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Abstract

In this paper the pure spinor formalism is used to obtain a compact expression for the superstring N-
point disk amplitude. The color-ordered string amplitude is given by a sum over (N — 3)! super-Yang—
Mills subamplitudes multiplied by multiple Gaussian hypergeometric functions. In order to obtain this
result, the cohomology structure of the pure spinor superspace is exploited to generalize the Berends—
Giele method of computing super-Yang—Mills amplitudes. The method was briefly presented in Mafra et
al. (2011) [1], and this paper elaborates on the details and contains higher-rank examples of building blocks
and associated cohomology objects. But the main achievement of this work is to identify these field-theory
structures in the pure spinor computation of the superstring amplitude. In particular, the associated set of
basis worldsheet integrals is constructively obtained here and thoroughly investigated together with the
structure and properties of the amplitude in Mafra et al. (2011) [2], arXiv:1106.2646 [hep-th].
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The computation of tree-level superstring scattering amplitudes is an important problem since
the birth of string theory (see e.g. [3]). But despite being already four decades old, explicit results
for tree amplitudes with more than four external legs [4] have only recently been completed using
the Ramond—Neveu—Schwarz (RNS) formalism at five points [5], at six points [6] and partially
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up to seven points [7]. In addition to conceptual issues about higher-point worldsheet integrals,
the huge amount of algebraic manipulations required to complete these calculations has proven to
be a major obstacle to further developments. When written in terms of ten-dimensional momenta
and polarizations, the amplitudes simply become too big.

However, since the year 2000 a new formalism for the superstring which can be used to
compute manifestly super-Poincaré invariant scattering amplitudes in superspace is available [8].
A general proof that the disk amplitudes in the pure spinor formalism for an arbitrary number
of bosonic and for up to four fermionic external state agree with the standard RNS prescription
was given in [9]; and the supersymmetric four-, five- and six-point tree amplitudes have been
explicitly computed in [10-13].

In this paper the general problem will be solved; i.e. the complete solution for all N-point
superstring color-ordered disk amplitudes Ay = .A(1,2, ..., N) is given by

N—-2 k-1
[ J1zi! Su[]_[ Zsm—kAYM(l 2,. N)+P(2,...,N—2):|, (1.1)

Zz<Z1+ll<] k=2 m=1

where Aym(1,2,..., N) is the color-ordered N-point super-Yang—Mills subamplitude in ten

dimensions, P(2, ..., N — 2) means the summation over all (N — 3)! permutations of the labels
(2,..., N — 2) inside the brackets, and the color ordering of the superstring subamplitude is
defined by the integration region [ _ =[]} fZH

It is straightforward to obtain subamplitudes associated with different color orderings
1,2,..., Ny~ (15,26,..., (N —1)s, N) foro € Sy—1 and i, = o (i) from (1.1). The world-
sheet integrand with its (N — 3)! kinematic Ayy packages stay the same, only the integration
region has to be adapted to

I ={zi eR, 0=z, <22, < - <=2, <=1, =1},

according to the o € Sy_1 permutation in question,

A(l5,25,...,(N = 1), N)

N-2 k-1
/Hdzlgnlz,,l ‘H[HZM—"AYMU 2,. N)+7?(2,...,N—2)i|. (12)

i<j

By taking the o’ — 0 field-theory limit of (1.2) (in particular of the integrals involved using the
methods presented in [2]), it follows that all color-ordered field-theory amplitudes can be written
in terms of the (N — 3)!-dimensional basis {Aym(1,24,..., (N —=2)y, N —1,N) |0 € Sy_3},
a result which was proposed in [14] and later proved in [15,16] using monodromy relations in
string theory. Furthermore, plugging in the explicit field-theory limits of the integrals appearing
in (1.1) (using the method described in [2]), one derives the BCJ relations among different color-
ordered subamplitudes discussed in [14].

This paper is organized as follows. In Section 2 a brief review of the pure spinor formalism is
given; with special emphasis to the elements necessary for the scattering amplitude computations
in the following sections. In Section 3 the BRST building blocks which encode the information
of the pure spinor CFT correlator will be defined and their BRST properties studied at length.
In particular, a diagrammatic method which associates arbitrary cubic graphs to certain build-
ing block combinations is fully presented (partial results have already been shown in [1]). In
Section 4 a pure spinor generalization of the recursive method of Berends—Giele [17] to com-
pute super-Yang—Mills in ten dimensions is developed which extends the previous results of [1].
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In Section 5 the general N-point CFT correlator of the superstring amplitude involved in the
pure spinor prescription is obtained in a compact form using the BRST cohomology objects of
the previous sections. Finally, using a mixture of pure spinor superspace manipulations together
with total derivative relations for the superstring integrals, the superstring N-point amplitude is
rewritten in terms of the field-theory subamplitudes as in the result (1.1) presented above. In
Appendix A, the calculations involving the explicit derivation of the building block 772345 in
terms of super-Yang—Mills superfields (which were omitted from the main text due to its lenghty
nature) are presented in full detail. In Appendix B, the explicit expressions for the pure spinor
Berends—Giele currents M3, are written down in terms of BRST building blocks for up to
and including M1734567. Finally, in Appendix C the cubic graphs which were used to find the
expressions of Appendix B are depicted up to M123456 (the 132 graphs used to derive M1234567
would occupy too much space and were omitted).

2. The pure spinor formalism

In the pure spinor formalism [8], the worldsheet action for the type IIB superstring is
1 1 - - _
S = Z—/dzz (Eaxmaxm + P 00% + P d0% — wy A% — @aax“>, (2.1)
7T
where [X"(z,2),0%(2), pa(2); 0%(2), Pa(@)] and [A*(2), @4 (2); A% (2), @4 (2)] are the Green—
Schwarz—Siegel matter variables [18,19] and the Berkovits ghosts. The bosonic pure spinor A*

satisfies

Wymrf =0, m=0,....9, ap=1,...16, (2.2)

where Vo?fs are the symmetric 16 x 16 Pauli matrices in D = 10. The right-moving fields have
opposite chirality for the type IIA, for the heterotic superstring they are the same as in the RNS
formalism, and for the open superstring the boundary conditions relate the two sectors. This
paper only considers the open superstring, so the right-moving fields will be ignored.

The supersymmetric momentum and Green—Schwarz constraint are given by

1
I"™(z) =X + E(aymae),
1 1
dy(2) = po — E()/”’G)DZBXm - §(ym9)a(9ym89), 2.3)
while the ghost contribution to the Lorentz currents is denoted by N""(z) = %(Aym"w). Fur-

thermore, the energy—momentum tensor 7 with vanishing central charge and the ghost-number
current J are given by

1
T(@) =~ 11" My = dd6” + 0a01%, T = wuh”. 2.4)

Finally, the physical spectrum is obtained from the cohomology of the BRST charge [8]

0= f A¥(2)dy (2). (2.5)

One can show that these operators satisfy the following relations [8,19,20]
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ym I mn
dou(D)dp(w) > =22 I (w) > ———
I—w (z— u))2
B 55 mn 4 [m_ onl 6 n oem
da(Z)O (U)) - (Z — w) s N (Z)Npq(w) — Z——wN [[;(Sq] W& p8q
l )\’ mn\«o ma@
N @) s g D
I—w Z—w
mn A’a
I"OX" W) = ——— J(@Aw) — , (2.6)
—w I—w

where the antisymmetrization bracket [---] encompassing N indices is defined to contain an
overall factor of 1/N!. Furthermore, if f (X, ) is a superfield containing only the zero modes of
6 and D, = 0, + %(y’"@)aam is the supersymmetric covariant derivative,

Dy f (X (w), 0(w))
Z—w ’

K" (X (w), 0
am @) f (X (w), (w)) — — f(z(iuzu ()

Hence, the action of the BRST operator on superfields is Qf = A% D, f. It is easy to show using
the OPEs of (2.6) and the pure spinor constraint (2.2) that the BRST charge indeed satisfies
0% = 0. So, the pure spinor formalism can be covariantly quantized, is manifestly space—time
supersymmetric and contains no worldsheet spinor fields; avoiding from the outset the issues
which make the computation of scattering amplitudes with the RNS and GS formalisms a difficult
task.

