of smk

zmk
sums which appears as a result of (5.12) when all

the T12...p are converted to M12...p is particularly suitable to perform integration by parts

with respect to zj variables. Further details on the structure and manipulations of the

integrals can be found in [2].
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The key idea is the vanishing of boundary terms in the worldsheet integrals:

∫

dzj · · ·

∫

dzN−2
∂

∂zk

∏

i<j |zij |
−sij

zi1j1 · · · ziN−4jN−4

= 0. (5.13)

This identity provides relations between the integrals in an N–point superstring ampli-

tude with N − 3 powers of zij in the denominator. They become particularly easy if the

differentiation variable zk does not appear in the denominator (i.e. if k /∈ {il, jl}) because
∂

∂zk
only hits the

∏

m 6=k |zmk|
−smk factor in that case:

∫

dz2 · · ·

∫

dzN−2

∏

i<j |zij |
−sij

zi1j1 · · · ziN−4jN−4

N−1
∑

m=1

m6=k

smk

zmk
= 0. (5.14)

This can be directly applied to the integrands on the right hand side of (5.10), (5.11) and

(5.12), namely:

3
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

(

s13
z13

+
s23
z23

)

=
3
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

s34
z34

4
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

(

s13
z13

+
s23
z23

)(

s14
z14

+
s24
z24

+
s34
z34

)

=
4
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

s45
z45



















(

s13
z13

+
s23
z23

)

(

s34
z34

+
s35
z35

)

(5.15)

5
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

(

s13
z13

+
s23
z23

)(

s14
z14

+
s24
z24

+
s34
z34

)(

s15
z15

+
s25
z25

+
s35
z35

+
s45
z45

)

=

5
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

s56
z56

(

s13
z13

+
s23
z23

)(

s45
z45

+
s46
z46

)

In the general N point case, it is most economic to leave the first [N/2] − 1 factors of
∑k−1

m=1
smk

zmk
as they are, and to integrate the remaining [(N − 3)/2] such factors by parts:

N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

(

s13
z13

+
s23
z23

)

· · ·

(

s1,N−2

z1,N−2
+ · · ·+

sN−1,N−2

zN−1,N−2

)

=

N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

s12
z12

(

s13
z13

+
s23
z23

)

· · ·

(

s1,[N/2]

z1,[N/2]
+ · · ·+

s[N/2]−1,[N/2]

z[N/2]−1,[N/2]

)
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×

(

s[N/2]+1,[N/2]+2

z[N/2]+1,[N/2]+2
+ · · ·+

s[N/2]+1,N−1

z[N/2]+1,N−1

)

· · ·

(

sN−3,N−2

zN−3,N−2
+

sN−3,N−1

zN−3,N−1

)

sN−2,N−1

zN−2,N−1

=
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij





[N/2]
∏

k=2

k−1
∑

m=1

smk

zmk









N−2
∏

k=[N/2]+1

N−1
∑

n=k+1

skn
zkn



 (5.16)

In contrast to the T12...p → M12...p reshuffling identities from the previous subsection,

(5.15) and (5.16) are valid before summing over permutations of (2, 3, . . . , N − 2).

5.5. The complete N–point superstring disk amplitude

This subsection completes the derivation of the striking result (5.22) for the super-

string N–point amplitude AN ≡ A(1, 2, . . . , N) by combining the results of the previous

subsections. Let us first look at the four-, five- and six-point examples to get a better

feeling of the mechanisms at work.

After using Tij = sijMij , the total derivative relation s23
z23
7→ s12

z12
as well as E123 =

M12V3 + V1M23, the four-point open string disk amplitude is easily seen to be

A4 =

∫

dz2
∏

i<j

|zij |
−sij

〈

T12V3V4

z12
+

V1T32V4

z32

〉

=

∫

dz2
∏

i<j

|zij |
−sij

〈

s12
z12

M12V3V4 +
s23
z23

V1M23V4

〉

=

∫

dz2
∏

i<j

|zij |
−sij

s12
z12

〈

(M12V3 + V1M23)V4

〉

=

∫

dz2
∏

i<j

|zij |
−sij

s12
z21
AYM(1, 2, 3, 4).

