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1. Introduction

The computation of tree-level superstring scattering amplitudes is an important prob-
lem since the birth of string theory (see e.g. [3]). But despite being already four decades
old, explicit results for tree amplitudes with more than four external legs [4] have only re-
cently been completed using the Ramond-Neveu-Schwarz (RNS) formalism at five points
[5], at six points [6] and partially up to seven points [7]. In addition to conceptual is-
sues about higher-point worldsheet integrals, the huge amount of algebraic manipulations
required to complete these calculations has proven to be a major obstacle to further de-
velopments. When written in terms of ten-dimensional momenta and polarizations, the
amplitudes simply become too big.

However, since the year 2000 a new formalism for the superstring which can be used
to compute manifestly super-Poincaré invariant scattering amplitudes in superspace is
available [8]. A general proof that the disk amplitudes in the pure spinor formalism for
an arbitrary number of bosonic and for up to four fermionic external state agree with
the standard RNS prescription was given in [9]; and the supersymmetric four-, five- and
six-point tree amplitudes have been explicitly computed in [10-13].

In this paper the general problem will be solved; i.e. the complete solution for all

N-point superstring color-ordered disk amplitude Ay = A(1,2,..., N) is given by

N-2 k-1

Ay = / 1 SZJ[HZSL’“AYM 2,...,N)+P(2,...,N=2)|, (1.1

. Zmk
2i<zig1 1<J k=2 m=1

where Ay p(1,2,...,N) is the color-ordered N—point super Yang—Mills subamplitude in
ten dimensions, P(2,..., N — 2) means the summation over all (N — 3)! permutations of
the labels (2,..., N — 2) inside the brackets, and the color ordering of the superstring
subamplitude is defined by the integration region [ = H

2 <Zi41
It is straightforward to obtain subamplitudes associated with different color orderings

(1,2,...,N) = (16,25,..., (N —1),,N) for ¢ € Sy_1 and i, = o(i) from (1.1). The

2z 1 Zj.

worldsheet integrand with its (N — 3)! kinematic Ay s packages stay the same, only the

integration region has to be adapted to

Io={z€R, 0=z, <z, <...<2zn-2), < zwn-1), = 1},



according to the o € Sy_; permutation in question,

A(ly, 20, (N =1),, N / Hde R

Is =2 1<J
N—-2 k— 18
[H ZﬂAYM 2., N)+P(2,....N-2)|. (1.2)
k2 m=1 “mk

By taking the o/ — 0 field-theory limit of (1.2) (in particular of the integrals involved using
the methods presented in [2]), it follows that all color-ordered field theory amplitudes can be
written in terms of the (N —3)! dimensional basis { Ay (1,24, ..., (N=2)s, N—1,N) |0 €
Sn_3}, a result which was proposed in [14] and later proved in [15,16] using monodromy
relations in string theory. Furthermore, plugging in the explicit field-theory limits of the
integrals appearing in (1.1) (using the method described in [2]), one derives the BCJ
relations among different color-ordered subamplitudes discussed in [14].

This paper is organized as follows. In section 2 a brief review of the pure spinor
formalism is given; with special emphasis to the elements necessary for the scattering
amplitude computations in the following sections. In section 3 the BRST building blocks
which encode the information of the pure spinor CFT correlator will be defined and their
BRST properties studied at length. In particular, a diagrammatic method which associates
arbitrary cubic graphs to certain building block combinations is fully presented (partial
results have already been shown in [1]). In section 4 a pure spinor generalization of the
recursive method of Berends—Giele [17] to compute super Yang-Mills in ten-dimensions is
developed which extends the previous results of [1]. In section 5 the general N—point CFT
correlator of the superstring amplitude involved in the pure spinor prescription is obtained
in a compact form using the BRST cohomology objects of the previous sections. Finally,
using a mixture of pure spinor superspace manipulations together with total derivative
relations for the superstring integrals, the superstring N—point amplitude is rewritten in
terms of the field-theory subamplitudes as in the result (1.1) presented above. In the
appendix A, the calculations involving the explicit derivation of the building block 772345
in terms of super Yang-Mills superfields (which were omitted from the main text due to
its lenghty nature) are presented in full detail. In appendix B, the explicit expressions
for the pure spinor Berends-Giele currents Mja3. , are written down in terms of BRST
building blocks for up to and including M;s34567. Finally, in appendix C the cubic graphs
which were used to find the expressions of appendix B are depicted up to Mi23456 (the 132

graphs used to derive Mj234567 would occupy too much space and were omitted).
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2. The pure spinor formalism

In the pure spinor formalism [8], the worldsheet action for the type IIB superstring is

S = 2i / d*z (%aX’"EXm + Pa00% + Po00% — wa X — waaA“) ’ 2
s

(01

where [X™(2,2), 0%(2), pa(); 0" (2), Ba(2)] and \*(2), wa(2); X
Schwarz-Siegel matter variables [18,19] and the Berkovits ghosts. The bosonic pure spinor

A% satisfies

(Z),wq(Z)] are the Green-

A% =0, m=0,...,9 a,B8=1,...,16 (2.2)

where ;s are the symmetric 16 x 16 Pauli matrices in D = 10. The right-moving fields
have opposite chirality for the type IIA, for the heterotic superstring they are the same
as in the RNS formalism, and for the open superstring the boundary conditions relate the
two sectors. This paper only considers the open superstring, so the right-moving fields will
be ignored.

The supersymmetric momentum and Green-Schwarz constraint are given by
II"(2) = 0X™ + 5 (67™09),  da(2) = pa — 5(170)a0Xm — S (77"0)a (07 00),  (2.3)

while the ghost contribution to the Lorentz currents is denoted by N™"(z) = 1 (Ay™"w).
Furthermore, the energy-momentum tensor 7" with vanishing central charge and the ghost-

number current J are given by

1
T(2) = =5y = de00” + wedAY, T =waX™. (2.4)

Finally, the physical spectrum is obtained from the cohomology of the BRST charge [8]

Q= %)\O‘(z)da(z). (2.5)

One can show that these operators satisfy the following relations [8,19,20]

dalE)dp(w) = =220, MR (w) = =, da()00(w) = 2 s
mn 4 [m n] 6 n gm mn o 1 ()\,ymn)a
N (Z)Npq(’UJ) — —Z — wN [p(sq] — 7(2 — w>2 9] N (Z))\ (UJ) — —5 7’2 —w
m (’ymae)a m n _ nmn « )\oz
do (2) 1T (w) — e n"(z) X" (w) — po—— J(2)A\(w) — po— (2.6)



where the antisymmetrization bracket |...] encompassing N indices is defined to contain
an overall factor of 1/N!. Furthermore, if f(X,#0) is a superfield containing only the zero
modes of 8 and D, = 0, + %(yme)aam is the supersymmetric covariant derivative,

Ly Daf ) 00) e pay  F @) 0w)

Z—w Z—w

do(2) f(X (w), B(w))

Hence, the action of the BRST operator on superfields is Qf = A*D, f. It is easy to show
using the OPEs of (2.6) and the pure spinor constraint (2.2) that the BRST charge indeed
satisfies Q? = 0. So, the pure spinor formalism can be covariantly quantized, is manifestly
space-time supersymmetric and contains no worldsheet spinor fields; avoiding from the
outset the issues which make the computation of scattering amplitudes with the RNS and
GS formalisms a difficult task.

Throughout this paper k12" stands for k! + k2 +---+ k", the dimensionless (gen-

eralized) Mandelstam invariants are given by
R 2 ny2
812‘”,@—(1/(]4 +k’ +"'+k>, (27)
and whenever an o’ is not explicitly written down the convention 2o/ = 1 has been used.

2.1. Massless vertex operators and SYM superfields

For the open superstring, the vertex operators for the massless states in unintegrated

and integrated forms are given by

. . ) . . 1 .
Vi= NAl (2,0), U= 00"AL + ™A' +d W + ~Fi N™, (2.8)

2 mn

where 7 denotes the label of the string whose massless modes are described by the ten-
dimensional super Yang-Mills (SYM) superfields [A,, Ap, W, Fpun| satisfying [20,21]

DoAp + DA = v45Am, Do Ay = (ymW)a + km Ao

L™ o Fo. (2.9)

DoFmn = 2him (V) W)a, DW= 7

Their f—expansions can be computed using the gauge 6“4, = 0 [10,22],

1 1 1
An(z,0) = iam('me)oz - §(§7m9)(7m9)a - 3_2an(7109>04(9'7”%1]9) +oee
1 1
Ap(x,0) = am — (§ymb) — §(97m7pq9)qu + E(%mqu@)(apf%@) + - (2.10)

1 1 1
W(z,0) = %~ Z(vmne)a mn+ Z(ymne)a(amg%ewr E(vm”@o‘(@%’ym@)@mf’pq + -

1 1
]:mn(x: 9) = Fopn — 2(6[m§’7n]0) + Z(QW[m’)’pqe)an]qu + ga[m(efyn]pqexgﬁ)/qe)ap +--
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where a,(X) = ene® X, €9(X) = x*e*X are the bosonic and fermionic polarizations
and Fy,n, = 20[,ay) is the field-strength. Using the OPEs (2.6) and equations of motion
(2.9) one can show that

(MW (20)U7 (25) — (M W) F = (MW (B A7) + QW™ W), (2.11)

2j — 2
which will be frequently used in the computations below.

As shown by Howe in 1991 [23], the use of a pure spinor field simplifies the description
of ten-dimensional super Yang—Mills, and this is naturally incorporated in the pure spinor
formalism. For example, it can be shown that QV = 0 is equivalent to putting the SYM
superfields on-shell and it also implies that the BRST variation of the integrated vertex U
is given by QU = 9V [20], and many simplifications occur due to this compact description.
In fact, it has recently been shown how the cohomology of pure spinor superspace [24,25]
is enough to fix all N—point scattering amplitudes of D = 10 SYM [26,1]. So unless
otherwise stated, all superfield manipulations in the next sections are done on-shell; where

both QV =0 and QU = 9V are satisfied.

2.2. Tree-level scattering amplitudes

The prescription to compute a tree-level open-string scattering amplitude with the

pure spinor formalism is given by [8] (see also [9]),
Ay = <v1<0) V=D (1) VN (c0) / A2y UP(25) -+ / Ay UND) (Z(N_z))>, (2.12)

where V% and U? are the massless vertex operators of (2.8) and the SL(2, R) invariance of
the disk worldsheet has already been used to fix three vertex positions to the convenient
values (21, zy—1,2n) = (0,1, 00). The pure spinor bracket (. ..) appearing in (2.12) denotes
a zero-mode integration prescription for the variables A* and <, which are the only ones
among [dg, IT™, N™™ 0% 00% \*, w,] to contain zero modes on the disk because they have
conformal weight zero [27]. Furthermore, the integration regions of (2.12) encode the
different color orderings of the external states. For example, the ordering An(1,2,3,..., N)
is computed when the integration region is 0 = 21 < 25 < - < zy_o9 < 2zy_1 = 1.