Throughout this paper k,l,?'“” stands for k,ln + k,zn + .-+ 4k, the dimensionless (generalized)
Mandelstam invariants are given by

do(2) f (X (w), B(w)) —

s =a (k' K4 k), 2.7)

and whenever an «’ is not explicitly written down the convention 2o’ = 1 has been used.
2.1. Massless vertex operators and SYM superfields

For the open superstring, the vertex operators for the massless states in unintegrated and inte-
grated forms are given by

) . . . . 1 .
VI=AtAL.0), U= 00% AL+ T AL+ da WS+ S F, N (2.8)

where i denotes the label of the string whose massless modes are described by the ten-
dimensional super-Yang—Mills (SYM) superfields [Ay, Ay, WS, Foun] satisfying [20,21]

DaAﬂ_’_DﬁAOl:yo:r;}Amv DotAm:(VmW)oc'kaAou
1
Dy Finn = 2k[m (Vn] Wa, Dy Wﬂ = Z (an)a ﬁ]:mn- (2.9)
Their 6-expansions can be computed using the gauge 6“ A, = 0 [10,22],

1 1 1
Au(x,0) = San(y"6),, — —@yme)(y'"e) - ;an(ype)a(ey'"""e) +oee

A (x,0) =ay — Eymb) — (QJ/mV” 0)qu+ (GVmJ/”qG)(apéyqé’)Jr'-u
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o o 1 mn n\% 1 mna\o%
W (x,0)=§ _Z(V 9) an+Z(V 9) (Om&yn0)

1
+ &(Vm"G)a(Gynypqe)ameq e,

1
Fon(x,0) = Fupn — 20m& yn10) + Z(Qy[mypqe)an]qu
1
+ galm (07,)"10)Evy0)dp +- -, (2.10)
where a,,(X) = ene’*X, £%(X) = x%e’*X are the bosonic and fermionic polarizations and

Fun = 20pnan is the field-strength. Using the OPEs (2.6) and equations of motion (2.9) one
can show that

(A" W) (@)U (z))

—

— (" W), — ("W (K- AT) + (W W), 2.11)

2j
which will be frequently used in the computations below.

As shown by Howe in 1991 [23], the use of a pure spinor field simplifies the description of ten-
dimensional super-Yang—Mills, and this is naturally incorporated in the pure spinor formalism.
For example, it can be shown that QV = 0 is equivalent to putting the SYM superfields on-shell
and it also implies that the BRST variation of the integrated vertex U is given by QU = 9V
[20], and many simplifications occur due to this compact description. In fact, it has recently
been shown how the cohomology of pure spinor superspace [24,25] is enough to fix all N-
point scattering amplitudes of D = 10 SYM [26,1]. So unless otherwise stated, all superfield
manipulations in the next sections are done on-shell, where both QV =0 and QU = 9V are
satisfied.

2.2. Tree-level scattering amplitudes

The prescription to compute a tree-level open-string scattering amplitude with the pure spinor
formalism is given by [8] (see also [9])

AN=<V1(0)V(N_l)(l)VN(oo)/dZQ U2(zz)--~/dZ(Nz)U(N_z)(Z(Nz))>, (2.12)

where V? and U’ are the massless vertex operators of (2.8) and the SL(2, R) invariance of the
disk worldsheet has already been used to fix three vertex positions to the convenient values
(z1,2N-1,2N) = (0,1, 00). The pure spinor bracket (...) appearing in (2.12) denotes a zero-
mode integration prescription for the variables A* and ¢, which are the only ones among
[dy, [T, N™ 0%, 00%, L%, wy] to contain zero modes on the disk because they have confor-
mal weight zero [27]. Furthermore, the integration regions of (2.12) encode the different color
orderings of the external states. For example, the ordering Ay (1,2, 3, ..., N) is computed when
the integration regionis 0 =z; <22 < -+ - <zy-—2 < zy-1= 1.

After integrating out the conformal weight-one variables [dy, [T, N™", 96“] from the tree-
level amplitude (2.12) using the OPEs of (2.6) and evaluating the worldsheet integrals, one is left
with a generic pure spinor superspace expression containing the zero modes of A* and 6¢

Ay = (1PN f4(0.0)). (2.13)
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In (2.13), f;g;"ﬂ (6,a’) is both a composite superfield in the labels [y, ...,i,] of the exter-

nal states and a function of the string scale o’ satisfying A*APAY A3 D f i/ls')‘;i” @,a) =0. Tts

67

specific form in terms of the super-Yang-Mills superfields [A},, A}, W#, Fi 1 follows from
the OPE contractions discussed above while its functional dependence on @’ is determined by
the momentum expansion of n-point hypergeometric integrals [5—7]. As explained in [8], the
zero-mode integration of (---) selects from the 6-expansion of the enclosed superfields the
unique element in the cohomology of the pure spinor BRST operator at ghost-number three;

Ay™0)(Ay"0) Ay PO)(OVimnp?). Its tree-level normalization can be chosen as

((Ay™0) (Ay"0) (LY P0) (O Ymnpt)) = 1, (2.14)

and although (2.14) involves only five 8% out of sixteen, it can be shown to be supersymmetric
[8]. Furthermore, given the fact that there is only one scalar in the decomposition of (1367) it is
possible to compute any correlator using symmetry arguments and the normalization condition
(2.14) [28,29].

2.3. Component expansions of amplitudes: a simple example

Given a pure spinor superspace expression like in (2.13) it is straightforward to perform the
6-expansion of the SYM superfields and select the terms according to (2.14) to obtain the su-
persymmetric result of the scattering amplitude in terms of the more familiar gluon and gluino
polarizations [efn, x;] and their momenta k. For example, let us obtain the 3-gluon scattering
from the component expansion of the 3-point amplitude [8],

Az =((2A")(rA%)(rA)). (2.15)

Plugging in the 6-expansions (2.10) and selecting the terms with a total of five 8’s which contain
only gluon fields results in
1
Ay=— (keleles —kZelelel +kheleled)((xy 0) (A 0) (hy,p0) (0 7™0)). (2.16)
In the appendix of [30] one finds a catalog of the most common pure spinor correlators and, in
particular, ((Ay"0)(Ay*0)(Ayp0) Oy P""0)) = 1358 pmn = 75845, Therefore the 3-gluon ampli-
tude (2.16) is given by

Az = —m((e1 ~e2)(k2 . 63) + (e1 ~e3)(k1 -ez) + (62 . 63)(k3 ~el)). (2.17)

Performing the above steps becomes a tedious task when higher-point calculations are involved.
Fortunately, this procedure is suitable for an automated handling [31,32].

3. BRST building blocks

Only terms which are in the cohomology of the pure spinor BRST charge (2.5) contribute
to the n-point scattering amplitude (2.13). Therefore it will be convenient to foresee the BRST
properties of the objects which naturally appear in the tree-level calculation of (2.12). With this
intent in mind, in this section the OPEs among the massless vertex operators (2.8) are used to
define composite superfields L2131...p1 and their BRST properties are studied in detail. It will
be found that these superfields transform covariantly under the BRST charge and generically
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contain BRST-exact parts. A prescription to consistently remove these parts will then be given
and that will define the so-called BRST building blocks: T123...p.

In a later section these building blocks will be used to define other composite superfields
M23.., and E123.., with well-defined BRST cohomology properties. They will turn out to be
the natural objects with which to write the superstring scattering amplitudes. In the course of
doing that, several general structures of the string tree amplitudes will become apparent — like
the fact that they can be written using a (N — 3)!-dimensional basis of integrals as conjectured
some years ago in [6].