Similarly, the five-point superstring amplitude (5.6) contains six different integrands and

kinematic terms. After applying (5.10), the Tij and Tijk conspire to give Mij and Mijk

with modified integrals, then we use integration by parts according to (5.15) on the way

to the third equality of (5.18). Remarkably, many of the initially (N − 2)! = 6 distinct

integrals now coincide: The three kinematic termsM123V4V5, M12M34V5 and V1M234V5 are

multiplied by the same integral after partial integration, the same is true for the (2 ↔ 3)

permutation. That is why we can identify color ordered field-theory amplitudes (4.12) in

the last line:

A5 =

∫

dz2dz3
∏

i<j

|zij |
−sij

〈

T123V4V5

z12z23
+

T12T43V5

z12z43
+

V1T432V5

z43z32
+ (2↔ 3)

〉
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=

∫

dz2dz3
∏

i<j

|zij |
−sij

〈

s12
z12

(

s13
z13

+
s23
z23

)

M123V4V5 +
s12s34
z12z34

M12M34V5

+
s43
z43

(

s42
z42

+
s32
z32

)

V1M432V5 + (2↔ 3)

〉

(5.18)

=

∫

dz2dz3
∏

i<j

|zij |
−sij

{

s12s34
z12z34

〈M123V4V5 +M12M34V5 + V1M234V5〉+ (2↔ 3)

}

=

∫

dz2dz3
∏

i<j

|zij |
−sij

{

s12s34
z12z34

AYM(1, 2, 3, 4, 5) +
s13s24
z13z24

AYM (1, 3, 2, 4, 5)

}

Simplifying the six-point amplitudes A6 follows similar steps. In this case, (5.11) takes

care of the conversion of Tijkl into Mijkl, then integration by parts makes the four integrals

within a given (2, 3, 4) permutation coincide:

A6 =
4
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

〈

T1234V5V6

z12z23z34
+

T123T54V6

z12z23z54
+

T12T543V6

z12z54z43
+

V1T5432V6

z54z43z32
+ P(2, 3, 4)

〉

=

4
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

〈

s12
z12

(

s13
z13

+
s23
z23

)(

s14
z14

+
s24
z24

+
s34
z34

)

M1234V5V6

+
s12
z12

(

s13
z13

+
s23
z23

)

s45
z45

M123M45V6 +
s12
z12

s45
z45

(

s34
z34

+
s35
z35

)

M12M543V6

+
s45
z45

(

s34
z34

+
s35
z35

)(

s52
z52

+
s42
z42

+
s32
z32

)

V1M5432V6 + P(2, 3, 4)

〉

=
4
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

{

s12s45
z12z45

(

s13
z13

+
s23
z23

)

〈M1234V5V6 +M123M45V6

+M12M345V6 + V1M2345V6〉 + P(2, 3, 4)

}

(5.19)

=
4
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

{

s12s45
z12z45

(

s13
z13

+
s23
z23

)

AYM(1, 2, 3, 4, 5, 6) + P(2, 3, 4)

}

The identities (5.11) and (5.15) are sufficient to also reduce the superstring seven-point

amplitude A7 to its field-theory constituents:

A7 =
5
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

〈

T12345V6V7

z12z23z34z45
+

T1234T65V7

z12z23z34z65
+

T123T654V7

z12z23z65z54

+
T12T6543V7

z12z65z54z43
+

V1T65432V7

z65z54z43z32
+ P(2, 3, 4, 5)

〉

=

5
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

{

s12s56
z12z56

(

s13
z13

+
s23
z23

)(

s45
z45

+
s46
z46

)

AYM(1, 2, 3, 4, 5, 6, 7)
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+ P(2, 3, 4, 5)

}

. (5.20)

The N–point generalization is based on introducing currents Mi1i2...ip via (5.12) followed

by integration by parts using (5.16). The latter makes the integral independent on p

such that the zij can be placed outside the p sum and SYM amplitudes emerge from the

kinematics.

AN =
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

〈N−2
∑

p=1

T12...p TN−1,N−2,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2 · · · zp+2,p+1)

+ P(2, 3, . . . , N − 2)

〉

=
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

〈N−2
∑

p=1

(

p
∏

k=2

k−1
∑

m=1

smk

zmk
M12...p

)

×





N−2
∏

k=p+1

N−1
∑

n=k+1

skn
zkn

Mp+1,...,N−2,N−1



VN + P(2, 3, . . . , N − 2)

〉

=

N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

{





[N/2]
∏

k=2

k−1
∑

m=1

smk

zmk









N−2
∏

k=[N/2]+1

N−1
∑

n=k+1

skn
zkn





×
N−2
∑

p=1

〈M12...pMp+1...N−2,N−1VN 〉 + P(2, 3, . . . , N − 2)

}

=
N−2
∏

j=2

∫

dzj
∏

i<j

|zij |
−sij

{





[N/2]
∏

k=2

k−1
∑

m=1

smk

zmk









N−2
∏

k=[N/2]+1

N−1
∑

n=k+1

skn
zkn





×AYM (1, 2, 3, . . . , N − 1, N) + P(2, 3, . . . , N − 2)

}

. (5.21)

Equivalently, by undoing the total derivative relation used in (5.21) the full N–point su-

perstring amplitude becomes

AN =

∫

zi<zi+1

∏

i<j

|zij |
−sij

[N−2
∏

k=2

k−1
∑

m=1

smk

zmk
AYM (1, 2, . . . , N) + P(2, . . . , N − 2)