After integrating out the conformal weight-one variables [d,, II"™, N 06| from the

tree-level amplitude (2.12) using the OPEs of (2.6) and evaluating the world-sheet integrals,

6



one is left with a generic pure spinor superspace expression containing the zero modes of
A% and 6¢

An = (A NNl (6,a)). (2.13)
In (2.13), f;lﬁvl" (0, ) is both a composite superfield in the labels [i1, . . ., i,] of the external

states and a function of the string scale o’ satisfying )\O‘)\ﬁ)\’y)\‘sD(;filﬁ‘;y‘i"(Q, o) =0. Its
specific form in terms of the super Yang-Mills superfields [A%, AL, W F! 1 follows from
the OPE contractions discussed above while its functional dependence on o’ is determined
by the momentum expansion of n-point hypergeometric integrals [5,6,7]. As explained
in [8], the zero-mode integration of (...) selects from the §—expansion of the enclosed
superfields the unique element in the cohomology of the pure spinor BRST operator at
ghost-number three; (Ay"0)(AY"8)(AYPO)(0vymnpf). Its tree-level normalization can be
chosen as

(A" O) (A" 0) (AyP0) (0vmnpb)) = 1, (2.14)
and although (2.14) involves only five ¢ out of sixteen, it can be shown to be supersym-
metric [8]. Furthermore, given the fact that there is only one scalar in the decomposition
of (A30°) it is possible to compute any correlator using symmetry arguments and the
normalization condition (2.14) [28,29].

2.3. Component expansions of amplitudes: a simple example

Given a pure spinor superspace expression like in (2.13) it is straightforward to perform
the #-expansion of the SYM superfields and select the terms according to (2.14) to obtain
the supersymmetric result of the scattering amplitude in terms of the more familiar gluon
and gluino polarizations [e!,, x¢] and their momenta k™. For example, let us obtain the

3-gluon scattering from the component expansion of the 3-point amplitude [§],
As = (AN (MA%)(AA3)). (2.15)

Plugging in the #-expansions (2.10) and selecting the terms with a total of five #’s which

contain only gluon fields results in,

As = —— (kmereie, — kpepened + kpeperel) (A70)(Ay*0)(Ap0) (077770)).  (2.16)

In the appendix of [30] one finds a catalog of the most common pure spinor correlators and,

in particular, ((Ay"8)(AMy*0)(Avp0)(097"0)) = 13500, = 4=0ns,. Therefore the 3-gluon

amplitude (2.16) is given by

Az = —ﬁ ((e"-e)(k*- )+ (e - ) (k' - e*) + (e - ) (K - e')) . (2.17)

Performing the above steps becomes a tedious task when higher-point calculations are

involved. Fortunately, this procedure is suitable for an automated handling [31,32].
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3. BRST building blocks

Only terms which are in the cohomology of the pure spinor BRST charge (2.5) con-
tribute to the n-point scattering amplitude (2.13). Therefore it will be convenient to foresee
the BRST properties of the objects which naturally appear in the tree-level calculation of
(2.12). With this intent in mind, in this section the OPEs among the massless vertex op-
erators (2.8) are used to define composite superfields Lai31.. 1 and their BRST properties
are studied in detail. It will be found that these superfields transform covariantly under the
BRST charge and generically contain BRST-exact parts. A prescription to consistently
remove these parts will then be given and that will define the so-called BRST building
blocks: Ti23.. p-

In a later section these building blocks will be used to define other composite super-
fields My23..,, and Eq23.., with well-defined BRST cohomology properties. They will turn
out to be the natural objects with which to write the superstring scattering amplitudes.
In the course of doing that, several general structures of the string tree amplitudes will
become apparent — like the fact that they can be written using a (N — 3)! dimensional

basis of integrals as conjectured some years ago in [6].

3.1. OPF residues of vertex operators

Motivated by the computations one needs to perform when computing tree-level higher-

point amplitudes [11,12,13] it is convenient to define composite superfields La131..p1 as

L L _
lim Vl(Zl)UQ(Zz) — ﬂ’ lim Loy31..(p—1)1(21) U (2p) — 2181 (p 1)1p1, (3.1)

z2—21 Z91 Zp—Z1 Zpl

which transform covariantly under the action of the pure spinor BRST charge [26]. To see
this one uses QV =0 and QU = 9V to obtain

QL2131..p1 = Zli_>111Zl zp1 [ (QL2is1...(p—1)1) (21)UP(2p) — Lars1...p-1)1(21)0VP(2p)].  (3.2)

The OPE in the first term of (3.2) can be computed using the definition (3.1) recursively
while the second term evaluates to Zf:il Sjplo131...(p—1)1Vp; as one can easily show by
using OV = (OA\*) AL, + 11"k, V' + 90D,V and the OPEs of (2.6). Therefore,
QL2 =512V1Va,
QL2131 = (513 + s23) L21V3 + s12(L31Va + V1 Lag),
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QL213141 = (814 + 524 + 534) L2131V + (513 + 523) (L21Lag + L2141 V3)
+ 512(L3141V2 + L31 Lo + Lyy L3y + Vi L3ogo),
QLa21314151 = (815 + 825 + 835 + 545) L213141V5 + (814 + S24 + 534) (L213151Va + L2131 L54)
+ (813 + 823)(L214151V3 + Lo141Ls3 + Lo1s1La3 + La1 Ly3s3)
+ s12(L314151V2 + Vi L3oaos2 + L3141 Ls2 + Lais1 Lao + Laisi Lo
+ L31Laos2 + La1 Lagsa + Lsi La2az), (3.3)

while QL2131 1 for p > 6 can be also be easily obtained (the general BRST variation of
a object related to Lai31.. p1 will be written down in the next subsection).
The expressions for Laizi.. 1 in terms of SYM superfields can be obtained using the

OPEs of (2.6) in the definition (3.1). For example,

Loy = lim 20;V(2)U?(20) = —AL \y™W?) = V(KD - A%) + Q(A'W?). (3.4)

22— 21

Similar calculations yield the expressions for Loi3;. 1 and one can show that (discarding

BRST-exact quantities for reasons to be explained in later sections) they are given by:

Loy =— AL (AM"W?) = VK- A%),
Loiz1 = — Lo (k™ - A%) — [ (La1 + V(K" - A%)) (k' - A%) — (1 4 2)]
= " WE) (WhymW?) — k7 (AT A%))
Loizia1 = — Lo1gi (K" - AY) — (Layar + Lot (K'? - A%)) (k"2 - A%)
(v + Lan (1 - AN) (K- A%) 4 (Lay + V(K- AD) (k- A%) (K" - 42)

- i(MmW‘*)(WzquvmW?’)f;q ~(142)]
+ (MW (W W?) — kg (AL - A%)) F, (3.5)
Lo1314151 = — L213141(]f1234 : A5> - (L213151 + Lz131(’<123 . AE’)) (k123 . A4>
— [Larais1 + Lorar (k2" - A%) + (Laisy + Laoa (k12 - A%)) (K2 - AH)] (K2 - A7)
[ [L31a151 + La1a1 (k™% - A°) + (Lg151 + Ly (k'? - A%)) (k" - A*)
(Lt Lan (K19 A7) (L VI D) (K - 49) (k- A9)] (8 - 42)
+ (A

1 4 m rs 1 2 3
e W "W )FrsFpg) — (L& 2)}

1
W) (W W) (F Ty = (Wom WA = S (W3 W) s2)

1
VW) [ (WP WA L F, +

1
— S WPy W) Fo 4 (AL A2) (F,Fh k2 + (Wi W2 - 1) |

9



and can be checked to satisfy the BRST identities (3.3).

Due to the recursive definition of La131.. 1 care must be taken when discarding BRST-
exact terms when evaluating the OPEs for the next p+ 1 step. For example, if the BRST-
exact term in Lo is kept then it follows that [12]

Loiz1 = [A, (M W?) + VE(ED - A%)] (k2 - A%)
W) [Ag, (kT A7)+ AT = (W W)
512 [(ATWAHVE — (A2WHV] + (s13 + s23) (AW V3, (3.6)

Equation (3.3) implies that after discarding Q(A*W7) from L;; the last line of (3.6) must
be discarded as well, in order for Q@ Lo131 = s12(L31 Vo + Vi L3s) + (s13 + S23) Lo1 V3 continue
to hold. Equivalently, one can consider the expressions in (3.5) as an explicit representation
for composite superfields Ls131.. 1 which satisfy the BRST identities of (3.3).

It is worth mentioning that the BRST-exact terms dropped from Lj;, Ljir; and Ljii
were observed to cancel out in the final superspace expressions for the five- and six-point
computations of [12,13]. This seems natural in view of the requirement that the over-
all amplitude should live in the BRST cohomology like its basic ingredients, the vertex
operators. This will be the main idea to be exploited in the next subsection.

Furthermore, the energy-momentum tensor and the ghost-number current of (2.4) can
be used together with the OPEs of (2.6) to show that the conformal weight A of L1, p1

and its ghost number are given by,
h (L2131mp1) = (k'l —+ -4 k‘n)2 7£ 0, ghost #(L2131___p1) = +1. (37)

This will prove essential to argue that the BRST cohomology for composite superfields it
generically empty.
3.2. Definition of BRST building blocks Ti23.. 4

The definition of a rank-¢ BRST building block Ti23.. 4 follows from two steps

Loiz1..q1 9, Ti23..q A Th23..4 (3.8)

which are designed to remove BRST-exact terms in L2j31..41 and in T 123...¢ While still
preserving the fundamental BRST variation identities (3.3) when the combined redefinition

Lo131..q1 — Th23...q is used in both sides of (3.3).

10



The first step (i) of (3.8) to obtain Tlgg___ql from the composite superfield L2131, .41
depends on all the previous redefinitions of L2131.. 1 with p < ¢ which were made to get the
BRST building blocks Th23.. 5. Its purpose is to absorb the extra terms (in the left-hand
side) when the substitutions L2131, p1 — T123.., are made in the right-hand side of the
BRST variation identity for QL2131.. 41. Therefore the first step (i) ensures that QT123___q

is written in terms of 173, rather than Lai3q. p1,

QT 23 = s12(T13Va 4+ ViTag) + (s13 + s23)T12V3
QTh231 = (514 + S04 + 534)T123Va + (513 + 523) (T12T34 + Ti24V3)
+ 812(T134Vo + T13To4 + T14To3 + V1 To34), (3.9)

and similarly for T123...q with ¢ > 5.

One can check using (3.9) that there are certain specific combinations of T’s which
are BRST-closed, like for example Q(Tlgg + T3y + T, 312) = 0. Furthermore, it was shown in
(3.7) that the composite superfields L2131, p1 (and therefore also Tlggmp) have conformal
weights h # 0, so those combinations must also be BRST-exact — because the cohomology
of @ at ghost-number +1 is non-trivial only at zero conformal weight*.

So the second step (i) of (3.8) will involve searching for sums of Th3.., which are
BRST-closed in order to subtract the corresponding BRST-exact parts from Tlggmq. In
principle these sums can be found by a brute-force analysis of the identities in (3.9), but
in subsection 3.4 a simple diagrammatic method to find all those sums will be presented.
That in turn allows one to obtain the explicit expressions for all ¢ — 1 BRST-exact parts

Ry, of Tias. g

> Tiasq=QR{ . I=1,23,...¢-1, (3.10)

where the ¢ — 1 different sums will involve different label permutations of T123___q with
+ signs, see subsection 3.4 for their precise forms.