3.1. OPE residues of vertex operators

Motivated by the computations one needs to perform when computing tree-level higher-point
amplitudes [11-13] it is convenient to define composite superfields L;31...p1 as

L
lim VE)U2e) — 2,
2271 221
. L131...(p—D1pl
hmlL2131...(p—1)1(zl)Up(Zp) — 22BL-=DIpL, 3.1

p—z Zpl

which transform covariantly under the action of the pure spinor BRST charge [26]. To see this
one uses QV =0and QU = dV to obtain

OL131..p1 =Zli_>leZpl[(QL2131...(p—1)1)(Zl)Up(Zp) — Loi31...(p—1(z1)aVP(zp)].
P
(3.2)

The OPE in the first term of (3.2) can be computed using the definition (3.1) recursively while
the second term evaluates to Zf;ll 8ipL2131..(p=1)1 Vp; as one can easily show by using Vi =
(0L AL, + "k, V' 4 00% Dy V' and the OPEs of (2.6). Therefore,
OLy =snViVa,
OL2131 = (s13 +523)L21 V3 + s12(L31 V2 + ViL32),
OL213141 = (514 + 524 + 534) L2131 Va + (513 + 523) (L21L4a3 + L2141 V3)
+512(L3141V2 + L31 Lao + La1 L3z + Vi L3242),
OL21314151 = (515 + 525 + 535 + 545) L213141 V5
+ (s14 + 524 + 534) (L213151 Va + L2131 L54)
+ (513 +523)(L214151 V3 + L2141 Ls3 + L2151 L4z + Lo1 L43s3)
+s12(L314151 V2 + ViL324252 + L3141 Lsa + L3151 Lap + Laisi L3
+ L31 L4252 + La1 L3psz + Lsi L3oan), (3.3)

while QL3131..p1 for p > 6 can be also be easily obtained (the general BRST variation of a
object related to L131...p1 will be written down in the next subsection).

The expressions for L131...p1 in terms of SYM superfields can be obtained using the OPEs of
(2.6) in the definition (3.1). For example,

Lo = lim 21V @)U z) = —AL (hy"W?) = V(K" - A%) + o(A'W?). (3.4)
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Similar calculations yield the expressions for L131...p1 and one can show that (discarding BRST-
exact quantities for reasons to be explained in later sections) they are given by:

Loy =—A, (Ay"W?) = V(K" - A%),

Lyizi = — Loy (k' - A%) = [(La1 + VI (k' - A7) (k' - A%) — (1« 2)]
W (W W) — K (A" A7),

Loisiar = —Loizi (k' - A%) = (Larar + Laa (k12 - A%)) (k12 - A7)

= B+ L (5 A6 43+ (L + VIR A 41 42)
- %()\ym W (W2y Py, W) Fp, — (1< z)}
+ (WO ((Why"W?) — k5 (AT A%)) T,

Loisiaist = —Loiziar (k1% - A%) — (Loizist + Lozt (k1% - A7) (k'% - A%)
— [L214151 + L2141 (k124 : AS) + (L2is1 + Lo (klz : AS))(k12 : A4)](k12 : A3)

- [[L314151 + Lajar (k- A%) + (Lars1 + L3y (k12 - A%)) (k12 - AY)

+ (Lars+ L (K A%+ (Lsy + VI ED AT (R A% (- 2%) (k1 47)
+ (A" W) [%(lepqy”W3)}'§q.Ffm

1

+ 0w [ W) (52,55, =V ra W,

: I
) §(W4menypw3)kf> — S Wy W F s,

(A1 A (B R 1 (W W) (K2 ~k3))], (3.5)

and can be checked to satisfy the BRST identities (3.3).

Due to the recursive definition of L3;31...»1 care must be taken when discarding BRST-exact
terms when evaluating the OPEs for the next p + 1 step. For example, if the BRST-exact term in
Lo is kept then it follows that [12]

Loz = [A), (hy"W?) + VI (k' - A%)](k'* - A7)
+ ("W [AL (K" A%+ A EL — (W W?)]
+s[(ATWI)V2— (A2WH)V!] + (s13 + s23) (AT W2 V7, (3.6)
Eq. (3.3) implies that after discarding Q(A’W/) from L j; the last line of (3.6) must be dis-
carded as well, in order for QL1371 = s12(L31 V2 4+ ViL3) + (s13 + 523) L21 V3 continue to hold.

Equivalently, one can consider the expressions in (3.5) as an explicit representation for composite
superfields L2131... 1 which satisfy the BRST identities of (3.3).
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It is worth mentioning that the BRST-exact terms dropped from L j;, L jix; and L jji; were
observed to cancel out in the final superspace expressions for the five- and six-point computations
of [12,13]. This seems natural in view of the requirement that the overall amplitude should live
in the BRST cohomology like its basic ingredients, the vertex operators. This will be the main
idea to be exploited in the next subsection.

Furthermore, the energy—momentum tensor and the ghost-number current of (2.4) can be used
together with the OPEs of (2.6) to show that the conformal weight & of L131...p1 and its ghost
number are given by

2
h(Laisip) = (k' 4+ +kP)"#£0,  ghost#(Laiz1._p1) = +1. (3.7)

This will prove essential to argue that the BRST cohomology for composite superfields is gener-
ically empty.

3.2. Definition of BRST building blocks T123...p
The definition of a rank-g BRST building block Ti23.., follows from two steps

(O (ii)
L2131..qg1 —> T123..g — T123..4 (3.8)

which are designed to remove BRST-exact terms in L131..41 and in T123_,_q while still preserving
the fundamental BRST variation identities (3.3) when the combined redefinition L3131..41 —>
T123...4 1s used in both sides of (3.3).

The first step (i) of (3.8) to obtain T123,__q1 from the composite superfield L»13;1.. 41 depends
on all the previous redefinitions of L2131...p,1 With p < g which were made to get the BRST
building blocks T123...,. Its purpose is to absorb the extra terms (in the left-hand side) when the
substitutions L3131...p1 —> T123...p are made in the right-hand side of the BRST variation identity
for QL3131...41- Therefore the first step (i) ensures that Q]N"123"_q is written in terms of T123..p
rather than L2131, p1,

OTi3 = s12(T1i3Va + ViTaz) + (s13 + 523) T12 V3,
OTi234 = (514 + 24 + 530) T123 Va + (513 + 523) (T12 T34 + T124V3)
+ 512(T134V2 + T13T24 + T14T23 + Vi T234), (3.9

and similarly for T123_“q with g > 5.

One can check using (3.9) that there are certain specific combinations of Ts which are BRST-
closed, like for example Q(T123 + T>31 + T312) = 0. Furthermore, it was shown in (3.7) that the
composite superfields L2131...p1 (and therefore also 7:123,_. p) have conformal weights 7 # 0, so
those combinations must also be BRST-exact — because the cohomology of Q at ghost-number
+1 is nontrivial only at zero conformal weight.'

So the second step (ii) of (3.8) will involve searching for sums of f123mq which are BRST-
closed in order to subtract the corresponding BRST-exact parts from ]:123“4. In principle these
sums can be found by a brute-force analysis of the identities in (3.9), but in Section 3.4 a simple
diagrammatic method to find all those sums will be presented. That in turn allows one to obtain

the explicit expressions for all ¢ — 1 BRST-exact parts R{% 4 of f‘123mq:

1 We thank Nathan Berkovits for illuminating discussions on this point.
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Y Tisg=0RY, . I=123...q-1 (3.10)

where the g — 1 different sums will involve different label permutations of T123_,q with =+ signs,
see Section 3.4 for their precise forms.

The prescription to remove the BRST-exact parts from f’123_“q — which completes the second
step (ii) of (3.8) — will be explained in Section 3.5. After doing that, the previous BRST-closed
sums of T123_,_q become BRST-symmetries of the building blocks 7123, 4, i.€.,

ZTIZS...([ =0. (3.11)

In summary, the two steps in (3.8) are:

(1) Redefine L2131.41 = f”123mq such that QT123Wq is expressed in terms of building blocks
T123...p of lower-level p < g.

(i) Remove the BRST-exact parts of T123”_q given by (3.10) such that 7123, 4 satisfies the sym-
metry properties (3.11).