]

, (5.22)

where the integration region
∫

zi<zi+1
≡
∏N−2

j=2

∫ 1

zj−1
dzj is responsible for dictating which

color-ordered string subamplitude is being computed. Therefore the end result of all these

pure spinor superspace manipulations is that the N–point superstring disk amplitude is

written in terms of the explicit sum of (N − 3)! basis of field-theory amplitudes multiplied
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by an equal number of hypergeometric integrals, as mentioned in the Introduction and

further elaborated in [2].
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Appendix A. The explicit construction of T12345

In order to find the appropriate redefinition of L21314151 leading to T̃12345 one simply

uses the known redefinitions of [L21, L2131, L213141] → [T12, T123, T1234] in the right-hand

side of (3.3). Even though it is not obvious, all terms from these lower-order redefinitions

group together into a BRST-exact combination which can be moved to the left-hand side

of (3.3). Doing that finally leads to the definition of T̃12345, given by

T̃12345 = L21314151

−
1

4
(s13 + s23)

[

D12D34V5(s35 + s45) +D12D35V4s34 −D12D45V3s34
]

−
1

4
s12

[

D13D24V5(s25 + s45) +D14D23V5(s25 + s35) +D15D23V4(s24 + s34)

+ s24(D13D25V4 −D13D45V2) + s13(D34D25V1 +D35D24V1)

+ s23(D14D25V3 −D14D35V2 +D15D24V3 −D15D34V2) + s14D45D23V1

]

− (s15 + s25 + s35 + s45)S
(2)
1234V5 − (s14 + s24 + s34)

(

S
(1)
123L54 + S

(2)
1235V4

)

− (s13 + s23)
(

S
(1)
124L53 + S

(1)
125L43 − S

(1)
345L21 + S

(2)
1245V3

)

− s12

[

S
(1)
134L52 + S

(1)
135L42 + S

(1)
145L32 + S

(2)
1345V2 − (1↔ 2)

]

−
1

2

[

T123D45(s14 + s24 + s34) + (T125D34 − T345D12 + T124D35)(s13 + s23)

+ s12(T134D25 + T135D24 + T145D23 − (1↔ 2))
]

(A.1)
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which, by construction, is guaranteed to satisfy

QT̃12345 =+ (s15 + s25 + s35 + s45)T1234V5 + (s14 + s24 + s34)(T1235V4 + T123T45)

+ (s13 + s23)(T1245V3 + T124T35 + T125T34 + T12T345)

+ s12(T1345V2 + V1T2345 + T134T25 + T135T24 + T145T23

+ T13T245 + T14T235 + T15T234). (A.2)

One can also show that7

T̃12345 + T̃21345 =QR
(1)
12345,

T̃12345 + T̃23145 + T̃31245 =QR
(2)
12345, (A.3)

T̃12345 − T̃12435 + T̃34125 − T̃34215 =QR
(3)
12345,

T̃12345 − T̃12354 + T̃45123 − T̃45213 − T̃45312 + T̃45321 =QR
(4)
12345

where the BRST-exact parts are given by

R
(1)
12345 =D12(k

12 ·A3)(k123 ·A4)(k1234 ·A5) +
1

6
(s13 + s23)D12

[

D45

(

(k4 ·A3)− (k5 ·A3)
)

+D35

(

(k5 ·A4)− (k3 ·A4)
)

− 2D34

(

(k3 ·A5) + 2(k4 ·A5)
)

]

,

R
(2)
12345 =D12(k

2 ·A3)(k123 ·A4)(k1234 ·A5) +
1

6

[

s12D13

(

D45((k
4 ·A2)− (k5 ·A2))

+D25((k
5 ·A4)− (k2 ·A4))− 2D24((k

2 ·A5) + 2(k4 ·A5))
)

+ cyclic(123)
]

,

R
(3)
12345 =− (W 1γmW 2)(W 3γmW 4)(k1234 ·A5)

+
[

D12(k
3 ·A4)(k2 ·A3)(k1234 ·A5) +

1

3
(s24 − 2s23)D34D12(k

4 ·A5)− (3↔ 4)
]

+
1

6
(s14 + s24)

[

D25D34((k
2 ·A1)− (k5 ·A1)) +D15D34((k

5 ·A2)− (k1 ·A2))
]

+
1

6
(s23 + s24)

[

D45D12((k
4 ·A3)− (k5 ·A3)) +D35D12((k

5 ·A4)− (k3 ·A4))
]

+
[

(

D13(k
1 ·A2)(k3 ·A4) +D24(k

2 ·A1)(k4 ·A3) +D34(k
1 ·A2)(k4 ·A1)

)

(k1234 ·A5)