The prescription to remove the BRST-exact parts from T 123...¢ — Which completes the
second step (i) of (3.8) — will be explained in subsection 3.5. After doing that, the previous
BRST-closed sums of Tlgg___q become BRST-symmetries of the building blocks T23. 4, i.e.,

> Tigs.q=0. (3.11)

4 We thank Nathan Berkovits for illuminating discussions on this point.
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In summary, the two steps in (3.8) are:
(i) Redefine Loy31..41 — Tlggmq such that QTlggmq is expressed in terms of building
blocks Th23.. , of lower-level p < g.
(ii) Remove the BRST-exact parts of Tlggmq given by (3.10) such that T%93. 4 satisfies the
symmetry properties (3.11).
The composite superfields Ti23.. , defined in this way are the BRST building blocks and
obey the following identities,

QT2 =s512V1Va,
QT123 = (813 + 523)T12V3 + s12(T13V2 + ViTes),

QT1234 = (514 + 524 + 834)T123Va + (813 + 523) (T12T34 + T124V3)

+ s12(T134Vo + T13T24 + T14To3 + ViTo34),
QT12345 = (515 + 825 + 835 + 545)T1234V5 + (514 + 524 + 534) (T1235Va + T123T4s5)

+ (513 + 823) (T1245V3 + T124T35 + T125T34 + T12T345)
+ 512(T1345 V2 + ViTosas + T134T25 + Ti35T2a + T1a5To3
+ T13T45 + T14To35 + T15T534) (3.12)

and so forth. The relations (3.12) can be generalized as follows,

QTz. . = Z Z (s1j+ 825+ -+ 55-15) Tha.j—1,{a} Tj{8,\a}> (3.13)
J=2 a€P(B;)

where 5; = {j+1,...,n}, P(5;) is the powerset of 3; and V; = T;. Furthermore, the first
few BRST symmetries of (3.11) are given by

0 =T + 151,
0 =Ti23 + T231 + 1312,
(3.14)

0 =Ti234 — T1243 + 13412 — T3421,

0 = Ti2345 — T12354 + T12543 — T12453 + Tu5321 — T45312,
where each higher-order building block T723.. 4, inherits all the lower-order identities in
its first ¢ — 1 labels (this can be seen from the recursive definition of Laq31. p1 in (3.1)).
For example, Ti234 not only satisfies the third equation of (3.14) but also the previous

two in the form of T1234 + T2134 = T1234 + T2314 + T3124 = 0. Using the diagrammatic
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method explained below, the following general BRST symmetries for building blocks will
be derived,

p=2n+1: T12...n+1 n+2[...[2n—1[2n,2n+1]]... _2T2n+1...n—|—2 n+1l...[3[21])..]] = 0
[ [ [ 1.1 [ [--.[3[21]]...]] (3.15)

p=2n: Tz pmti].[2n—22n—1,20]]..]] T L2n...nt1n[...[3[21]..]] = O

The notation [i[jk]] means consecutive antisymmetrization of pairs of labels starting from
the outermost label, e.g. [i[jk]|] = 1/2(:[jk] — [jk]i) = 1/4(ijk — ikj — jki + kji)

3.3. Diagrammatic interpretation of Thioes. , building blocks

As discussed in [14], every color-ordered tree-level field theory amplitude can be ar-

ranged into a form which manifests the kinematic poles that appear,

Aya(L,2,.. Ny =Y (3.16)
—~ [, P2,

where the sum is over the set of (2N — 4)!/((N — 1)I(N — 2)!) diagrams with only cubic
vertices, m; represent some kinematic numerator factor and p?“ are the propagators of
each diagram. Using this representation for the N-point amplitudes it was suggested
in [26] that the BRST cohomology of the pure spinor formalism might be enough to fix
the ten-dimensional SYM amplitudes, bypassing the need to perform the o/ — 0 limit
of their corresponding open superstring amplitudes. To that end it is useful to require
that the numerator factors n; have BRST transformations which are proportional to the
Mandelstam invariants associated to their poles, Qn; = > j pij m; for some m;. This makes
sure that each term in @n; cancel one of the poles and different terms can be concocted to
yield an overall BRST-closed amplitude. So in order for the empirical cohomology method
of [26] to work, one needs to have explicit mappings between cubic diagrams and ghost-
number three pure spinor superspace expressions. Although some lower-order examples
were presented in [26], a general solution was still missing. But as it became clear later,
it is better to have mappings between cubic diagrams and ghost-number one composite
superfields; the BRST building blocks. This realization led to the discovery in [1] of a
general recursive method to construct expressions in the cohomology of the BRST charge
with the correct properties of N—point SYM amplitudes. So in this section we describe in
detail the solution of [1] to find the general dictionary between cubic-vertex diagrams and

ghost-number one pure spinor building blocks.
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T [iis]... T [livis)is)... T [[irio)is)ia]... T (1 (liviz)is).. Jin]-..

(b)
Fig. 1 (a) A tail-end cubic diagram with kinematic poles {S; iy, .-, Sijiy...in } COI-

responds to the building block T} 4y...,.... (b) Branches of cubic diagrams and their
associated building blocks. The motivation behind this dictionary lies on the fact that
all kinematic invariants specified by the cubic graphs are present in the BRST variation
of their corresponding building blocks.

The idea to obtain the dictionary is to find the precise sums of building blocks whose
BRST variation contains the same set of Mandelstam variables associated to a particular
cubic diagram. And this problem can be solved by understanding the patterns present in
the BRST variation identities of (3.13).

To see this consider the diagram (a) of Fig. 1 where one leg has been removed and
which contains the set of kinematic poles {si,i,, Siyigigs- - -» Siy...i, ;- From equation (3.13)

one checks that all terms in the BRST variation of T;

vl

Linis..in... cONtain at least one of those

Mandelstam variables without exception, schematically

QT inig..in... — {Sivins Sivigigs -+ Sivinig..in...} (3.17)

where the trailing dots on the labels of the building block correspond to the amputated
part of the diagram. Given this match, we associate the building block of (3.17) to the
cubic graph of Fig. 1 (a).

To find the appropriate BRST building blocks which can be associated with the branches

containing two amputated legs in Fig. 1 (b), note the pattern that certain sums of Th23.. ,

14



2 3

{T123
: T321 — 312

1

Fig. 2 Two different ways to interpret the same diagram give rise to an identity for
Tijk. In the first expression it is viewed as a tail-end graph, while in the second it is
interpreted as a branch.

with different label orderings have a different set of Mandelstam invariants in their BRST
variation. As seen on (3.17), the BRST variation of T;,;,.. ;. contains all elements of the set
{Siyigs Siyiniss - - -» Siy..q, } but antisymmetrization in certain labels replaces some elements

by others, e.g.

Qﬂl...ip[jk]rl...rq — Sjki inStead Of Siliz...ipj
QT iy [j(k))r1...ry — Skis Sjki instead of si, i g, iy ik (3.18)

QT . iy [k[tm]))r1..rq — Slm Skim, Sjkim instead of s, i j, Siy. ipjks Siy.ipjki >

where the two sets of dots in the building blocks correspond to the amputated parts of the
graphs (b) in Fig. 1. The patterns shown in (3.18) therefore justify the general dictionary
given in Fig. 1(b).

3.4. BRST symmetries of building blocks

It is not difficult to use the BRST variations of T123...q in (3.9) to find their BRST-
closed sums for small g by trial and error. Since the cohomology at conformal weight h # 0
is empty, these same BRST-closed combinations of T’s are also BRST-exact. As explained
in the previous subsection, the removal of the BRST-exact parts of Tlggmq gives rise to
the definition of the building block T123. 4 and at the same time the BRST-closed sum of
T’s translates into a symmetry of the associated Tis. (see equation (3.11)). Therefore
it is imperative to find the general BRST-closed sums of T’s, or equivalently, the general
symmetries of T"s.

So in this subsection we use the diagrammatic interpretation of building blocks to
predict the symmetry properties of T1s. , which in turn allow the BRST-exact parts of
Tios. » to be found (see subsection 3.5).

As a first example, consider the diagram of Fig. 2. In the first expression the diagram is

interpreted as a tail-end graph like the one depicted in (a) of Fig. 1 and is associated with

15



1 1 1
2 2 2
3 4 5
4 5 6
B { 2T12(34) B {2T123[45] B { 4T1234[56]]
—2T)3021) 4T54(3[21)] —4T554[3[21]]
1 1
43 2 _ {4T1234[5[67]] 43 2 _ { 811234[5[6[78]]]
> 6 81765[4]3[21]]] 56 7 —8Tg8765(4[3[21]]]
7 8

Fig. 3 Diagrammatic derivation of the BRST symmetries of higher-order building
blocks. The top (bottom) line corresponds to the building block association which
follow from reading the diagram in a counter-clockwise (clockwise) direction.

the building block T123. However, in the second expression the diagram is viewed as a
branch like the first graph of (b) in Fig. 1, where one of the “missing” legs now contains
the label 3 and it is therefore associated with 2T321) = T321 — T312. The fact that both

interpretations have to agree implies the symmetry identity (3.14) for T},
0 = Ti23 — T321 + 1312 = T123 + T231 + T312.

The relative sign between the two viewpoints is fixed by the fact that diagram associated
with T1o. ., catch a (—1)""! sign under inversion (1,2,3,...,n—1,n) < (n,n—1,...,1).
Hence, we have to make sure that the sign of Tj93. , relative to T}, ,,—1,. .21 is (—1)" in
(311), c.g. T123 + (—1>3T321 +.--=0.

This same idea can be used to obtain the BRST symmetries for higher-order building
blocks. For example, the symmetries of Ti23.. , for n =4, 5, 6, 7, 8 are obtained from the
diagrams of Fig. 6,

0 = 271534 + 2T43[21),

0 = 27793145 — 4T547321))5

0 = 4T12314156) + 4T654[3]21]) (3.19)
0 = 4T 234(5(67)] — 817654[3]21]]]>

0 = 8T1234[5(6[78]]] T 818765[4]3[21]]]-
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Using the BRST variations (3.12) we checked up to Ti234567s8 that these relations
are indeed BRST-closed and obtained their explicit BRST-exact parts for up to Tiazas.
The latter was made using the explicit expressions of T 123..p in terms of super Yang—
Mills superfields to find the explicit solutions Rgg%lup of equation (3.10), and that will be
presented in the next section.

To write down the generalization of (3.19) to higher p > 8, let us distinguish between

odd and even ranks for ease of notation:

p=2n+1: T pntint2. [2n—-1 2n,2n+1]]... — 20541, nt2[n+1[...3[21]]..] = 0
+1[n+2[...[ [ +1]]..]] + +2[n+1[...[3[21]]...]] (3'20)

p=2n: T pmti].[2n—22n—1,2n]]..]] T L2n..nt1n[...[321]]..]] = O
The relations for p = 2n + 1 and p = 2n involve 3 - 2"~ ! and 2" terms, respectively.

We should emphasize again that the lower rank identities for T35, carry over to
Tha..p with p > ¢. The last labels ¢ + 1,...,p are then simply left untouched, e.g. 0 =
T(12)345 = Tii231a5 = Th2[34)5 + Tuz21]5 at rank p = 5. By applying the p — 1 symmetries
available at rank p, one can successively move a particular label to the first position, i.e.
express Tj q,..5, as a combination of T1j,j,...5,_,- Hence, there are (p — 1)! independent
rank-p building blocks T;

Lig..ipe
3.5. Explicit construction of Tia.