The composite superfields T723.. 4 defined in this way are the BRST building blocks and obey the
following identities,
0T =s512V1 V2,
OTio3 = (s13 +523)T12V3 + s12(T13Va + Vi Ta3),
OTi23a = (514 + 524 + 534) T123Va + (513 + 523) (112134 + T124 V3)
+512(T134 V2 + T13To4 + T14 T3 + ViT234),
OTi2345 = (515 + 525 + 535 + 545) T1234 V5 + (514 + 524 + 534) (T1235 Va + T123T45)
+ (513 +523) (T1245 V3 + T124 T35 + T125T34 + T12T345)
+ 512(T1345 V2 + ViTo3as + T34 Tos + Ti35Toa + Tas T3
+ T13T245 + T1aTazs + Ti5T234), (3.12)

and so forth. The relations (3.12) can be generalized as follows:

n
QT12...n=Z Z (s1j+ 525+ +sj—1,)T2j—1,{ Tj(,\e}> (3.13)
j=2aeP(f))

where B; ={j +1,...,n}, P(B;) is the powerset of 8; and V; = T;. Furthermore, the first few
BRST symmetries of (3.11) are given by

0="T2+ Ta1,

0 =Tz + Toz1 + T312,

0= Ti234 — T1243 + T3412 — T3421,

0= "Ti2345 — T12354 + T12543 — T12453 + Tas321 — Tus312, (3.14)

where each higher-order building block T723.. 4 inherits all the lower-order identities in its first
g — 1 labels (this can be seen from the recursive definition of L131...p1 in (3.1)). For example,
T1234 not only satisfies the third equation of (3.14) but also the previous two in the form of
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T1234 + 12134 = T1234 + 12314 + T3124 = 0. Using the diagrammatic method explained below, the
following general BRST symmetries for building blocks will be derived,

p=2n+1: T prims2.20=12020100.01 — 22041 n2m+10..32171..1 = 0,
p=2n: T12.. nln+11..2n—212n—1,2001..711 + Ton..n+1nL. 3121771 = 0. (3.15)

The notation [i[jk]] means consecutive antisymmetrization of pairs of labels starting from the
outermost label, e.g. [i[jk]] = 1/2@[jk] — [jk]i) = 1/4(ijk —ikj — jki + kji).

3.3. Diagrammatic interpretation of T123..., building blocks

As discussed in [14], every color-ordered tree-level field-theory amplitude can be arranged
into a form which manifests the kinematic poles that appear,

n;
[, »3,

where the sum is over the set of 2N —4)!/((N — D)!(N —2)!) diagrams with only cubic vertices,
n; represent some kinematic numerator factor and pgl[_ are the propagators of each diagram. Using
this representation for the N-point amplitudes it was suggested in [26] that the BRST cohomol-
ogy of the pure spinor formalism might be enough to fix the ten-dimensional SYM amplitudes,
bypassing the need to perform the o’ — 0 limit of their corresponding open superstring ampli-
tudes. To that end it is useful to require that the numerator factors n; have BRST transformations
which are proportional to the Mandelstam invariants associated to their poles, On; = j pgl,m j
for some m ;. This makes sure that each term in Qn; cancel one of the poles and different terms
can be concocted to yield an overall BRST-closed amplitude. So in order for the empirical co-
homology method of [26] to work, one needs to have explicit mappings between cubic diagrams
and ghost-number three pure spinor superspace expressions. Although some lower-order exam-
ples were presented in [26], a general solution was still missing. But as it became clear later, it is
better to have mappings between cubic diagrams and ghost-number one composite superfields;
the BRST building blocks. This realization led to the discovery in [1] of a general recursive
method to construct expressions in the cohomology of the BRST charge with the correct prop-
erties of N-point SYM amplitudes. So in this section we describe in detail the solution of [1]
to find the general dictionary between cubic-vertex diagrams and ghost-number one pure spinor
building blocks.

The idea to obtain the dictionary is to find the precise sums of building blocks whose BRST
variation contains the same set of Mandelstam variables associated to a particular cubic diagram.
And this problem can be solved by understanding the patterns present in the BRST variation
identities of (3.13).

To see this consider the diagram (a) of Fig. 1 where one leg has been removed and which
contains the set of kinematic poles {s;,i,, Siii3s - - - » Sij...i, }- From Eq. (3.13) one checks that all
terms in the BRST variation of T;,;,;, contain at least one of those Mandelstam variables
without exception, schematically

AYM(1,2,...,N)=Z (3.16)

i

OT isiy.in... = {Sitins Siyiniz» -+ Sitinizein...) (3.17)

where the trailing dots on the labels of the building block correspond to the amputated part of
the diagram. Given this match, we associate the building block of (3.17) to the cubic graph of
Fig. 1(a).
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io iz 14 in
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21 i2 .
. . 13
11 12 . .
3 :
I i3 iq in
T firia)... T Jfiria)is)... T ([[ixislislia). T ([ [iriz)is).- Jin-..
(b)
Fig. 1. (a) A tail-end cubic diagram with kinematic poles {s; i), .-, Siji,...i;} corresponds to the building block

Tijiy...ip...- (b) Branches of cubic diagrams and their associated building blocks. The motivation behind this dictio-
nary lies on the fact that all kinematic invariants specified by the cubic graphs are present in the BRST variation of their
corresponding building blocks.

To find the appropriate BRST building blocks which can be associated with the branches con-
taining two amputated legs in Fig. 1(b), note the pattern that certain sums of 77,3..., with different
label orderings have a different set of Mandelstam invariants in their BRST variation. As seen
on (3.17), the BRST variation of T;,;,..;, contains all elements of the set {s;i,, Si;izi3» - - -+ Siy...in }
but antisymmetrization in certain labels replaces some elements by others, e.g.

OTi, .iyljkir..r, — Sjk instead of sii, i, ;,
OT;, iy ljlkiNry..rg, — Ski, Sjki instead of si, i, j. Siy...i, jk
OT;, i, LjtkitmNlry..ry — Sims Skim» S jkim instead of si, i, j, Siy i, jks Siy...i,jkls (3.18)

where the two sets of dots in the building blocks correspond to the amputated parts of the
graphs (b) in Fig. 1. The patterns shown in (3.18) therefore justify the general dictionary given
in Fig. 1(b).

3.4. BRST symmetries of building blocks

It is not difficult to use the BRST variations of f"123mq in (3.9) to find their BRST-closed sums
for small g by trial and error. Since the cohomology at conformal weight /& # 0 is empty, these
same BRST-closed combinations of 7s are also BRST-exact. As explained in the previous sub-
section, the removal of the BRST-exact parts of T123mq gives rise to the definition of the building
block T123..4 and at the same time the BRST-closed sum of T’s translates into a symmetry of
the associated 712, (see Eq. (3.11)). Therefore it is imperative to find the general BRST-closed
sums of T"s, or equivalently, the general symmetries of Ts.

So in this subsection we use the diagrammatic interpretation of building blocks to predict the
symmetry properties of 717, which in turn allow the BRST-exact parts of 7:123‘..” to be found
(see Section 3.5).

As a first example, consider the diagram of Fig. 2. In the first expression the diagram is
interpreted as a tail-end graph like the one depicted in (a) of Fig. | and is associated with the
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2 3
: {les

T391 — T312
1

Fig. 2. Two different ways to interpret the same diagram give rise to an identity for 7;jj. In the first expression it is
viewed as a tail-end graph, while in the second it is interpreted as a branch.

1 1 1
2 2 2
3 |
3 4 5
4 5 6
{ 2T1(34) {2T123[45] { 4T 23(4[56]]
—2T 3001 4T5473721)) —4T654(321))
1 1
13 2 {4T1234[5[67]] 43 2 _{ 8T 12345((7s)))
0 6 8T7654(3[21))] > 6 7 —8T8765(4[3[21]))
7 8

Fig. 3. Diagrammatic derivation of the BRST symmetries of higher-order building blocks. The top (bottom) line cor-
responds to the building block association which follow from reading the diagram in a counter-clockwise (clockwise)
direction.

building block T7,3. However, in the second expression the diagram is viewed as a branch like
the first graph of (b) in Fig. 1, where one of the “missing” legs now contains the label 3 and it is
therefore associated with 273[21] = T321 — T312. The fact that both interpretations have to agree
implies the symmetry identity (3.14) for T;jy,

0= T3 — T321 + T312 = T123 + To31 + T312.