+
1

3
(s24 − 2s14)D34D12(k

2 ·A5)− (1↔ 2)
]

R
(4)
12345 =(W 1γmW 2)

[

(W 4γnW 5)F3
mn − (W 4γmW 5)(k12 ·A3)

]

+
[

(W 1γmW 2)(W 3γmW 5)(k5 ·A4) +
1

4
(W 1γmW 2)(W 5γnpγmW 3)F4

np

7 The tedious algebra was handled using FORM [32].
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+D12(k
2 ·A3)(k23 ·A4)(k4 ·A5) +D12(k

1 ·A3)(k2 ·A4)(k4 ·A5)

+
1

6
D12D35(k

3 ·A4)s23 +
5

6
D12D35(k

5 ·A4)s23 +
1

3
D12D45(k

4 ·A3)s23

+D14(k
1 ·A2)(k12 ·A3)(k4 ·A5) +D25(k

2 ·A1)(k12 ·A3)(k5 ·A4)

+D34(k
2 ·A1)(k3 ·A2)(k4 ·A5) +D35(k

3 ·A1)(k1 ·A2)(k5 ·A4)− (4↔ 5)
]

+
[

(W 2γmW 3)(W 4γmW 5)(k2 ·A1) +
1

4
(W 4γmW 5)(W 1γnpγmW 3)F2

np

+D13(k
1 ·A2)(k3 ·A4)(k4 ·A5)−D13(k

5 ·A4)(k1 ·A2)(k3 ·A5)

+D45(k
2 ·A1)(k3 ·A2)(k5 ·A3) +D45(k

5 ·A1)(k1 ·A2)(k12 ·A3)

+
1

3
D12D45(k

2 ·A3)(−2s15 + s25 + s35) +
1

6
D13D45(k

3 ·A2)(s15 + s25 + s35)

−
1

6
D13D45(k

1 ·A2)(s15 + s25 − 5s35)− (1↔ 2)
]

(A.4)

Removing these BRST-exact parts is accomplished by the second redefinition T̃12345 −→

T12345, leading to the rank-five BRST building block

T12345 = T̃12345 −QS
(3)
12345, (A.5)

where the expression for S
(3)
12345 can be written recursively as

S
(3)
12345 =

4

5
S
(2)
12345 +

1

5

(

S
(2)
12354 − S

(2)
45123 + S

(2)
45213 + S

(2)
45312 − S

(2)
45321

)

+
1

5
R

(4)
12345,

S
(2)
12345 =

3

4
S
(1)
12345 +

1

4
(S

(1)
12435 − S

(1)
34125 + S

(1)
34215) +

1

4
R

(3)
12345, (A.6)

S
(1)
12345 =

1

2
R

(1)
12345 +

1

3
R

(2)
[12]345.

To see that (A.5) and (A.6) imply all the BRST-symmetries of T12345

0 = T12345 + T21345

0 = T12345 + T31245 + T23145

0 = T12345 − T12435 + T34125 − T34215

0 = T12345 − T12354 + T45123 − T45213 − T45312 + T45321 (A.7)

it suffices to check that the following identities hold,

S
(3)
12345 + S

(3)
21345 =R

(1)
12345

S
(3)
12345 + S

(3)
31245 + S

(3)
23145 =R

(2)
12345 (A.8)

S
(3)
12345 − S

(3)
12435 + S

(3)
34125 − S

(3)
34215 =R

(3)
12345

S
(3)
12345 − S

(3)
12354 + S

(3)
45123 − S

(3)
45213 − S

(3)
45312 + S

(3)
45321 =R

(4)
12345.

Having the explicit superfield expressions for the building blocks up to T12345 allows all

component amplitudes up to N = 11 to be evaluated.
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Appendix B. The solutions for Mi1i2...in in terms of BRST building blocks

From the relation between M123...n and the cubic diagrams of the (n + 1)-point am-

plitude discussed in subsection 4.1, it follows that the solutions for M123, M1234, M12345,

M123456 and M1234567 which satisfy (4.1) contain 2, 5, 14, 42 and 132 different kinematic

pole configurations, which are represented by the cubic-graph expansion of the tree ampli-

tudes. Their explicit expressions can then be read off from the dictionary between those

cubic graphs and the BRST building blocks; as discussed in subsection 3.3. Furthermore,

using the antisymmetry on the first two labels of Tijk..., one can always choose an ordering

such that all terms inM123...n have a positive coefficient, leading to:

M12 =
T12

s12
, (B.1)

M123 =
1

s123

(

T123

s12
+

T321

s23

)

, (B.2)

M1234 =
1

s1234

(

T1234

s12s123
+

T3214

s23s123
+

T3241

s23s234
+

T3421

s34s234
+

2T12[34]

s12s34

)

, (B.3)