The definition of the first BRST building block T35 requires only the step (i) in (3.8),
as there are no lower-order redefinitions to take into account in the first step (¢); that is
Tis = Loy. From the BRST variation of T} in (3.3) together with the equations of motion
(2.9) one sees that its symmetric part is BRST-closed; Q(Tgl —|—T12) = s12(V1Vo+VoV7) =0,
and also BRST-exact [26]

Tgl + Tlg = —Q(Al . Az) = —QDlg. (321)

As discussed in (3.11), the definition of the BRST building block T2 must be made to
satisfy Tio 4+ To, = 0. This is accomplished by

_ _
Tio =T =121 + iQDl} (3.22)

The definition of the building block 7723 now proceeds using both steps of (3.8). The

first redefinition Loj31 (—Q Tlgg is found by substituting L;; = T;; = T;; — %QDij in the
right-hand side of QL2131 in (3.3), which leads to:

2
= 512(T13Va + ViTas) + (s13 + s23)T12V5.

1 1
Q (L2131 + 5512 [D13V2 - D23V1} + 5(813 + 823)D12V3)

17



Therefore by defining

- 1 1
Ti23 = Lo131 + 5812 [D13V2 - D23V1} + 5(813 + 823)D12V3, (3~23)

one obtains the desired identity Q725 = s12(T13Ve + ViTas) + (s13 + s23)T12Vs.
Two BRST-closed combinations of 7, ik are easily identified,

Q(Ti23 +To13) =0,  Q(T1a3 + Ts19 + Tha1) = 0, (3.24)

and one can show using SYM equations of motion (2.9) that they originate as the BRST

variation of ghost number zero superfields R§12)3, Rg)?, [13,1]
Tios + To1s = QRYYs,  Tizs + Tz + Tost = QR (3.25)

where R\, = Dyp(k12-43), R, = Dyy(k?- A3) +cyclic(123). The BRST building block
T}o3 is obtained by removing these BRST-exact pieces

1 1

Tio3 = T2z — ngév Sg% = §R§12)3 + gREg]:’,v (3.26)
which implies the following BRST symmetries for Tj;:
Ti93 + To13 = T123 + 1312 + 1231 = 0. (3.27)

The definition of Tis34 is done similarly and uses the information from the lower-order
redefinitions of Lo and Lgy3;. First one rewrites L;; and Lj;x; in terms of T;; and Tjj, in

the RHS of the identity for QQL213141 given in (3.3). After some algebra one finds

. 1
Ti934 = Lo13141 — 1 [(s13 + $23) D12Q D34 + s12 (D13Q Doy + D14QDo3) | (3.28)
1
t3 [(s13 + 523) (D12T34 — D34Th2) + s12 (D13To4 4+ D14To3 — DasTia — D2yThs) |

— (S14 + 824 + 834)%%‘& — (513 + 823)5521‘/3 + 812(5%21‘/1 - S%Z;VQ)
which satisfies the required property of

QTh234 = s12(T134Va + Thi3Toy + T1aTos + ViTass) (3.29)

+ (s13 + 523) (1127534 + T124V3) + (S14 + S24 + 534)T123V5.

18



Using (3.29) it is easy to check that the lower-order identities of Tio3 given by (3.24) are
inherited by the first three labels of T 1234 and that there is one additional BRST identity

involving the fourth label,
Q <T1234 + T2134> =Q <T1234 + T3124 + T2314) =Q <T1234 — T1243 + T3412 - T3421) =0,

in accord with the discussions of section 3.4. Using the SYM equations of motion in a long

sequence of calculations shows that these combinations are indeed BRST-exact,
T Thi3s = QR
1234 + 12134 = QRy534

Tio34 + Ts104 + Th314 = QR%);M (3.30)
Tio34 — T2z + Tha12 — Taa21 = QR@:’A,

where
L pW) 123 44 1
Rygsy = — Rigs(k ) 1512 [D13D2y + D14Das], (3.31)
1

Ri%h, = — R (K2 A% — 1 [s12D23D14 + 523 D24 D13 + s13D34 D12,

Ry = (k' A%)[Dya(k* - A%) — Dis(k® - AY)] — (k% - AY)[Doa(k* - A%) — Doy (k® - AY)]
1

+ ZD12D34(814 + S93 — S13 — 824) + D12 [(k4 . A3>(k2 . A4> — (k?’ . A4)(l€2 . AS)]

+ Dy [(K* - A" (K" - A%) — (k' - A% (kY- AY] + (W W) (W3, WH).

Removing these BRST-exact parts leads to the rank-four BRST building block—which is
accomplished with the second redefinition Ti234 @) T1234,

Tiozs = Tiozs — QS\ahs, (3.32)
where S@M is defined recursively by
2 3 .1 I .a 1 1 1 (3
S§22),4 = ZS§2é4 + Z(S§2213 - :£>4)12 + S:£,4)21) + ZR§2)34

1 2)
2R 12

3Bl (3.33)

1 1 a
Sishs = §R§2)34 + 134°

To see that (3.32) and (3.33) imply the BRST symmetries of

T1234 + To134 = Th234 + T3124 + T2314 = T1234 — T1243 + T3412 — T3421 = 0, (3.34)
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it suffices to check that the following identities hold,

2 2 1
S§22),4 + 5512;4 = R§2)34

2 2 2 2
S§2é4 + S§1)24 + 553)14 = Rg2)34 (3~35)
2 2 2 2 3
S§2é4 - S§2213 + S§4)12 - §4)21 = g2)34-

Following this same procedure for Loy314151 is straightforward but somewhat tedious,
therefore the calculations leading to the explicit superfield expression for the building block
T12345 will be deferred to the Appendix A.

As will be explained in subsection 4.4, the explicit superfield expressions for T;;, Tk,
Tijri and Tjjpim allows one to obtain the expansions of any superstring or field-theory

amplitudes up to N = 11 legs in terms of momenta and polarization [31].

4. Supersymmetric Berends—Giele recursions

In subsection 3.3 we have given a superfield representation in terms of T, . ; for each
color ordered diagram made of cubic vertices with p on-shell external leg and one off-shell
leg. In this section, we combine these diagrams to p+ 1 point field theory amplitudes with
one off-shell leg. These objects were firstly considered in [17] in order to derive recursion
relations for gluon scattering at tree-level and were referred to as “currents”. The pure
spinor supersymmetric analogue of the p-point Berends-Giele current J, will be referred
to as Mia. .

These M., allow for a compact representation of the ten-dimensional N-point SYM
amplitude Ay p/(1,..., N) which nicely exhibits its factorization channels. The recursive
nature of the Berends—Giele currents is inherited by the amplitudes and leads to the

recursive method to compute higher-point SYM amplitudes presented below.

4.1. Construction of Berends—Glele currents Mia3.. p

The Berends-Giele currents Mja3. , are written in terms of building blocks 71723,

and Mandelstam invariants {si2, s123, ..., S123..} and follow from the recursive definition
p—1
Ei23.p = ZMIZ..ij—I—l...p
j=1
QMi2s..p = E123.p, (4.1)

20



2 3 4 3 4 4
S123 5234
Migzs = >JJ; + cee
512 S123 S1234 523 51234 534 51234
1 2 1 3 2 1
3 4 2 3
: | 5234 \ 512 534 /
523 51234 / I 81234 \
2 1 1 ' 4

1 T T T T: 2T
. ( 1234 fa21a faaz | dsaa 12[34])

51234 \ 8125123 §235123 5345234 5235234 512834

Fig. 4 Diagrammatic construction of the Berends—Giele current Mj234 in terms of the
cubic graphs of the five-point amplitude with one leg off-shell.

where M; = V;. Although the defining system (4.1) is purely algebraic, it can be conve-
niently solved with the recourse of a diagrammatic interpretation for M;ja3. ). To see this,
the current Mia3. , is first associated to the sum of (2p — 2)!/(p!(p — 1)!) cubic graphs
which enter the p + 1 amplitude where the leg p + 1 is put off-shell. Using the dictionary
of subsection 3.3 each one of these cubic graphs can be written in terms of building blocks
Ti93.., and their relative signs are fixed by requiring the system (4.1) to be satisfied. For
example, using the cubic graphs for the three- and four-point amplitudes the currents Mo

and Mio3 are interpreted as
2

2 3 3
512 523
1 2 1

while Mio34 is associated to the graphs of the color-ordered five-point amplitude shown
in Fig. 4. Under the dictionary of subsection 3.3 these graphs correspond to the following

expressions in terms of building blocks

T2 1 (Tias  T321
My = —, Moz = + , (4.2)
512 5123 \ S12 523
1 T1234 T3214 T3421 T3941 2T 2(34
Mia34 = + + + + [34)
§1234 \ S125123 5235123 5345234 5235234 $12534
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where their signs can be fixed by requiring that they form a solution of (4.1). To see this
one uses the BRST variations (3.13) to obtain

QMg = V1 Vo = M1 Mo,
ViTos — T12V3

QM3 = + = M1 Ms3 + Mi2Ms3,
523 S12
Vi /T T. TioT: T T: V,
OMygss = 1 ( 234 i 432) i 12434 n ( 123 i 321) 4
S234 \ S23 S34 512534 512 523 / 8123
= M1 Mazq + Mo Mzs + Moz My (4.3)

and therefore the expressions for Mio, Mi23 and Mis34 given above form a solution of the
system (4.1) up to this order. Using this method it is straightforward to obtain higher-
point currents, and the explicit expressions of currents up to Mi234567 Will be given in the
Appendix B.

Therefore by using the diagrammatic interpretation of Mi23.., in terms of the p 41
amplitude with one leg off-shell one is able to efficiently construct any higher-order current
in terms of building blocks. However, in the later section 5.2 we will derive a formula for
Miss.., in terms of the field-theory limit o’ — 0 of hypergeometric integrals occurring
in a p + 2 point string theory amplitude. This allows for a direct computation of M. ,,
therefore bypassing the need to draw the cubic diagrams of the (p+1)-point SYM amplitude
to find their corresponding building blocks.

Note that (4.1) can be written as

p—1
QMiz. p = ZMlz...ij+1...p (4.4)
=1

and therefore one can interpret the action of @) as cutting M, ., in each way compatible
with the color ordering, see Fig. 5. Furthermore, equation (4.4) is the supersymmetric
pure spinor analogue of the recursive construction of the Berends—Giele gluon currents in

[17], whose schematic form is

n—1 n—2 n-—1
Jy ~ 1 (Z Ty T + Z Z Jka_mJn_k> . (4.5)

$12..n m=1 m=1k=m+1

The cubic term in the lower order currents represents the four gluon vertex in the QCD
action. It does not enter into our supersymmetric version (4.4) which encompasses dia-
grams with cubic vertices only. After multiplying the external propagator 1/s12. ., to the

left hand side of (4.5) one could symbolically reproduce (4.4) by identifying s12. ., = Q.
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Fig. 5 Decomposition of Mjz.. , into its factorization channels under the action of the
pure spinor BRST charge; QMi2..., = Zf;ll M. jMji1. p.

4.2. Symmetry properties of Mia.

As a further motivation for identifying M. , with supersymmetric Berends-Giele
currents, we discuss their symmetry properties in this subsection. First of all, M5 trivially
satisfies M12 + M1 = 0 because the building block T;; is antisymmetric. Similar identities
hold for Mis3

Mias + Mazy + Mz12 =0, Mia3 — M321 = 0, (4.6)

as one can easily check by plugging in the expression for M;;; given in (4.2).