The relative sign between the two viewpoints is fixed by the fact that diagram associated with
Ti2 , catch a (—1)"! sign under inversion (1,2,3,...,n —1,n) < (n,n — 1,...,1). Hence,
we have to make sure that the sign of T3, relative to Ty, ,—1,.21 is (—1)" in (3.11), e.g.
Tiz+ (=13 T30 + -+ =0.

This same idea can be used to obtain the BRST symmetries for higher-order building blocks.
For example, the symmetries of 723, , forn =4, 5, 6, 7, 8 are obtained from the diagrams of
Fig. 3,

0 =2T134) + 2131211,

0 =2T1231451 — 4754131217

0 = 4T123456) + 4T654031211)»

0 =4T12341506711 — 8T7651413121111»

0 = 8T12341516[78111 + 8T8765[4[312111]- (3.19)

Using the BRST variations (3.12) we checked up to 712345678 thaE these relations are indeed
BRST-closed and obtained their explicit BRST-exact parts for up to T12345. The latter was made
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using the explicit expressions of Tios... p in terms of super-Yang-Mills superfields to find the

explicit solutions Rg'% » of Eq. (3.10), and that will be presented in the next section.
To write down the generalization of (3.19) to higher p > 8, let us distinguish between odd and
even ranks for ease of notation:

p=2n+1: T pripms2n.2n-1202040100.01 — 212041 042011 312170..01 = 0,

p=12n: T2, nfn+11...12n=2120—1.2201...01 + Don..n+1nl... 13121711 = 0. (3.20)

The relations for p =2n + 1 and p = 2n involve 3 - 2"~ ! and 2" terms, respectively.

We should emphasize again that the lower rank identities for 775 4 carry over to 113, , with
p > q. Thelastlabels g + 1, ..., p are then simply left untouched, e.g. 0 = T(12)345 = T{123)45 =
Th2134)5 + Ta3[21)5 atrank p = 5. By applying the p — 1 symmetries available at rank p, one can
successively move a particular label to the first position, i.e. express T;,;,...; ,asa combination of
Tijijy... oot Hence, there are (p — 1)! independent rank-p building blocks T;,;,. i »-

3.5. Explicit construction of T1z...p

The definition of the first BRST building block T, requires only the step (ii) in (3.8), as
there are no lower-order redefinitions to take into account in the first step (i); that is le = L.
From the BRST variation of 7~’12 in (3.3) together with the equations of motion (2.9) one sees
that its symmetric part is BRST-closed: O(Try + T12) = s12(V1 Vo + Vo V) =0, and also BRST-
exact [26]

D1+ Tin=-0(A"-A*)=-0Dp. (3.21)

As discussed in (3.11), the definition of the BRST building block 77, must be made to satisfy
T12> + T21 = 0. This is accomplished by

~ ~ 1
T, =T =10+ > 0ODs. (3.22)

The definition of the building block 77123 now proceeds using both steps of (3.8). The first
redefinition L3 (—1)> T123 is found by substituting L j; = f}j =T — %QDij in the right-hand

side of QL7131 in (3.3), which leads to:
1 1
Q(Lzm + ESIZ[DB Vo — D3Vl + 5(S13 + S23)D12V3)
=s512(T13V2 + V1123) + (513 + 523) T12 V3.

Therefore by defining
- 1 1
Ti23 = Lyi31 + 5512[D13V2 — Dy3Vi] + §(S13 +523) D12 V3, (3.23)

one obtains the desired identity QT123 = $12(T13Va + V1T23) + (513 + 523) T12 V3.
Two BRST-closed combinations of T;ji are easily identified,

Q(Ti3 + Tr13) =0, O(T123 + T312 + Tr31) =0, (3.24)

and one can show using SYM equations of motion (2.9) that they originate as the BRST variation

of ghost number zero superfields R§12)3, Rg% [13,1]
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Tios + o1z = QRflz)y Ti2s + Ts12 + Doz = QRS)g, (3.25)
where R\), = Dip(k'2 - A3), R, = Dip(k? - A%) + cyclic(123). The BRST building block 7j23
is obtained by removing these BRST-exact pieces

- 1 1
Tio3 =Tz — QSI(%, Sl(% = ER% + §R[(1%]3’ (3.26)

which implies the following BRST symmetries for T; :

T2z + 1213 = Ti23 + T312 + 1231 = 0. (3.27)

The definition of 7234 is done similarly and uses the information from the lower-order redefini-
tions of Loy and L213;. First one rewrites L j; and L j;; in terms of 7;; and T;jx in the RHS of
the identity for O L»13141 given in (3.3). After some algebra one finds

- 1
Ti234 = Lo13141 — Z[(SB +523) D120 D34 + 512(D130Q Dy + D140 D23) |

+ %[(813 +523)(D12T34 — D34 T12)
+ 512(D13T24 4+ D14T23 — D23Ti4 — DysT13) ]
— (514 4 524 + 530)SUAVa — (513 + 523) I V3 + 512 (S, Vi — S Va) - (3.28)
which satisfies the required property of
OTi234 = 512(T134Va + T13Toa + TiaToz + Vi Taza)
+ (513 +523)(T12T34 + T124V3) + (514 + 524 + 534) T123 Vs (3.29)

Using (3.29) it is easy to c@eck that the lower-order identities of f‘l 23 given by (3.24) are inherited
by the first three labels of 77234 and that there is one additional BRST identity involving the fourth
label,

O(T1234 + Tr134) = Q(T1234 + T3124 + Toz14) = Q(Ti234 — Ti243 + Tra12 — T3421) =0,

in accord with the discussions of Section 3.4. Using the SYM equations of motion in a long
sequence of calculations shows that these combinations are indeed BRST-exact,

. - 1

T1234 + Th134 = QR§2)34’

~ _ N 2
Tiosa + Ts14 + To31a = QR

- -~ ~ ~ 3
Ti234 — Tioa3 + Taar2 — Taaz1 = QR (3.30)
where
1
1 1
R, = —Rips (k'3 - %) — 1 5121P13D24 + D1a Das,

1
R& = —R% (k' A%) - Z[S12D23D14 + 523D24 D13 + 513D34 D121,
Ry = (k' - A?)[Dia(k* - A%) — Di3(k* - A*)]
— (kK- AN)[Daa(k* - A%) — Das (K - A%)]

1
+ ZD12D34(S14 + 523 — §13 — 524)
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+ D[ (k- A%) (k- A%) — (K- A%) (k2 - 47)]

+ Dsa[ (k- AT (k* - A7) — (kT - A7) (k2 - AT)]

+ (W™ W2 (W ymW?). (331)
Removing these BRST-exact parts leads to the “rank—four BRST building block — which is ac-

complished with the second redefinition fl 234 ﬂ) T1234,

Ti234 = Tio3s — ng)%, (3.32)

where 51%)3 4 1s defined recursively by

o _3.0 L. M M {ING))
S1234 = ZS1234 + 1(51243 - S3412 + S3421) + ZR1234’

1 1
@O _ H 2
Sz = 7 Ri23a + 3 Rigpa- (3.33)

To see that (3.32) and (3.33) imply the BRST symmetries of

T1234 + 12134 = T1234 + T3124 + T2314 = T1234 — T1243 + T3412 — T3421 =0, (3.34)
it suffices to check that the following identities hold,

2) 2 _ p
Si234 T 83134 = Ryza4

2 2 2 _ p@
Si234 T 83124 T 52314 = Ripag

Si2as ~ Sizis + S5a12 — Siia = Ridye (3.35)
Following this same procedure for L»1314151 is straightforward but somewhat tedious, there-
fore the calculations leading to the explicit superfield expression for the building block 772345
will be deferred to Appendix A.
As will be explained in Section 4.4, the explicit superfield expressions for 7;;, T;jx, T;jx and
Tijkim allows one to obtain the expansions of any superstring or field-theory amplitudes up to
N =11 legs in terms of momenta and polarization [31].