M12345 =
1

s12345

[

1

s1234

(

T12345

s12s123
+

T32145

s23s123
+

T32415

s23s234
+

T34215

s34s234
+

2T12[34]5

s12s34

)

+
1

s2345

(

T34251

s34s234
+

T32451

s23s234
+

T34521

s34s345
+

T54321

s45s345
+

2T45[23]1

s23s45

)

+
2T123[45]

s12s123s45
+

2T321[45]

s23s123s45
+

2T453[12]

s45s345s12
+

2T435[12]

s34s345s12

]

, (B.4)

M123456 =
1

s123456

[ 4T12[34][56]

s12s34s56s1234
+

4T34[56][21]

s12s34s56s3456
+

4T123[[45]6]

s12s45s123s456
+

4T123[4[56]]

s12s56s123s456

+
4T231[[54]6]

s23s45s123s456
+

4T231[4[65]]

s23s56s123s456
+

2T345[21]6

s12s34s345s12345
+

2T3456[21]

s12s34s345s3456

+
2T12[34]56

s12s34s1234s12345
+

2T123[45]6

s12s45s123s12345
+

2T543[21]6

s12s45s345s12345
+

2T5436[21]

s12s45s345s3456

+
2T4563[12]

s12s45s456s3456
+

2T1234[56]

s12s56s123s1234
+

2T5643[21]

s12s56s456s3456
+

2T231[54]6

s23s45s123s12345

+
2T456[23]1

s23s45s456s23456
+

2T34[56]21

s34s56s23456s3456
+

2T23[54]16

s23s45s12345s2345
+

2T23[54]61

s23s45s2345s23456

+
2T2314[65]

s23s56s123s1234
+

2T2341[65]

s23s56s234s1234
+

2T234[65]1

s23s56s234s23456
+

2T564[32]1

s23s56s456s23456

+
2T3421[56]

s34s56s234s1234
+

2T342[56]1

s34s56s234s23456
+

T321456

s23s123s1234s12345
+

T324156

s23s234s1234s12345
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+
T324516

s23s234s12345s2345
+

T324561

s23s234s2345s23456
+

T342156

s34s234s1234s12345
+

T342516

s34s234s12345s2345

+
T342561

s34s234s2345s23456
+

T345216

s34s345s12345s2345
+

T345261

s34s345s2345s23456
+

T345621

s34s345s23456s3456

+
T543216

s45s345s12345s2345
+

T543261

s45s345s2345s23456
+

T123456

s12s123s1234s12345
+

T543621

s45s345s23456s3456

+
T546321

s45s456s23456s3456
+

T564321

s56s456s23456s3456

]

, (B.5)

s1234567M1234567 =

+
8T12[34][[56]7]

s12s34s56s567s1234
+

8T54[67][1[23]]

s23s45s67s123s4567
+

8T12[34][5[67]]

s12s34s67s567s1234
+

8T45[67][3[12]]

s12s45s67s123s4567

+
4T567[34][12]

s12s34s56s567s34567
+

4T12[34][56]7

s12s34s56s1234s123456
+

4T43[56][12]7

s12s34s56s123456s3456
+

4T43[56]7[12]

s12s34s56s3456s34567

+
4T435[12][67]

s12s34s67s345s12345
+

4T435[67][12]

s12s34s67s345s34567
+

4T765[34][12]

s12s34s67s567s34567
+

4T12[34]5[67]

s12s34s67s1234s12345

+
4T123[45][67]

s12s45s67s123s12345
+

4T453[12][67]

s12s45s67s345s12345
+

4T453[67][12]

s12s45s67s345s34567
+

4T45[67]3[12]

s12s45s67s34567s4567

+
4T123[[45]6]7

s12s45s123s456s123456
+

4T5467[[12]3]

s12s45s123s456s4567
+

4T7654[[12]3]

s12s67s123s567s4567
+

4T1234[5[67]]

s12s67s123s567s1234

+
4T321[45][67]

s23s45s67s123s12345
+

4T32[45]1[67]

s23s45s67s12345s2345
+

4T32[45][67]1

s23s45s67s2345s234567
+

4T5647[[12]3]

s12s56s123s456s4567

+
4T1234[[56]7]

s12s56s123s567s1234
+

4T5674[[12]3]

s12s56s123s567s4567
+

4T123[4[56]]7

s12s56s123s456s123456
+

4T5647[1[23]]

s23s56s123s456s4567

+
4T3214[[56]7]

s23s56s123s567s1234
+

4T5674[1[23]]

s23s56s123s567s4567
+

4T321[4[56]]7

s23s56s123s456s123456
+

4T3214[5[67]]

s23s67s123s567s1234

+
4T7654[1[23]]

s23s67s123s567s4567
+

4T3241[5[67]]