At higher n > 4, this generalizes as follows:

Z Ma(1,2,...,n) =0. (47)

The proof of these identities is most conveniently carried out on the level of the correspond-
ing Fho. n=QMis. , = Z;:ll Mo, yMpi1.. . Since all the BRST closed components of
the M5 ., have been removed by construction of its 7o, constituents, the BRST vari-
ation Fio. , contains all information on the symmetry properties of its M5, ancestor.
The reflection identity can be easily checked by induction, and the vanishing cyclic sum

follows from

n—1
Z Ea(l,Q,...,n) = Z Z Ma(l,Q,...,p)Ma(p—i—l,...,n)

o€Ecyclic o€Ecyclic p=1

_ (4.8)
- Z Z 5(Ma-(1727'"’p)Ma—(p_'_l?"'?n) + Mg(p+17'"7n)Ma—(1727""p)) = O

o€Ecyclic p=1
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where the last step exploits the overall cyclic sum to shift all labels of the second term
by p and that the M, , anticommute.

The properties (4.7) are shared by the n-gluon Berends-Giele currents .J,, of [17]
and can be naturally explained by the construction of currents M3, ., as (n + 1)-point
amplitudes with one off-shell leg. Inspired by this explanation, we explicitly checked using
the expressions of Appendix B that M5, for n < 7 also satisfy an additional relation —

obtained by removing the (n + 1)-th leg from the (n + 1)-point Kleiss-Kuijf identity [33]:

Mgy iqap= (=)™ > M. (4.9)
o € OP({a},{BT})
The summation range OP({a}, {87}) denotes the set of all the permutations of {a} J{sT}
that maintain the order of the individual elements of both sets {a} and {37 }. The notation
{BT} represents the set {8} with reversed ordering of its ng elements. The Kleiss-Kuijf
identity is well known to reduce the number of independent color ordered n + 1 point
amplitudes down to (n —1)!.

The specialization of (4.9) to sets {$} with one element only, say {#} = {n}, re-
produces the second property of (4.7). However, this so-called dual Ward identity or
photon decoupling identity by itself is not sufficient for a reduction to (n—1)! independent
M;,;,..i. atn >6[33]. Since there are only (n—1)! independent T;,;, ;. which constitute
the M;,i,. i, , also the latter must have a basis of no more than (n — 1)! elements. This
suggests the Kleiss-Kuijf identity (4.9) to hold beyond our checks for n < 7.

The reflection- and Kleiss-Kuijf identity for the M5  , are inherited from their as-
sociated n + 1 point amplitudes with one leg off-shell. The off-shellness of one leg is
no obstruction for the aforementioned identities to hold because they do not involve any

kinematic factors. However, the field theory version of the monodromy relations [15,16]

s12 Ay m(2,1,3,...,N) + (s12 + s13) Ay m(2,3,1,. .. ,N) + - -

(4.10)
+ (812 + '"+81’N_1)AYM(2,3,...,N— 1,1,N) =0

rely on having on-shell momenta, so the Mj,  , do not obey any analogue of (4.10) and

cannot be reduced to (n — 2)! independent permutations.
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4.3. The N—point field-theory tree amplitude

The expressions found for QM;is.., = Ei2.., might look familiar from lower order field

theory amplitudes such as
Aym(1,2,3) = (Vi Vi) = (E12V3)

\ZWE Tio Ve
AYM(1,2,3,4)=<< 1 23+ 12V3
523 S12

(4.11)

) Vi) = (Ei23Va)

From QV = 0, one might naively expect that the three-point amplitude would be BRST-
exact, A(1,2,3) = (Q(T12V3/s12)), and thus doomed to vanish. However, all Mandelstam
invariants s;; vanish in the momentum phase space of three massless particles — therefore
writing V4 Vo = Q(T12/12) is not allowed and BRST triviality of the amplitude is avoided.

More generally, the prefactor Mz, , ~ 1/s12.., in the p point current is incompatible
with putting the external state with k,41 = —Y_»_ k; on-shell kp-l-l = 0. Since N particle
kinematics forbids the existence of Mys  n_1, the corresponding Fq5. ny_1 is not BRST
exact. Hence, the following expression for the N-—point field theory amplitude is in the

cohomology of the pure spinor BRST charge®[1]
N—2
Aym(1,2,...,N) = (Ei2. N1 VN) = Z (M. ;M1 . N—1VN). (4.12)
j=1

The diagrammatic representation of Zf;i Mis.. jMjy1. p in Fig. 5 can be uplifted to the
on-shell N = p + 1 point amplitude Ay ;(1,..., N) where an additional cubic vertex
connects the N** leg with the two currents of rank j and N — 1 — j, respectively.

The N—point formula (4.12) is analogous to the Berends—Giele formula for the color ordered
N gluon amplitude of [17]. The latter is written as a product of a rank N — 1 current
Jn_1 and another J; for the NP leg, multiplied by the Mandelstam factor si2. y_1 to
cancel the divergent propagator; Ay = s12. nv—1J(1,..., N — 1) J(N). In our case, the
somewhat artificial object s12. ny_1Jn_1 is replaced by Ei2. n_1, which could be written
as QMio. N1 in a larger momentum phase space. Therefore this parallel also suggests

the schematic identification s12. ny—1 — @ mentioned after (4.5).

5 It is interesting to note that the cohomology formula (4.12) together with the property of
Entm-1).1 = (—1)"_1E12,.,n (which follows from (4.7)) imply that if the amplitude satisfies the
reflection property of A(n,n—1,...,1) = (=1)"A(1,2,...,n) then it is also cyclically symmetric,
A(2,3,...,n,1) = A(1,2,...,n).
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Vi
1 N -1

Fig. 6 Berends—Giele decomposition of Ay s according to the pure spinor cohomology
formula (4.12).

4.4. BRST integration by parts and cyclic symmetry

The strength of our presentation (4.12) of the N—point field theory amplitude is the
manifestation of its factorization properties. But singling out a particular leg Vi obscures
the cyclic symmetry required for color stripped amplitudes. The essential tool to restore

manifest cyclicity is BRST integration by parts,
(M., Ej .. 5,) = (Eiy.i, Mj, .4, ) (4.13)

Using the definition of Ej93. , in (4.1) it follows that,
N-2
Eio. Nn-1VN = Ea3. . nV1 + Z (Miz. jEj41.8 — Er2. jMji1..n), (4.14)
=2

therefore (F12. ny—1VN) = (Fas.. nV1) and the N—point subamplitude (4.12) is cyclically
invariant. However, to obtain a formula with manifest cyclic symmetry one needs to
explicitly use BRST integration by parts in (4.12). And as a byproduct of that, the
maximum rank of the Berends—Giele currents needed for the N—point amplitude is reduced.
To see this, note that the term containing the maximum rank of M;,
N-point amplitude (4.12) is p = N — 2 and has the form (M;
the use of (4.14) leads to

..i, appearing in the

Vin_1Vn), therefore

1...IN—2

<Mi1...iN_2‘/’rL'N_1VN> = <Mi1...iN_2QMiN_1N> = <Ei1...iN_2MiN_1N>7 (415)

so the BRST integration reduced the maximum rank to p = N — 3 (because E15. (nv_2)

contains at most My n—3). It turns out that the cohomology formula (4.12) allows enough
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BRST integration by parts as to reduce the maximum rank of the currents to p = [N/2],

leading to manifestly cyclic-symmetric amplitudes

Ayar(1,2,...,5) = (M1sVsMys) + cyclic(12345)

1 1

.Ay]v[(l, 2, ceey 6) = §<M12M34M56> —|— §<M123E456> + CyC11C<123456) (4 16)

.AYM(l, 2, ceey 7) = <M123M45M67> + <‘/1M234M567> -l- CyChC(1234567>

1 .
.AYM(l, 2, cevy 8) = <M123M456M78> + —<M1234E5678> + CyCllC(12345678)

2
The fractional prefactors % or % compensate for the fact that cyclic orbits for particularly
symmetric superfield kinematics are shorter than the number N of legs. At N = 6,

for instance, MioMs34Ms6 has just one distinct cyclic image Moz Mys Mg, hence the full

cyclic(123456) overcounts the occurring diagrams by a factor of three.

4.5. Factorization in cyclically symmetric form

In this subsection, we introduce a cyclically symmetric presentation of SYM am-
plitudes where their factorization into two Berends—Giele currents becomes even more
obvious.

One can check by evaluating the BRST variations that the amplitudes in (4.16) can

be equivalently written as

Ayar(1,2, ... 4) = %(MHQM34> + eyclic(1234)
Ayar(1,2,...,5) = i( (M12QMyas) + (M125QMis) ) + eyclie(12345)
Aym(1,2,...,6) = %( (M12QMsy56) + (M123Q Myse) + <M1234QM56>> + cyclic(123456)
Aym(1,2,...,7) = %( (M12QMsase7) + (M123Q Maser) + (M1234Q Mser)

+ (Mi2315QMe7) ) + cyclic(1234567) (4.17)
Aym(1,2,...,8) = % <<M12QM345678> + (M123Q Mase7s) + (M1234Q Mse7s)

+ (Mi2345Q Mers) + <M123456QM78>> + cyclic(12345678)

Note that some terms in the formulse are naively overcounted by a factor of 2 because

the cyclic orbits of (M1 ;QM;i1.. n) and (Mia. n—jQMnN_j4+1...~) are the same. The
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Jj+1
J+2

v + cyclic(1...N)

Fig. 7 Cyclic factorization of the N—point field-theory amplitude Ay (1,2,...,N)
into different Berends—Giele partitions according to equation (4.18).

purpose of including both of them is to obtain a uniform overall coefficient in (4.17) and
to simplify the transition to the general N—point formula,

N—2
> Mz ;@M. n) + cyclic(1...N) (4.18)

=2

1

AYM(LQ,---,N):m

whose graphical representation is shown in Fig. 7. We have explicitly checked up to N = 10
points that the formula (4.18) exactly reproduces the expression Ay = (F12.. ny—1VN) of
[1], including prefactors.

The factorization formula (4.18) can also be interpreted as coming from the factoriza-
tion channels of two amplitudes with one leg x off-shell each with the form (E45. ;V,) and
(VyEj+1..n) that are connected by a pure spinor propagator which effectively replaces®
Ve Ve — %, resulting in

N-2
.AYM<1,2, ceey N) Z E12 .J Q +1 N> + cychc(l N)
Jj=2
1 N—-2
- 2(N —3) (Mia. jQM; 1. )+ cyclic(1...N)
j=2

which reproduces the formula (4.18).

5. The superstring tree amplitude in pure spinor superspace

This section derives our central result (5.22) for the superstring N point tree amplitude

of the massless gauge multiplet. The BRST building blocks T2, and their combinations

6 CM thanks Nathan Berkovits for suggesting back in 2006 how one could view an operation

like V Vo — % as possibly being related to a massless propagator in pure spinor superspace.
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to form supersymmetric Berends-Giele currents M5, turn out to be very efficient book-
keeping devices to handle the kinematic structures of a superstring amplitude in a universal
way, i.e. for any number N of external legs.

According to the tree level prescription (2.12), the task in computing superstring

amplitudes in the canonical color ordering (1,2, ..., N) is to evaluate the CFT correlator
N-2
11 /dzj(Vl(O)VUV—U(1)VN(oo)U2(z2)U3(z3) UMD (2n ) (5.1)
j=2

integrated over z1 = 0 < 29 < --- < zy_o < zy_1 = 1. We will first of all give a
representation of (5.1) in terms of (N — 2)! different z; polynomials in the integrand.
Then, performing manipulations on the level of both the building blocks and the associated
integrals reduces the number of distinct integrals to (N — 3)! each of which multiplies a

full-fledged SYM amplitude (4.12) in a color ordering specific to the integral.