4. Supersymmetric Berends—Giele recursions

In Section 3.3 we have given a superfield representation in terms of T,~1”_,~p for each color-
ordered diagram made of cubic vertices with p on-shell external leg and one off-shell leg. In
this section, we combine these diagrams to (p + 1)-point field-theory amplitudes with one off-
shell leg. These objects were firstly considered in [17] in order to derive recursion relations for
gluon scattering at tree-level and were referred to as “currents”. The pure spinor supersymmetric
analogue of the p-point Berends—Giele current J, will be referred to as M1z, .

These M., allow for a compact representation of the ten-dimensional N-point SYM am-
plitude Aypm(1, ..., N) which nicely exhibits its factorization channels. The recursive nature of
the Berends—Giele currents is inherited by the amplitudes and leads to the recursive method to
compute higher-point SYM amplitudes presented below.
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2 3 4 3 4 4
5123 5234
Miszs = R e+
S12 5123 S1234 523 51234 534 51234
1 2 1 3 2 1
3 4 2 3
5234 512 534
+ e+
S23 51234 1 81234
2 1 1 ' 4

1 Tio: T: T: T: 2T,
_ ( 1284 Aana o Inen o dsaa 12[34])

51234 \ 5125123 5235123 5345234 5235234 512534

Fig. 4. Diagrammatic construction of the Berends—Giele current M734 in terms of the cubic graphs of the five-point
amplitude with one leg off-shell.

4.1. Construction of Berends—Giele currents M123...p

The Berends—Giele currents M123..., are written in terms of building blocks T123..., and Man-

delstam invariants {s12, $123, ..., 5123...p} and follow from the recursive definition
p—1
Eix.p= Z M. jMjt1..p,
j=1
OM23..p=E23..p, 4.1)

where M| = V). Although the defining system (4.1) is purely algebraic, it can be conveniently
solved with the recourse of a diagrammatic interpretation for Mj23.. ,. To see this, the current
Mi23..p is first associated to the sum of (2p — 2)!/(p!(p — D!) cubic graphs which enter the
p + 1 amplitude where the leg p 4 1 is put off-shell. Using the dictionary of Section 3.3 each
one of these cubic graphs can be written in terms of building blocks T123..., and their relative
signs are fixed by requiring the system (4.1) to be satisfied. For example, using the cubic graphs
for the three- and four-point amplitudes the currents M, and M|»3 are interpreted as

9 2 3 3
S12 523
1 1 2 !

while M 1,34 is associated to the graphs of the color-ordered five-point amplitude shown in Fig. 4.
Under the dictionary of Section 3.3 these graphs correspond to the following expressions in terms
of building blocks

Ti> I (T T
My =—, M123=—<— —)

512 5123 \ 12 523
1 T1234 T3214 T3421 T341 |, 2T1234
( + + + + =2

51234

Mi234 = 4.2)

$1285123 $235123 5345234 $235234 $12534

where their signs can be fixed by requiring that they form a solution of (4.1). To see this one uses
the BRST variations (3.13) to obtain
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Fig. 5. Decomposition of M., into its factorization channels under the action of the pure spinor BRST charge:

-1
oM. p= Zle My jMjyy. p-

OMipp =ViVo =M M>,
T T V-
1T | TiaVs

OMir3 = = M M3 + M1, M3,
523 S12
Vi (T T T2 T T T3 V.
QM1234=—1( 24 432>+ 12 34+< 23 21)_4
5234\ $23 S 512534 s12 823 ) s123
= M1 Ma34 + M2 M34 + Mi23 M4 4.3)

and therefore the expressions for M2, M123 and M234 given above form a solution of the sys-
tem (4.1) up to this order. Using this method it is straightforward to obtain higher-point currents,
and the explicit expressions of currents up to M»34567 Will be given in Appendix B.

Therefore by using the diagrammatic interpretation of M123..., in terms of the p + 1 amplitude
with one leg off-shell one is able to efficiently construct any higher-order current in terms of
building blocks. However, in the later Section 5.2 we will derive a formula for M123.. , in terms
of the field-theory limit &’ — 0 of hypergeometric integrals occurring in a (p + 2) point string-
theory amplitude. This allows for a direct computation of M., therefore bypassing the need
to draw the cubic diagrams of the (p + 1)-point SYM amplitude to find their corresponding
building blocks.

Note that (4.1) can be written as

p—1
OMiy =) M jMji1_p (4.4)
j=1

and therefore one can interpret the action of Q as cutting M1, , in each way compatible with
the color ordering, see Fig. 5. Furthermore, Eq. (4.4) is the supersymmetric pure spinor analogue
of the recursive construction of the Berends—Giele gluon currents in [17], whose schematic form
is

1 n—1 n—2 n-—1
Iy~ (Z s Jn—m + Z Z InJie—mIn—k |- 4.5)

S
12..n m=1 m=1k=m+1

The cubic term in the lower-order currents represents the four-gluon vertex in the QCD action.
It does not enter into our supersymmetric version (4.4) which encompasses diagrams with cubic
vertices only. After multiplying the external propagator 1/s12. , to the left-hand side of (4.5) one
could symbolically reproduce (4.4) by identifying s12.., = Q.
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4.2. Symmetry properties of M13.. p

As a further motivation for identifying M. , with supersymmetric Berends—Giele currents,
we discuss their symmetry properties in this subsection. First of all, M, trivially satisfies M1, +
M>; = 0 because the building block T;; is antisymmetric. Similar identities hold for M3

M3 + M3 + M312 =0, M3 — M331 =0, (4.6)

as one can easily check by plugging in the expression for My given in (4.2).
At higher n > 4, this generalizes as follows:

My p=(=1)"""M, a1, > Mo =0. (4.7)

o ecyclic

The proof of these identities is most conveniently carried out on the level of the correspond-
ing E12., =0Miy. , = Z’I’,;ll Mz, pMpi1.. - Since all the BRST closed components of the
M., have been removed by construction of its 77>, constituents, the BRST variation Ej3. ,
contains all information on the symmetry properties of its M13._, ancestor. The reflection identity
can be easily checked by induction, and the vanishing cyclic sum follows from

Z Esa2..v= ) ) Msao, . . .;pMsp+i,..,

o ecyclic o ecyclic p=1

|

]
M1
s
&

S

s

<

i

&

n—1 1
Z ZE(MJ(I,Z,...,p)MJ(p+l ..... n)
oecyclic p=1

+ Mspt1,..oMo2,....p) =0 4.8)

where the last step exploits the overall cyclic sum to shift all labels of the second term by p and
that the M1, , anticommute.

The properties (4.7) are shared by the n-gluon Berends—Giele currents J, of [17] and can
be naturally explained by the construction of currents M153._, as (n 4+ 1)-point amplitudes with
one off-shell leg. Inspired by this explanation, we explicitly checked using the expressions of
Appendix B that My, , for n < 7 also satisfy an additional relation — obtained by removing the
(n + 1)-th leg from the (n 4 1)-point Kleiss—Kuijf identity [33]:

Mg =ED" Y Mio) (4.9)
o €OP({a). [T}

The summation range OP({a}, {87}) denotes the set of all the permutations of {a} U {87} that
maintain the order of the individual elements of both sets {«} and {87}. The notation {B7}
represents the set {8} with reversed ordering of its ng elements. The Kleiss—Kuijf identity is
well known to reduce the number of independent color-ordered (n + 1)-point amplitudes down
to (n — D)l

The specialization of (4.9) to sets {8} with one element only, say {8} = {n}, reproduces the
second property of (4.7). However, this so-called dual Ward identity or photon decoupling iden-
tity by itself is not sufficient for a reduction to (n — 1)! independent M;,;,. ;, atn > 6 [33]. Since
there are only (n — 1)! independent T;;, ; which constitute the M; ;, ;. , also the latter must
have a basis of no more than (n — 1)! elements. This suggests the Kleiss—Kuijf identity (4.9) to
hold beyond our checks for n < 7.
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The reflection and Kleiss—Kuijf identity for the Mj, _, are inherited from their associated
(n + 1)-point amplitudes with one leg off-shell. The off-shellness of one leg is no obstruction
for the aforementioned identities to hold because they do not involve any kinematic factors.
However, the field theory version of the monodromy relations [15,16]

SleYM(za 1537"'7N)+(S12+S13)AYM(2’37 15 "'aN)+"'
+ (S12 + e +S1,N—1)AYM(2735 RN N - 11 19N) :O (4'10)

rely on having on-shell momenta, so the M, , do not obey any analogue of (4.10) and cannot
be reduced to (n — 2)! independent permutations.