s23s67s234s567s1234
+

4T324[5[67]]1

s23s67s234s567s234567
+

4T45[67][23]1

s23s45s67s234567s4567

+
4T321[[45]6]7

s23s45s123s456s123456
+

4T5467[1[23]]

s23s45s123s456s4567
+

4T3241[[56]7]

s23s56s234s567s1234
+

4T324[[56]7]1

s23s56s234s567s234567

+
4T3421[[56]7]

s34s56s234s567s1234
+

4T342[[56]7]1

s34s56s234s567s234567
+

4T3421[5[67]]

s34s67s234s567s1234
+

4T342[5[67]]1

s34s67s234s567s234567

+
2T435[12]67

s12s34s345s12345s123456
+

2T4356127

s12s34s345s123456s3456
+

2T43567[12]

s12s34s345s3456s34567

+
2T12[34]567

s12s34s1234s12345s123456
+

2T453[12]67

s12s45s345s12345s123456
+

2T4536[12]7

s12s45s345s123456s3456

+
2T45367[12]

s12s45s345s3456s34567
+

2T4563[12]7

s12s45s456s123456s3456
+

2T45637[12]

s12s45s456s3456s34567
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+
2T45673[12]

s12s45s456s34567s4567
+

2T1234[56]7

s12s56s123s1234s123456
+

2T123[45]67

s12s45s123s12345s123456

+
2T6543[12]7

s12s56s456s123456s3456
+

2T65437[12]

s12s56s456s3456s34567
+

2T65473[12]

s12s56s456s34567s4567

+
2T65743[12]

s12s56s567s34567s4567
+

2T12345[67]

s12s67s123s1234s12345
+

2T67543[12]

s12s67s567s34567s4567

+
2T321[45]67

s23s45s123s12345s123456
+

2T456[23]17

s23s45s456s123456s23456
+

2T456[23]71

s23s45s456s23456s234567

+
2T4567[23]1

s23s45s456s234567s4567
+

2T32[45]167

s23s45s12345s123456s2345
+

2T3241[56]7

s23s56s234s1234s123456

+
2T32[45]617

s23s45s123456s2345s23456
+

2T32[45]671

s23s45s2345s23456s234567
+

2T3214[56]7

s23s56s123s1234s123456

+
2T324[56]17

s23s56s234s123456s23456
+

2T324[56]71

s23s56s234s23456s234567
+

2T654[23]17

s23s56s456s123456s23456

+
2T654[23]71

s23s56s456s23456s234567
+

2T6547[23]1

s23s56s456s234567s4567
+

2T6574[23]1

s23s56s567s234567s4567

+
2T32145[67]

s23s67s123s1234s12345
+

2T32415[67]

s23s67s234s1234s12345
+

2T32451[67]

s23s67s234s12345s2345

+
2T3245[67]1

s23s67s234s2345s234567
+

2T6754[23]1

s23s67s567s234567s4567
+

2T3421[56]7

s34s56s234s1234s123456

+
2T342[56]17

s34s56s234s123456s23456
+

2T342[56]71

s34s56s234s23456s234567
+

2T657[34]21

s34s56s567s234567s34567

+
2T34[56]217

s34s56s123456s23456s3456
+

2T34[56]271

s34s56s23456s234567s3456
+

2T34[56]721

s34s56s234567s3456s34567

+
2T34215[67]

s34s67s234s1234s12345
+

2T34251[67]

s34s67s234s12345s2345
+

2T3425[67]1

s34s67s234s2345s234567

+
2T5432[67]1

s45s67s345s2345s234567
+

2T543[67]21

s45s67s345s234567s34567
+

2T54[67]321

s45s67s234567s34567s4567

+
2T34521[67]

s34s67s345s12345s2345
+

2T3452[67]1

s34s67s345s2345s234567
+

2T345[67]21

s34s67s345s234567s34567

+
2T675[34]21

s34s67s567s234567s34567
+

2T54321[67]

s45s67s345s12345s2345
+

T1234567

s12s123s1234s12345s123456

+
T3214567

s23s123s1234s12345s123456
+

T3241567

s23s234s1234s12345s123456
+

T3245167

s23s234s12345s123456s2345

+
T3245617

s23s234s123456s2345s23456
+

T3245671

s23s234s2345s23456s234567
+

T3456217

s34s345s123456s23456s3456
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+
T3421567

s34s234s1234s12345s123456
+

T3425167

s34s234s12345s123456s2345
+

T3452617

s34s345s123456s2345s23456

+
T3425617)

s34s234s123456s2345s23456
+

T3425671)