5.1. The CFT correlator

Since the conformal A = 1 primaries [00, 11", d,, N™"] within the integrated vertex
do not have zero modes at tree level, the correlator (5.1) can be computed by summing all
their OPE singularities. Generically, this gives rise to a set of (N —2)! worldsheet functions
where all the z;; appear as single poles, and additionally to a set of double pole integrands

~ zijz. It has been observed in [13] that the role of the double pole integrals is to correct
the numerators of the (N — 2)! single pole integrals such that any OPE residue L. 1
is transformed to the associated BRST building block Tj;.. ;. This is the consequence of
a subtle interplay between the integrals along the lines of subsection 5.4, in particular the
tachyon poles due to double pole integrals are cancelled by the superfield kinematics in a
highly nontrivial way.

A Dbit of care is needed to reduce the single pole residue among two integrated vertices
Ui(zi)Uj(zj) to the more basic L. ;; superfields which appear when UiUk .. .U succes-
sively approach an unintegrated vertex V*. The required manipulations are based on the
independence of correlation functions on the order of integrating out the h = 1 fields [12].

The relations up to the six point case can be found in [12,13],

L — L 2L
V1<Z1)U2(Z2)U3<Z3) ~ 3121 2131 —. [31,21]
223231 223231
L13121 — La12131 + L213141 — L312141 4L 41,[31,21
VI (21)U2(22) U (23) U (24) ~ Py =: 22[3Z?f4z4l”,
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we are picking out one particular residue here when the arguments approach each other in
the order zo — 23 — 27 and zo — 23 — z4 — 21, respectively. This order is reflected in
the specific z;; in the denominator.

Higher order analogues of (5.2) involve nested antisymmetrizations:

8L(51,[41,[31,21]]]

V1 (20)U? (22)U? (23) U (24)U° (25) ~
( 1) ( 2) ( 3) ( 4> ( 5) 293234245251

- (5.3)
2P 2L[pl,[(p—1)1,[...,[41,[31,21]]...]]]

V1)U (22)U° (23) - - UP () ~

223234 ° " Zp—1,pRpl
When all the single pole numerators are reduced to Lj;x;...;; and the double pole corrections

are absorbed into Lj;ki.. ;s — Tijk...1, the integrated correlator (5.1) assumes a manifestly

symmetric form in the labels 2,3,..., N — 2 of the U’ vertices
N—2
[T [ @tV VD@V o) U(e) U aa) - UN 2 ep) (5.4)
j=2

N-2 N-2
. Tio. pTN—1,N=2,.. p+1VN
= dz; H |le| J g
5 - (2122‘23 :

: 'Zp—1,p)(ZN—1,N—2ZN—2,N—3 - 'Zp+2,p+1)
+ 73(2,3,...,N—2)>,

where P(2,3,..., N — 2) denotes a symmetric sum over the (N — 3)! permutations of the

labels (2,3,...,N—2). The z;; polynomials associated with a specific BRST building block

Tij,jo...j, follow an intriguing pattern (where the first label i belongs to an unintegrated

vertex V1 or V1 and the remaining ones to the integrated vertices j € {2,3,..., N—2}):
1

Tijljz---jp = ey . ) (5'5)
1317313277273 Jp—1:Jp

Since there are (N — 3)! permutations of the (2,3,..., N —2) labels and the p sum collects
(N —2) distinct permutation orbits, (5.4) yields an expression for the N—point superstring

amplitude (2.12) in terms of (N — 2)! kinematic numerators and hypergeometric integrals,

N—2
Ay = A(1,2,...,N) = /deH|Zz‘j|_8”
Jj=2 i<j
— T2 pIN—1N—2, . . p+1VN
Z< et +7>(2,...,N—2)>. (5.6)
(212223 e Zp—l,p)(ZN—LN_Q st Zp+2,p-‘,—1)

p=1

The cases N =5 and N = 6 of (5.6) reproduce the formulee obtained in [13,26] and (5.6)
has also been used in [34] to obtain (via the field-theory limit o’ — 0) local expressions
for all (2N — 5)!! kinematic numerators entering the field-theory N—point amplitude which
manifestly satisfy all BCJ numerator identities [14].
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5.2. A closed formula for M., from the superstring

In this subsection we will show that the result (5.6) for the N-point superstring
amplitude allows to extract a closed formula for the Berends-Giele current Mjs . The
psum in (5.6) partitions the legs 2, 3,..., N—2 into two groups — one of them gets connected
to leg 1, the other to leg N — 1. The same structure is also present in the cohomology
formula (4.12) for the field-theory amplitude; AgM = Zév:_f (Mia. pMpi1. N—1VN).

Since the kinematic factors within individual terms of the p sum are linearly indepen-
dent, we can directly compare the p = N — 2 term on both sides of Ay O/—_>>O AN, — with

the string- and field-theory amplitudes given respectively by (5.6) and (4.12):

An = (20/)N-3 gy —oa's;: ) Ti2. . N—2VN-1VN
N = (2d) H deH|Zij| ! + P2,....N—=2)+---
j=2

iy 212423 """ ZN—-3,N—2
1<)

a0 (Myo, N—2VN_1VN) + -+ (5.7)

This yields a closed-formula solution for the rank p = N — 2 current Mz,

P 1 p+1 ) Ty,
M12...p = lim (20/)12—1 H/ de H ‘Zij‘_za % ( L + P<2737 cee 7p)) ’
j=27%i-1

a’—0 i< 212223 """ Zp—1,p
(5.8)
where z; = 0 and 2,41 = 1 as customary for a (p 4+ 2)—point amplitude. For example,
using the momentum expansion of the five-point superstring integrals [5] and the BRST

symmetry Tia3 + Tos1 + T312 = 0 of (3.14) the following M3 is generated

2 ! ! 2 20/ T123 T132
Mi93 = lim (24/ P e
123 a}go( a') /0 dzo /z2 dzs H |2ij] ( + )

- 212723 213%32
1<)

T123 T123 T132 T123 T391
S§125123 5235123 5235123 S$125123 5235123

which is easily shown to satisfy QQMi23 = FE123. Similarly, we checked that the formula
(5.8) correctly generates solutions of (4.4) up to and including Mj234567-
5.8. Trading Tha.. p for Mia.

As will be shown in the next subsections, in order to simplify even further the expres-
sion (5.6) of the superstring N—point amplitude it will be convenient to trade the BRST
building blocks 15, , for the Berends—Giele currents Mg, .
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This exchange will be possible because of the particular pattern (5.5) of z;; dependence
along with the T3 ,. The lowest order example of T <+ M conversion is a triviality
% = %M 12, but already the simplest generalization is a result of partial fraction relations

and the symmetry properties of Tj;y:

S12 [ S13 523
__<_+

)M123 + P(2,3). (5.10)
212723 Z12 \ 213 %23

Similar identities have been checked at p = 4 and p = 5 level:

T s S S S S s
1L p(2,3,4) =2 (ﬁ-l—ﬁ) (ﬁ-l-ﬁ-l-ﬁ) Miaz4 + P(2,3,4)

212723234 212 \ %13 223 214 224 234
T'12345 S12 [ S13 S23 S14 §24 S$34
—=— + P(2,345) =" (—+= ) —+=+—=
212723234245 212 \ %13 223 214 224 234

s s s s
(ﬂ 223y ﬂ) Miazas + P(2,3,4,5). (5.11)
215 Z25 235 245

These identities heavily rely on the interplay of different terms in the permutation sum
and on the symmetry properties (3.20) of the BRST building blocks which leave no more
than (p — 1)! independent permutations of T;, . ;, at level p.

The natural n point generalization of (5.10) and (5.11) reads as follows:

To... p k-l Sk
. + P H —M12 » + P2,...,p)
s Ay k=2 m=1
T N-2 _
N-LN-2.p%l 4 p H Z Sy Y Noet (5.12)
ZN-1,N—2 """ Zpt2.p+l b o1 Znk
Skn
+ P H Z p+1p4+2,...N—1 + P(2,...,p),

k=p+1n= k+1 kn

where in the last line the rank N — 1 — p Berends—Giele current with leg N — 1 involved

was reflected via (4.7); My_1,.. p+1 = (—1)N P 2Mpi1, N1

5.4. Worldsheet integration by parts

This subsection focuses on the integrals rather than the kinematic factors in the su-
perstring amplitude. The chain of zﬁ sums which appears as a result of (5.12) when all
the Ti2.. ), are converted to Mis. ), is particularly suitable to perform integration by parts
with respect to z; variables. Further details on the structure and manipulations of the

integrals can be found in [2].
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The key idea is the vanishing of boundary terms in the worldsheet integrals:

0 Ilicjlzisl ™
/dzj.--/dzN_g T =J = 0. (5.13)

i11 " " RiN—4iN—4

This identity provides relations between the integrals in an N—point superstring ampli-
tude with IV — 3 powers of z;; in the denominator. They become particularly easy if the
differentiation variable zj does not appear in the denominator (i.e. if k ¢ {i;, j;}) because

W only hits the [, |zmk|™** factor in that case:

1< ‘Zij‘_Sij s Smk
/dzz /dzN_ J o= (5.14)
Zirgr

"RiN_4fN—4 o=y Pmk
m#k

This can be directly applied to the integrands on the right hand side of (5.10), (5.11) and
(5.12), namely:

3

—s;; 512 [ 513 523 —s,. 512 834
H/dZaH\zw\ S E) R VR (B
- 212 \ %13 223 212 %34
= 1<j 1<J
1 S S S

_ 3 1 24 34
[T [ Tl =22 (2252 (2 o)
=2 i< 212 213 223 214 224 234

(5.15)

S14 S24 534 S15 S25 S35 S45
—+ = —)<—+—+—+—)
<14 <24 <34 <15 225 <35 245

4
—s;; 912 545
- H dzj H |2i5] 7% —
5 5 212 245
j=2 1<J
> S1 S
_g.. 512 23
[T [ dz [Tl 22 (22 + 22
" 212 \ %13 223
Jj=2 1<J
> . S12 8 S S S S
512 556 13 23 45 46
:H/dzjﬂpm ( +—) (—+—)
Jj=2

212 %56 213 223 245 246
1<

In the general N point case, it is most economic to leave the first [IV/2] — 1 factors of

Zk__l Smk a3 they are, and to integrate the remaining [(IN — 3)/2] such factors by parts:

m=1 z
N-2 . ) . .
dz TT 12 &Jw<_ﬁhﬁ)”(¢ﬂﬁ+”_%wawa)
jl;[2 / : E| o “12 \#13 223 Z1,N—2 ZN-1,N—2
e S S S S
SIS (£+ﬁ) (M++M)
j=2 i<j Z12 \%13 223 #1,IN/2] 2[N/2]—1,[N/2]
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y (S[N/z ]+1,[N/2]+2 TR S[N/2]+1,N—1) <3N—3,N—2 4 3N—3,N—1) SN—-2,N—1
Z[N/2]41,[N/2]+2 Z[N/2]4+1,N-1 ZN-3,N-2 ZN-3,N-1/) ZN-2,N-1
[N/2] k—1 N-2
H / ds [Tl | TT X2 22 ) | 11 Z (5.16)
j=2 i<j k=2 me1 ~ k=[N/2]+1n= k:—|—1 kn

In contrast to the T2, — Mi2. , reshuffling identities from the previous subsection,

(5.15) and (5.16) are valid before summing over permutations of (2,3,..., N — 2).