4.3. The N-point field-theory tree amplitude

The expressions found for QMi;.., = E12.., might look familiar from lower-order field-
theory amplitudes such as

Aym(1,2,3) = (ViVaV3) = (E12V3),

Vilos  TioVs
AYM(1,2,3,4)=<< + >V4>=(E123V4>~ 4.11)
523 512

From QV = 0, one might naively expect that the three-point amplitude would be BRST-exact,
A(1,2,3) = (Q(T12V3/s12)), and thus doomed to vanish. However, all Mandelstam invariants
s;j vanish in the momentum phase space of three massless particles — therefore writing V;V, =
Q(T12/s12) is not allowed and BRST triviality of the amplitude is avoided.

More generally, the prefactor Mi>.., ~ 1/s12..p in the p-point current is incompatible with
putting the external state with k1 = — Zle k; on-shell k; +1 =0. Since N particle kinematics
forbids the existence of M1>. ny—1, the corresponding E> ny—1 is not BRST exact. Hence, the
following expression for the N-point field-theory amplitude is in the cohomology of the pure
spinor BRST charge2 [1]

=

-2
Aym(1,2, ..., N)=(Epp. n-1VNn)= ) (Mo jMji1. n-1VN). (4.12)
|

~.
I

The diagrammatic representation of Zf;ll Mi. jMji1..p in Fig. 5 can be uplifted to the on-
shell N = (p + 1)-point amplitude Aypm(1,..., N) where an additional cubic vertex connects
the N-th leg with the two currents of rank j and N — 1 — j, respectively, see Fig. 6.

The N-point formula (4.12) is analogous to the Berends—Giele formula for the color-ordered
N gluon amplitude of [17]. The latter is written as a product of a rank N — 1 current Jy_
and another J; for the N-th leg, multiplied by the Mandelstam factor sj5. y_ to cancel the
divergent propagator; Aym = s12..y—1J(1, ..., N — 1) J(N). In our case, the somewhat artifi-
cial object s12. . y—1Jn—1 is replaced by E12. n—1, which could be written as QM1,. ny—1 in a
larger momentum phase space. Therefore this parallel also suggests the schematic identification
S12..N—1 — Q mentioned after (4.5).

29t is interesting to note that the cohomology formula (4.12) together with the property of E,—1).1 =

(—1)"_1E12‘__,, (which follows from (4.7)) imply that if the amplitude satisfies the reflection property of A(n,n —
1,..., 1)=(—1)"A(1,2,...,n) then it is also cyclically symmetric, A(2,3,...,n,1) = A(1,2,...,n).
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J j+1

Vv
Fig. 6. Berends—Giele decomposition of Ay according to the pure spinor cohomology formula (4.12).

4.4. BRST integration by parts and cyclic symmetry

The strength of our presentation (4.12) of the N-point field-theory amplitude is the mani-
festation of its factorization properties. But singling out a particular leg Vi obscures the cyclic
symmetry required for color stripped amplitudes. The essential tool to restore manifest cyclicity
is BRST integration by parts,

(Miy i, Ej...j,) =(Eij i,Mj,__j,) (4.13)
Using the definition of E133.., in (4.1) it follows that
N=2
Epp. . Nn1VN=Ex3.NVi+ Z(Mlluj Ejiv1.vn—Epn. . jMji1.n), (4.14)
Jj=2

therefore (E12. . ny—1Vn) = (E23..~ V1) and the N-point subamplitude (4.12) is cyclically in-
variant. However, to obtain a formula with manifest cyclic symmetry one needs to explicitly
use BRST integration by parts in (4.12). And as a byproduct of that, the maximum rank of
the Berends—Giele currents needed for the N-point amplitude is reduced. To see this, note that
the term containing the maximum rank of M;, ; » appearing in the N-point amplitude (4.12) is
p =N —2 and has the form (M;, iy ,Viy_, VN), therefore the use of (4.14) leads to

(Mi in o Vina VN) =My iy, OMiy_N) =(Ei| ixn o Miy_N)s (4.15)

so the BRST integration reduced the maximum rank to p = N — 3 (because E|2_ (y—2) contains
at most M2, y—3). It turns out that the cohomology formula (4.12) allows enough BRST integra-
tion by parts as to reduce the maximum rank of the currents to p = [N /2], leading to manifestly
cyclic-symmetric amplitudes

Aym(1,2,...,5) = (M3 V3 Mys) + cyclic(12345),

Aym(1,2,...,6) = %(M12M34M56> + %(M123E456) + cyclic(123456),

Aym(1,2, ..., T) = (M123MasMe7) + (Vi MazsMsgr) + cyclic(1234567),

Aym(1,2, ..., 8) = (M123 Mys56M73) + %<M1234E5678> + cyclic(12345678). (4.16)

The fractional prefactors % or % compensate for the fact that cyclic orbits for particularly sym-
metric superfield kinematics are shorter than the number N of legs. At N = 6, for instance,
M2 M34 Msg has just one distinct cyclic image M3 Mas5Me1, hence the full cyclic(123456) over-
counts the occurring diagrams by a factor of three.



440 C.R. Mafra et al. / Nuclear Physics B 873 (2013) 419-460

j+1
j+2

Q @ » + cyclic(1...N)

Fig. 7. Cyclic factorization of the N-point field-theory amplitude Ay (1,2, ..., N) into different Berends—Giele parti-
tions according to Eq. (4.18).

4.5. Factorization in cyclically symmetric form

In this subsection, we introduce a cyclically symmetric presentation of SYM amplitudes
where their factorization into two Berends—Giele currents becomes even more obvious.

One can check by evaluating the BRST variations that the amplitudes in (4.16) can be equiv-
alently written as

Aym(1,2,...,4) = = (M1, QM3y4) + cyclic(1234),

Aym(1,2,...,5) = —((M12Q M345) + (M123Q Mys)) + cyclic(12345),

Bl—= =

[y

Aym(1,2,...,6) = 3 ((M120QM3456) + (M123 O Mase) + (M1234 O Mse))

+ cyclic(123456),
Aym(1,2,...,7) = %((MIZQM34567> + (M123QMase7) + (M1234 O Mse7)
+ (M12345 Q Mg7)) + cyclic(1234567),
Aym(1,2,...,8) = %((Mu OM3as678) + (M123 O Maser8) + (M1234 O M5678)
+ (M12345 Q0 Mg78) 4 (M123456 QM738) ) + cyclic(12345678).  (4.17)

Note that some terms in the formula are naively overcounted by a factor of 2 because the cyclic
orbits of (M12.. jOM;11..n)and (M12. N—jOMpy_j11..n) are the same. The purpose of includ-
ing both of them is to obtain a uniform overall coefficient in (4.17) and to simplify the transition
to the general N-point formula,

N-2
D My jOMjy1. ) +cyclic(l... N) (4.18)
j=2

1

Aym(1,2,...,N)= 2N 3

whose graphical representation is shown in Fig. 7. We have explicitly checked up to N = 10

points that the formula (4.18) exactly reproduces the expression Ayy = (E12..nv—1 V) of [1],
including prefactors.

The factorization formula (4.18) can also be interpreted as coming from the factorization chan-

nels of two amplitudes with one leg x off-shell each with the form (Ej>. ;V,) and (Vi Ejy1..N)
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that are connected by a pure spinor propagator which effectively replaces® V, V, — é resulting
in

N-2

Aym(1,2, ... N) = 2(N 52 2<E12 = /+1_4_N>+Cyclic(l...N)
1 N-—2

m (M12..;OM ;1. .N)+cyclic(1...N)

j=2

which reproduces the formula (4.18).
5. The superstring tree amplitude in pure spinor superspace

This section derives our central result (5.22) for the superstring N-point tree amplitude of
the massless gauge multiplet. The BRST building blocks T73..., and their combinations to form
supersymmetric Berends—Giele currents M1».. , turn out to be very efficient bookkeeping devices
to handle the kinematic structures of a superstring amplitude in a universal way, i.e. for any
number N of external legs.