s34s234s2345s23456s234567
+

T3452167

s34s345s12345s123456s2345

+
T3452671

s34s345s2345s23456s234567
+

T3456271

s34s345s23456s234567s3456
+

T3456721

s34s345s234567s3456s34567

+
T5432167

s45s345s12345s123456s2345
+

T5432617

s45s345s123456s2345s23456
+

T5436217

s45s345s123456s23456s3456

+
T5432671

s45s345s2345s23456s234567
+

T5436271

s45s345s23456s234567s3456
+

T5436721

s45s345s234567s3456s34567

+
T5463217

s45s456s123456s23456s3456
+

T5463271

s45s456s23456s234567s3456
+

T5463721

s45s456s234567s3456s34567

+
T5467321

s45s456s234567s34567s4567
+

T5643217

s56s456s123456s23456s3456
+

T5643271

s56s456s23456s234567s3456

+
T5643721

s56s456s234567s3456s34567
+

T5647321

s56s456s234567s34567s4567
+

T5674321

s56s567s234567s34567s4567

+
T7654321

s67s567s234567s34567s4567
. (B.6)

Appendix C. The cubic graphs of M123...n

As discussed in section 4.1, the expressions for M123...n of Appendix B were found

using the dictionary between the cubic diagrams of the (n + 1)−point amplitude with

one leg off-shell and BRST building blocks. The graphs which compose the expressions

for M123, . . . ,M123456 are given below (the 132 graphs used in the derivation of M1234567

would occupy to much space and were omitted).

2

1

s12

3

s123 . . . =
T123

s12s123

3

2

s23

1

s123 . . .=
T321

s23s123

Fig. 8 The two cubic diagrams which constitute M123.
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2

1

s12

3

s123

4

s1234. . . =
T1234

s12s123s1234

3

2

s23

1

s123

4

s1234. . . =
T3214

s23s123s1234

4

3

s34

2

s234

1

s1234
. . . =

T3421

s34s234s1234

3

2

s23

4

s234

1

s1234
. . . =

T3241

s23s234s1234

2

1

3

4

...

s12 s34
s1234

=
2T12[34]

s12s34s1234

Fig. 9 The five cubic diagrams which constitute M1234. The signs match the corre-

sponding terms given in the formula (B.3).
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s1234
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=
T12345/s12345
s12 s123 s1234 s23
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4 5

1

=
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s23
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. . .
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5

=
T32415/s12345
s23 s234 s1234

s34
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. . .

4
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5

2 1

=
T34521/s12345
s34 s345 s2345

s23

s123

s1234

s12345
. . .

3
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4 5

=
T32145/s12345
s23 s123 s1234 s34

s234

s2345

s12345
. . .

4

3 2

5

1

=
T34251/s12345
s34 s234 s2345

s34

s234

s1234

s12345
. . .

4

3 2 1

5

=
T34215/s12345
s34 s234 s1234

s45

s345

s2345

s12345
. . .

5
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=
T54321/s12345
s45 s345 s2345
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2 3 4 5

...

1

s23 s45

s2345

s12345

=
2T54[32]1/s12345

s23 s45 s2345

1 2 3 4

...

5

s12 s34

s1234

s12345

=
2T12[34]5/s12345

s12 s34 s1234

2 3

4 5

1 ...
s12345

s123 s45s23
=

2T321[45]/s12345

s23 s123 s45

1 2

3 4

5...
s12345

s12 s345 s34
=

2T435[12]/s12345

s12 s34 s345

1 2

4 53

...
s12345

s123

s45s12
=

2T123[45]/s12345

s12 s123 s45

1 2

4 5

3

...
s12345

s12

s345

s45
=

2T453[12]/s12345

s12 s45 s345

Fig. 10 The 14 cubic diagrams which constitute M12345. The signs of their correspond-

ing formulæ are in one-to-one agreement with the terms in expression for M12345 given

by (B.4), which is reproduced by summing all 14 graphs displayed here.
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T123456 / s123456
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. . .

4 5 6

1

=
T324561 / s123456
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3

2

s23
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. . .
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1

6

=
T324516 / s123456
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3

2

s23

s234

s1234

s12345

s123456
. . .

4

1

5 6

=
T324156 / s123456

s23 s234 s1234 s12345

4

3

s34

s345

s2345

s23456

s123456
. . .

5

2

6

1

=
T345261 / s123456

s34 s345 s2345 s23456

4

3

s34

s345

s2345

s12345

s123456
. . .

5

2 1

6

=
T345216 / s123456

s34 s345 s2345 s12345

5

4

s45

s456

s3456

s23456

s123456
. . .

6

3 2 1

=
T546321 / s123456

s45 s456 s3456 s23456

3

2

s23

s123

s1234

s12345

s123456
. . .

1

4 5 6

=
T321456 / s123456

s23 s123 s1234 s12345

4

3

s34

s234

s2345

s23456

s123456
. . .

2

5 6

1

=
T342561 / s123456

s34 s234 s2345 s23456

4

3

s34

s234

s2345

s12345

s123456
. . .