5.5. The complete N —point superstring disk amplitude

This subsection completes the derivation of the striking result (5.22) for the super-
string N—point amplitude Ay = A(1,2,..., N) by combining the results of the previous
subsections. Let us first look at the four-, five- and six-point examples to get a better
feeling of the mechanisms at work.

After using T;; = s;;M;;, the total derivative relation % — % as well as Fio3 =

Mi15V3 4+ Vi Msg, the four-point open string disk amplitude is easily seen to be

T12VaVy  ViT35V.
A4:/dZ2H|ZU| sij < 12VaVa | Vidso 4>

Z
i<j 32

_s.. /S S
:/dZQH\Zz'j\ Y <£M12V3V4+§V1M23‘Q>

i<j
/dZ2H|ZzJ| T — (M12V3+V1M23 )Va)

1<)

/dz2H|z, | =i —.AYM(l 2,3,4).
i<j

Similarly, the five-point superstring amplitude (5.6) contains six different integrands and
kinematic terms. After applying (5.10), the T;; and Tjj; conspire to give M;; and M,
with modified integrals, then we use integration by parts according to (5.15) on the way
to the third equality of (5.18). Remarkably, many of the initially (N — 2)! = 6 distinct
integrals now coincide: The three kinematic terms My93V4 V5, M15M34V5 and Vi Moz, Vs are
multiplied by the same integral after partial integration, the same is true for the (2 < 3)
permutation. That is why we can identify color ordered field-theory amplitudes (4.12) in
the last line:

TioaVaVs  TioTusVs  ViTusaVi
Asz/dzzd:/:gH\zm\_ 1237475 | 112743V5 | V1943275 4 (9 o, 3)
i<j 212723 212243 243732
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_s.. /] S12 [ S13 523 $12534

S

- /dz2d23H EF I <— <— + = | Mi2sViyVs + M2 M34V5
i<j 212 \ %13 223 212234

S S S
L 813 (ﬁ N ﬁ) VM Vs 4+ (2 65 3)> (5.18)
243 242 232

] 8128
— /d22d23 H | 235 %% { 1274 (M123VaVs + Mo M3, Vs + ViMa3aVs) + (2 < 3)}

Z12%
i<j 12+<34

- S128 S13S
= / dzadzs | | |2 {;2234AYM<1,2,3,4, 5)+ o Aya(1,3,2,4, 5>}
i< 12<34 13424

Simplifying the six-point amplitudes Ag follows similar steps. In this case, (5.11) takes

care of the conversion of T}z, into M;;y;, then integration by parts makes the four integrals

within a given (2, 3,4) permutation coincide:

4
Ag = H/dzj [T 12517
j=2

Tio3aVsVe | TiosTsaVe . TioTsasVe  ViTsazVe
<123456+ 123546+ 125436+154326+P<2,3,4)>

i 212723234 212223754 212754743 254743732
! s s s s s s
_e.. /812 (513 23 14 24 34
- H /dzj H BT <— <— + —> <— +—+ —) Mi234V5 Vs
L. L4 z12 \ Z13 223 214 Zoa 234
Jj=2 1<J
s12 (813 S23\ S45 512 S45 [ S34 S35
+—== (— + —) —Mi23My5Ve + — — <— + —) Mo Ms43Vs
Z12 \Z13 %23/ 745 212 Z45 \ %34 235

S S S S S S
+22 (i“ - ﬁ) (ﬁ + =4+ ﬁ) ViMsaa:Vs + P(2, 3,4)>
%45 \ %34 <35 <52 242 <32

4
(512545 (S s
= H /dzj H |25 7% {ﬁ (ﬁ + ﬁ) (M1234V5 Ve + M123Mys5 Ve
Jj=2

i 212245 \ 213 223
+ M1oMsysVe + ViMasas Vs) + P(2, 374)} (5.19)
4
11 [ =11 Izijl‘%{% (Sﬁ + Sﬁ) Avui(1,2,3,4,5,6) + P<2,3,4)}
=2 i< 212245 \ 213 223

The identities (5.11) and (5.15) are sufficient to also reduce the superstring seven-point

amplitude A7 to its field-theory constituents:

5
Ar = H/deH\Zz'j\_s”
j=2

1<

<T12345V6V7 n T1234T65V7 n Th23T654V7
2127293234245 212223734765 212223265254

T15Te543 V- W T \Z
i 1246543 V7 i 1465432 V7 i 77(2,3,4, 5)>
212265254243 265254243232

5
_s.. ) S12S856 [ S13 523 S45 S46
= dz: i T —— [ — = — 4+ — A 1,2,3,4,5,6,7
1:[2/ ng‘zj‘ {2122‘56 <213+223) (245+Z46) YM( )

J

35



+ P(2,3,4, 5)}. (5.20)

The N-point generalization is based on introducing currents M;,;,. ;, via (5.12) followed
by integration by parts using (5.16). The latter makes the integral independent on p

such that the z;; can be placed outside the p sum and SYM amplitudes emerge from the

kinematics.

N-2 N-2
si Tio.p Tn_1,N=2,.. pr1VN
Anv =11 [ dz ] Iz
! ¢ 2‘122‘23"'2 -1 )(ZN—1 N—2"'""Zp+2 +1)
j=2 i<j p=1 p—L1,p ) pTap
+ P(2,3, ,N—2)>

N-2

N-2 N-1

Skn
X H Z i p+1,...N—2,N—1 | VN + 73(2,3,---,N—2)>

k=p+1n=k+1 n

N-—2 [N/2] k—1 s N—2 s
Sij mk Skn
T et (TS ) (T X
J=2 i<j k=2 m=1 "~ k=[N/2]+1n= 1 hn
N—-2
X M12 .p p—|—1 .N—2,N— 1VN> + P(2,3,,N—2)}
p=1
N-2 [N/2] k-1 s N-2 N-1 s
Sij mk “kn
[es e (11X 2 :
j=2 i<j =1 #mk k=[N/2]+1n=k+1 “F"
X Ay (1,2,3,...,N—1,N) + 73(2,3,...,N—2)}. (5.21)

Equivalently, by undoing the total derivative relation used in (5.21) the full N—point su-

perstring amplitude becomes

N—-2 k-1
.AN: / H|ZU| SZJ{H ZMAYM 2 ~7N)+P(27"'7N_2)}7 (522)
1<j k=2 m=1

2 <Zi41

where the integration region fz <z = H;v:—22 le_l dz; is responsible for dictating which
color-ordered string subamplitude is being computed. Therefore the end result of all these
pure spinor superspace manipulations is that the N—point superstring disk amplitude is

written in terms of the explicit sum of (/N — 3)! basis of field-theory amplitudes multiplied
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by an equal number of hypergeometric integrals, as mentioned in the Introduction and
further elaborated in [2].
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Appendix A. The explicit construction of 175345

In order to find the appropriate redefinition of Ls1314151 leading to T 12345 one simply
uses the known redefinitions of [La1, Lo1s1, Lo1s141] — [T12, Th23, T1234] in the right-hand
side of (3.3). Even though it is not obvious, all terms from these lower-order redefinitions
group together into a BRST-exact combination which can be moved to the left-hand side
of (3.3). Doing that finally leads to the definition of Ti2345, given by

Th2345 = L21314151

1
- 1(813 + $23) [D12D34 Vs (835 + $45) + D12D35Vassq — D12Das Vs34

- 3812 [D13D24V5(825 + 845) + D14 Da3Vs(s25 + 835) + D15D23Va(S24 + 534)
+ 524(D13D25Vy — D13D45V2) + 513(D34 D25 V1 + D35 Doy V1)

+ 523(D14D25V3 — D14 D35V + D15D24V3 — D15 D34 Vo) + 814D45D23V1]

— (515 + 595 + 535 + 545)S\ana Vs — (514 + 524 + 534) (5&3[/54 + SS%,E,VQ

— (813 + s23) <5§§21L53 + S5hLas — SSE Loy + 5@15‘/3)

— 512 [SgiLsz + SighLaz + S{Las + S{HsVa — (1 2)]

- % [T123D45(814 + 524 + 834) + (Th125 D34 — T345 D12 + T124D35) (513 + 523)

+ s12(T134Da5 + T135D24 + T145 D23 — (1 <> 2))} (A.1)
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which, by construction, is guaranteed to satisfy

QTi2345 = + (s15 + S25 + 835 + 845)T1234V5 + (S14 + S24 + 534) (T1235Va + Ti23Tu5)
+ (513 + 823)(T1245V3 + T124T35 + T125T34 + T12T345)
+ s12(T1345V2 + ViTosas + T13aTos + T135T24 + T1a5T23
+ T13To45 + T14T35 + T15T034). (A.2)

One can also show that”

T12345 + T21345 QR12345,
T12345 + T23145 + T31245 :QR12345, (A.3)
Ti2345 — Ti2435 + Tsa125 — Tha215 —QR12345,

Tio345 — Ti2354 + Tus123 — Tuso13 — Tussi2 + Tasson ZQR12345

where the BRST-exact parts are given by

RO =Dia(k1? - A%)(R123 . A% (k1234 . 2%) 4 %(513 + 520) Dra [ Dis (k- A7) = (K7 - 4)
+ Das (k- A%) = (K - A%)) — 2Dy (k* - 4%) +2(k* - 4%)) |,
RiZis =Dia(K - A%) (K25 AN (K2 A7) 4 < [s12 D (Das (K - A7) — (7 - 4%))
+ D5 (K - A%) = (k- A%)) — 2Day (K - A%) + 2(k* - A%))) + cycuc<123)},
RiYs = — (W W) (W W) (k124 A7)

Dok - AR - A% (R A%) 1 L (594 — 2503) DsaDra(kt - A%) — (3 5 4)]

3

+ %(814 + 824) [D25D34((]€2 . A1> — (k5 . A1>) + D15D34((k5 . A2> — (kl . A2>)}

* %(323 + 524) [Das D12 (K" - A%) — (K° - A%)) + Das Dia((k° - AY) — (k% - AT))]

+ [ Dys(k" - A%) (K - A*) + Doy (k- AV)(K* - A) 4 Dsg (k" - A?)(K* - AV)) (K'2%% - A7)
1

+ 5 (524 = 2510) Dau Dio(k? - A7) = (1 2)]

R =(W'y™ W) [(Why WO F,, — (WhymWo)(k'2 - 4%)]
1
(W WA (WA (6 - AY) 4 L (W W) (WO FL

" The tedious algebra was handled using FORM [32].
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+ Dig(k? - A3) (K - AN (kY- AD) + Do (k' - A3 (K2 - AY) (kY- A°)

+ %D12D35(/€3 : A4)823 + 2D12D35(7€5 : A4)S23 + %D12D45(/€4 : A3)823

—|—D14(k:1 -AQ)(klz-A3)(k4~A5) +D25(l<:2-A1)(k:12-A3)(k5~A4)

+ Dy (k% - AY) (K3 - A%)(k* - A%) 4 Dss(k3 - AN (k' - AD)(K° - AY) — (4 &
[V WA (2 - AT) + LV ) F,
+ Dy3(k - A%)(E3 - AY)(E* - AP) — Dig(k° - AY) (kY- A?)(k3 - AD)

+ Dys(k* - AN (E? - A%)(K® - A%) + Dys(K° - AN)(K' - A?)(E'2 - A?)