2

5

1

6

=
T342516 / s123456

s34 s234 s2345 s12345

5

4

s45

s345

s3456

s23456

s123456
. . .

3

6

2 1

=
T543621 / s123456

s45 s345 s3456 s23456

4

3

s34

s234

s1234

s12345

s123456
. . .

2 1

5 6

=
T342156 / s123456

s34 s234 s1234 s12345

5

4

s45

s345

s2345

s23456

s123456
. . .

3 2

6

1

=
T543261 / s123456

s45 s345 s2345 s23456

46



5

4

s45

s345

s2345

s12345

s123456
. . .

3 2 1

6

=
T543216 / s123456

s45 s345 s2345 s12345

6

5

s56

s456

s3456

s23456

s123456
. . .

4 3 2 1

=
T564321 / s123456

s56 s456 s3456 s23456

4

s343

s122

1

. . .
s1234

s12345

s123456

5 6

=
2T12[34]56 / s123456

s12 s34 s1234 s12345

5

s454

s233

2

. . .
s2345

s23456

s123456

6

1

=
2T32[45]61 / s123456

s23 s45 s2345 s23456

5

s454

s233

2

. . .
s2345

s12345

s123456

1

6

=
2T32[45]16 / s123456

s23 s45 s2345 s12345

6

s565

s344

3

. . .
s3456

s23456

s123456

2 1

=
2T34[56]21 / s123456

s34 s56 s3456 s23456

2 3 4 5

6...

1

s23 s456

s45s23456

s123456
=

2T546[32]1/s123456

s23 s45 s456 s23456

2 3 5 64

...

1

s23

s456 s56s23456

s123456
=

2T564[32]1/s123456

s23 s56 s456 s23456

2 3 4 5

1 ...

6

s45s123

s23 s12345

s123456
=

2T321[45]6/s123456

s23 s45 s123 s12345

1 2 4 53

...

6

s45

s123s12 s12345

s123456
=

2T123[45]6/s123456

s12 s45 s123 s12345

47



1 2 3 4

5...

6

s12 s345

s34s12345

s123456
=

2T345[21]6/s123456

s12 s34 s345 s12345

1 2 4 53

...

6

s12

s345 s45s12345

s123456
=

2T543[21]6/s123456

s12 s45 s345 s12345

3 4 5 6

2 ...

1

s56s234

s34 s23456

s123456
=

2T342[56]1/s123456

s34 s56 s234 s23456

2 3 5 64

...

1

s56

s234s23 s23456

s123456
=

2T324[56]1/s123456

s23 s56 s234 s23456

4

s343

s122

1
...

s123456

s1234 s56

6

5

=
4T12[34][56]/s123456

s12 s34 s56 s1234

3

s34 4

s56 5

6
...

s123456

s12 s3456

1

2

=
4T56[43][21]/s123456

s12 s34 s56 s3456

1 2

...

s123456

3 4 5 6

s12

s3456

s456

s56

=
2T5643[21]/s123456

s56 s456 s3456 s12

1 2

...

s123456

3

6

4 5

s12

s3456

s456

s45

=
2T5463[21]/s123456

s45 s456 s3456 s12

1 2

...

s123456 6

3 4 5

s12

s3456

s345

s45

=
2T5436[21]/s123456

s45 s345 s3456 s12

1 2

...

s123456 6 5

3 4

s12

s3456

s345

s34

=
2T3456[21]/s123456

s34 s345 s3456 s12

65

...

s123456

4321

s56

s1234

s123

s12

=
2T1234[56]/s123456

s12 s123 s1234 s56

65

...

s1234561

432

s56

s1234

s234

s23

=
2T3241[56]/s123456

s23 s234 s1234 s56

48



65

...

s123456

4

1

32

s56

s1234

s123

s23

=
2T3214[56]/s123456

s23 s123 s1234 s56

65

...

s12345612

43

s56

s1234

s234

s34

=
2T3421[56]/s123456

s34 s234 s1234 s56

65

s56

21

s12

3 4

s123

s456

...

s123456
=

4T123[4[56]]/s123456

s12 s123 s56 s456

54

s45

21

s12

3

6

s123

s456

...

s123456
=

4T123[[45]6]/s123456

s12 s123 s45 s456

65

s56

32

s23

1

4

s123

s456

...s123456
=

4T321[4[56]]/s123456

s23 s123 s56 s456

54

s45

32

s23

1 6

s123

s456

...s123456 =
4T321[[45]6]/s123456

s23 s123 s45 s456

Fig. 11 The 42 cubic diagrams which constitute M123456. The signs of their corre-

sponding formulæ are in one-to-one agreement with the terms in expression for M123456

given by (B.5), which is reproduced by summing all 42 graphs displayed here.
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