5)]

1 1
+ §D12D45(/€2 - A%) (2515 + s95 + 835) + = D13D45(k7 - A%)(s15 + s25 + 535)

1
— 6D13D45(k31 . A2)<815 + So5 — 5835) — (1 <> 2)

(A.4)

Removing these BRST-exact parts is accomplished by the second redefinition T12345 —

T12345, leading to the rank-five BRST building block

T12345 = T12345 QS123457

. 3 . .
where the expressmn for S&% 45 can be written recursively as

3 2 1 2 2 2 2 2
S§2é45 S§2é45 5 <S§2é54 - Si5)123 + Szgs)ms + Szgsgnz - Sz&s?&m) +z R

2 1 1 1 3
S§2é45 = S§2345+ (S§22135 S§4125+S§4)215) + ZR§2)3457

1 1 2
Sithis = R§2)345 + ng1;]345'

To see that (A.5) and (A.6) imply all the BRST-symmetries of T}2345
0 = Ti2345 + 121345
0 = Th2345 + T51245 + 123145
0 = Ti2345 — T12435 + 34125 — T34215
0 = Tho345 — Th2354 + Tas123 — Tus213 — Tass12 + Tus321

it suffices to check that the following identities hold,

3 3 1
S§22),45 + 5512545 :R§2)345

3 3 3 2
S§2%45 + S§1)245 + 553)145 :Rgz):ms)

3 3 3 3 3
S§2é45 - S§22135 + S§4)125 - S§4)215 —R§2)345

3 3 3 3 4
S£22345 S£2354 + Si5)123 - S£5)213 - S£52’,12 + Si5321 —R52)345-

(A.5)

(4)
12345

(A.6)

Having the explicit superfield expressions for the building blocks up to Ti2345 allows all

component amplitudes up to N = 11 to be evaluated.
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Appendix B. The solutions for M;,;, ; in terms of BRST building blocks

From the relation between Mjs3 ., and the cubic diagrams of the (n + 1)-point am-
plitude discussed in subsection 4.1, it follows that the solutions for Mio3, Mi234, Mi2345,
Mji23456 and Mja34567 which satisfy (4.1) contain 2, 5, 14, 42 and 132 different kinematic
pole configurations, which are represented by the cubic-graph expansion of the tree ampli-
tudes. Their explicit expressions can then be read off from the dictionary between those
cubic graphs and the BRST building blocks; as discussed in subsection 3.3. Furthermore,
using the antisymmetry on the first two labels of Tj;j.. , one can always choose an ordering

such that all terms inM;23. ,, have a positive coefficient, leading to:

T2
My = =22, (B.1)
512
1 Ti2s  T321
Miss = (B.2)
5123 512 523
1 T'234 T3214 T3941 T3421 2T 2134
Mig3q = + + + + 31 ) (B.3)
51234 \ 5125123 5235123 5235234 5345234  S12534
1 1 T'12345 132145 T32415 Ts4015  2Th2[3415
Mi2345 = + + + + 134
512345 | 51234 \ S125123 5235123 5235234 5345234 512534
1 T34251 T32451 T34521 Tsaz21 . 214502311
+ + + +
82345 \ S345234 5§235234 5345345 5455345 5§23845
2T123(45) 2T321[45) 2T453[12) 2Ty35(12)
+ + + , (B.4)
5125123545  S$235123545 5455345512 5345345512

1 4T A4T: 4T, AT
Mi23456 = [ 12(34]156] 34p6l21] 123][45]6] 123[4[56]]

5123456 L 51253455651234  51253455653456  S1254551235456  S1255651235456
4T531([54]6] n 4T331(4(65]] n 2T34521)6 n 2T3456[21)

5§2354551235456 5$2355651235456 5$125345345512345 812534534553456
2T12(34)56 n 2T123145)6 n 2T543[21)6 n 2T5436[21)

51253451234512345 5125455123512345 8125455345512345 812545534553456
2Ty563[12] n 2T1234[56) n 2T5643[21) n 2T53154)6

512545545653456  S12556512351234  S12556545653456  5235455123512345
2Ty56[23)1 N 2T34756)21 N 2T53(54)16 N 2T53[54)61

5235455456523456  S3455652345653456  52354551234552345  S2354552345523456
2T5314(65) n 2T5341(65) n 2T534765)1 n 2T564[32)1

523556512351234 5$23556523451234 5235565234523456 5235565456523456
2T3421[56] 2T340(56)1 T T:
321456 324156
+ + +

534556523451234 5345565234523456 523512351234512345 523523451234512345
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T324516 T324561 T342156 T342516
$23523451234552345  $23523452345523456  S34523451234512345  S$34523451234552345
T342561 T345216 T345261 T345621
$34523452345523456  S34534551234552345  S34534552345523456  S34534552345653456
T543216 T543261 T123456 T543621
545534551234552345 545534552345523456 512512351234512345 545534552345653456
n T546321 T564321 , (B.5)
545545652345653456  S56545652345653456
51234567 M1234567 =
81'12(34]([56]7] 81 54(67][1[23]] 81'12(34][5[67]] 81T y5(67][3[12]]
512534556556751234 523545567512354567 512534567556751234 512545567512354567
N AT567(34][12] AT12134)[56]7 AT y3(56)[12]7 4T y3(56]7[12)
5125348565567534567  S12534556512345123456  S12534556512345653456  S1253455653456534567
AT}3512][67] AT}y35(67)[12] AT765(34)[12] AT2(34)5[67]
5125345675345512345 5125345675345534567 5125345675567534567 51253456751234512345
AT2345)[67] AT}53[12][67] AT }53(67)[12] AT45067)3[12)
5125455675123512345 5125455675345512345 5125455675345534567 51254556753456754567
4T123((45)6]7 4T5467(112)3] 4T7654(12)3] N 4T1234[5(67]]
512545512354565123456 5125455123545654567 5125675123556754567 5125675123556751234
N 4T32145)[67] AT30145)1(67) N AT 391451671 N AT5647(112]3)
$235455675123512345  52354556751234552345  S23545567523455234567 5125565123545654567
n AT1234([56]7] AT5674(112]3) AT 2314(56])7 n AT5647[1723))
5125565123556751234 5125565123556754567 512556512354565123456 5235565123545654567
N 4T3914([56)7] N AT5674]1[23)] AT3911456)]7 N AT3914]5(67)]
5235565123556751234 5235565123556754567 523556512354565123456 5235675123556751234
N AT7654[1]23)) N AT3241(567)) AT324(5[67])1 ATy5167)123]1
5235675123556754567 $235675234556751234 $23567523455675234567  523545567523456754567
4T321((45]6)7 n AT5467[1723)) AT3241([56)7) AT324([56]7)1
523545512354565123456 5235455123545654567 5235565234556751234 523556523455675234567
N 4T3421([56]7) 4T349([56)7]1 N 4T3421[5(67)) AT349(5(67))1
5345565234556751234 534556523455675234567 5345675234556751234 534567523455675234567
2Ty35(12]67 2T4356127 2Ty3567(12]

512534583455123455123456 51253458345512345653456

2T1234)567 2Ty53112)67

5$12834534553456534567

2Ty536[12)7

§12834512345123455123456 51254583455123455123456

2Ty5367(12] 2Ty563(12]7

8§125455345512345653456

2Ty5637(12]

512545534553456534567 5125455456512345653456
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2Ty5673(12]

2T1934(56]7

5128545545653456754567

2T6543012)7

5125565123512345123456

2T65437[12)

$128565456512345653456

2T65743[12)

$12856545653456534567

2T12345(67]

812556556753456754567

21321 (45]67

512567512351234512345

2Ty56(23]17

52354551235123455123456

2Ty567[231

52354554565123456523456

2T35(45]167

2112345067

51254551235123455123456

2T65473[12)

512856545653456754567

2T67543[12)

812567556753456754567

2Ty56(23171

52354554565234565234567

2T3941(56]7

8§235455456523456754567

2139145617

5§23545512345512345652345

21321450671

8§235565234512345123456

2T3914[56)7

§23845512345652345523456

2T394(56]17

523545523455234565234567

2T304(56)71

52355652345123456523456

2T554[23)71

52355652345234565234567

2T6547[231

§23585654565234565234567

2T39145(67)

5235565456523456754567

2T32415(67]

§23867512351234512345

213945671

523567523451234512345

2T4754[231

5235675234523455234567

2T342(56]17

8235675567523456754567

2T340(56)71

83485652345123456523456

2T34756)217

53455652345234565234567

2T34[56)271

§2358565123512345123456

2T654(23)17

52355654565123456523456

2T6574[23)1

§238565567523456754567

2T39451(67)

8§23567523451234552345

2T3421(56]7

5345565234512345123456

2T557(34)21

83455655675234567534567

2T34(56)721

8345856512345652345653456

2T34215(67)

534556523456523456753456

2T34251(67)

534567523451234512345

2T5430(67)1

534567523451234552345

2T543(67)21

834856523456753456534567

2T3425(67)1

5345675234523455234567

2T54(67]321

8455675345523455234567

2T34521(67)

S$4556753455234567534567

2T3452(67)1

S$45567523456753456754567

2T345(67)21

534567534551234552345

2T675(34)21

5348675345523455234567

2T54321(67)

53456753455234567534567

T1234567

53456755675234567534567

13214567

S45567534551234552345

T3241567

5125123512345123455123456

13245167

§2385123512345123455123456

T3245617

5235234512345123455123456

13245671

§238234512345512345652345

T3456217

§235234512345652345523456

5235234523455234565234567
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T3421567

T3425167

T3452617

8345234512345123455123456

T3495617)

5345234512345512345652345

T3495671)

8348345512345652345523456

T3452167

5345234512345652345523456

T3452671

5345234523455234565234567

T3456271

5345345512345512345652345

T3456721

5345345523455234565234567

T5432167

8345345523456523456753456

T5432617

5$345345523456753456534567

T5436217

8§458345512345512345652345

T5432671

5455345512345652345523456

T5436271

8§458345512345652345653456

T5436721

8458345523455234565234567

Ts5463217

5458345523456523456753456

T5463271

8458345523456753456534567

T5463721

S455456512345652345653456

T5467321

8455456523456523456753456

T5643217

$455456523456753456534567

T5643271

$455456523456753456754567

T5643721

5565456512345652345653456

T5647321

S$565456523456523456753456

T5674321

8565456523456753456534567

T7654321

8675567523456753456754567

5565456523456753456754567

8565567523456753456754567

(B.6)

Appendix C. The cubic graphs of Mjs3.

As discussed in section 4.1, the expressions for Moz, of Appendix B were found
using the dictionary between the cubic diagrams of the (n + 1)—point amplitude with
one leg off-shell and BRST building blocks. The graphs which compose the expressions
for Miog, ..

., M123456 are given below (the 132 graphs used in the derivation of Mj234567

would occupy to much space and were omitted).

2 3 3

Siog . _ _Ti2s Si23 . _ T

512 523

5125123 5235123

1 2 1

Fig. 8 The two cubic diagrams which constitute Mias.
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523 51234 $93523451234
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Fig. 9 The five cubic diagrams which constitute Mi234. The signs match the corre-

sponding terms given in the formula (B.3).
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Fig. 10 The 14 cubic diagrams which constitute Mi2345. The signs of their correspond-

ing formulae are in one-to-one agreement with the terms in expression for Mi2sz45 given

by (B.4), which is reproduced by summing all 14 graphs displayed here.
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Fig. 11 The 42 cubic diagrams which constitute Mi23456. The signs of their corre-
sponding formuls are in one-to-one agreement with the terms in expression for Mi23456

given by (B.5), which is reproduced by summing all 42 graphs displayed here.
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