According to the tree-level prescription (2.12), the task in computing superstring amplitudes
in the canonical color ordering (1,2, ..., N) is to evaluate the CFT correlator

[ / dz; (V' OVA DM VN (00) U (2) U3 (23) - UV (z(v-2)) 5.1)

integrated over 71 =0 < 22 < --- < zy—2 < zy—1 = 1. We will first of all give a representation
of (5.1) in terms of (N — 2)! different z; polynomials in the integrand. Then, performing manip-
ulations on the level of both the building blocks and the associated integrals reduces the number
of distinct integrals to (N — 3)! each of which multiplies a full-fledged SYM amplitude (4.12) in
a color ordering specific to the integral.

5.1. The CFT correlator

Since the conformal # = 1 primaries [06%, IT™", d,, N™"] within the integrated vertex do not
have zero modes at tree level, the correlator (5.1) can be computed by summing all their OPE
singularities. Generically, this gives rise to a set of (N — 2)! worldsheet functions where all
the z;; appear as single poles, and additionally to a set of double pole integrands ~ zif. It has
been observed in [13] that the role of the double pole integrals is to correct the numerators of the
(N —2)! single pole integrals such that any OPE residue L ;.. ; is transformed to the associated
BRST building block T;jk..;. This is the consequence of a subtle interplay between the integrals
along the lines of Section 5.4, in particular the tachyon poles due to double pole integrals are
canceled by the superfield kinematics in a highly nontrivial way.

A bit of care is needed to reduce the single pole residue among two integrated vertices
Ui(zi)Uj(zj) to the more basic L j;. ;i superfields which appear when U/U*...U! suc-
cessively approach an unintegrated vertex V!. The required manipulations are based on the

3 C.M. thanks Nathan Berkovits for suggesting back in 2006 how one could view an operation like Vy Vy — é as
possibly being related to a massless propagator in pure spinor superspace.
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independence of correlation functions on the order of integrating out the & = 1 fields [12]. The
relations up to the six-point case can be found in [12,13],

L —L 2L
VU2 (22) U3 (23) ~ 3121 2131 . 2Lp3121)

223231 223731
VI U2(22) U3 (23) U (24) ~ L413121 — L412131 + L213141 — L312141 _. 4L141,131,21]]
223234241 7233734241
(5.2)

we are picking out one particular residue here when the arguments approach each other in the
order zo — z3 — z1 and zp — z3 — 74 — Zz1, respectively. This order is reflected in the specific
z;j in the denominator.

Higher-order analogues of (5.2) involve nested antisymmetrizations:

8L[51,[41,[31,21]]]
223334245251 ’

ViU (22) U3 (23)U* (z4) U (z5) ~

-2
P7ELp1,[(p= D)1 L....[41,131,211)...11)

1 2 3 p ~2
V' @)U (z22)U(z3)---UP(zp)
223234+ Zp—1,pipl

5.3)
When all the single pole numerators are reduced to L jik;..;; and the double pole corrections are

absorbed into L jjx;..1i = Tijk...1, the integrated correlator (5.1) assumes a manifestly symmetric
form in the labels 2, 3, ..., N — 2 of the U’/ vertices

N-2
I1 f dz; (VO VI DMV (00) UP(22) UP(z3) - - UN P (zv-2))
j=2

N-2 N-2
s, Ti2.pTN-1N-2,..., 1VN
=1 [z [T Z< . o
i i<j o (212223 Zp—1,p) CN=1,N=2ZN—-2,N=3 * * * Zp+2,p+1)
+P(2,3,...,N—2)>, 5.4
where P (2,3, ..., N —2) denotes a symmetric sum over the (N — 3)! permutations of the labels

(2,3,..., N —2). The z;; polynomials associated with a specific BRST building block 7}, j,... ip
follow an intriguing pattern (where the first label i belongs to an unintegrated vertex V! or VN1
and the remaining ones to the integrated vertices j; € {2,3,..., N —2}):

1

Tiiiin...i) <> . (5.5)
izl Zij1Zj1j2%g2ds " Lip-1.Jp

Since there are (N — 3)! permutations of the (2,3,..., N — 2) labels and the p sum collects
(N — 2) distinct permutation orbits, (5.4) yields an expression for the N-point superstring am-

plitude (2.12) in terms of (N — 2)! kinematic numerators and hypergeometric integrals,

N-=-2
Av=A(1,2,...,N) = 1_[ /dzjl_[|zij|—si_/
j=2

i<j
= T2 pTN—1,N—2 1V
XZ< P NLN=2,.pt1 TN +P(2,...,N—2)>. (5.6)
(212223 - Zp—1,p) @N—1,N=2 " " Zp42,p+1)

p=1
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The cases N =5 and N = 6 of (5.6) reproduce the formule obtained in [13,26] and (5.6) has also
been used in [34] to obtain (via the field-theory limit o’ — 0) local expressions for all 2N — 5)!!
kinematic numerators entering the field-theory N-point amplitude which manifestly satisfy all
BCJ numerator identities [14].

5.2. A closed formula for M., from the superstring

In this subsection we will show that the result (5.6) for the N-point superstring amplitude
allows to extract a closed formula for the Berends—Giele current M13.. ,. The p sum in (5.6)
partitions the legs 2,3,..., N — 2 into two groups — one of them gets connected to leg 1, the
other to leg N — 1. The same structure is also present in the cohomology formula (4.12) for the
field-theory amplitude; AQM = gz_lz(Mlz_”pMerl_“N_l Vn).

Since the kinematic factors within individual terms of the p sum are linearly independent, we

can directly compare the p = N — 2 term on both sides of Ay ey .AQM — with the string- and
field-theory amplitudes given respectively by (5.6) and (4.12):

N-2
Av=(a)" ] [
j=2

a'—0

— (M2 . N2VN_1VN) + . (5.7

| T —2VN1V,
lez'jl_z"‘“f< L +7>(2,...,N—2>+.~>

- 212223 " ZN-3,N-2
i<j

This yields a closed-formula solution for the rank p = N — 2 current M2, p,

M., = O{l/igo(za/)”*‘
1

P p+l Ty
Xl_[ f de l_[|Zl'j|_2aSij(+.p+P(2737"'7p)>7 (58)
j=2

=27 i< 212223+ Zp—1,p
where z1 =0 and z,41 =1 as customary for a (p + 2)-point amplitude. For example, using
the momentum expansion of the five-point superstring integrals [5] and the BRST symmetry

T123 + Tr31 + T312 = 0 of (3.14) the following M 1,3 is generated

Zoas f Th23 T3
12ij1 2‘“”<—+
712223 213232

1 1
My = limO(Za’)Z/dzz/dm

o — :

0 J

4
1<,

22

T T T T T
_ 123 + 123 . 132 _ 123 + 321 ’ (5‘9)
S128123  $238123  $235123  S125123  $235123
which is easily shown to satisfy QM3 = Ej23. Similarly, we checked that the formula (5.8)

correctly generates solutions of (4.4) up to and including M1234567.
5.3. Trading Tia...p, for M12..p
As will be shown in the next subsections, in order to simplify even further the expression (5.6)

of the superstring N-point amplitude it will be convenient to trade the BRST building blocks
T13...p for the Berends—Giele currents M1z p.
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This exchange will be possible because of the particular pattern (5.5) of z;; dependence along
with the T2, ,. The lowest-order example of T <> M conversion is a triviality T‘2 = ?.i My,

but already the simplest generalization is a result of partial fraction relations and the symmetry
properties of T;j:

T s (s s
124 po 3= 12<£+ 23
213 223

)M123 +P2,3). (5.10)
212223 <12

Similar identities have been checked at p =4 and p =5 level:

T s s s s s K
_T12H L p2,3,4) =12 (ﬁ_,.ﬁ) <ﬂ+ﬁ+ﬁ>M1234+ P(2,3,4),

2123223234 212 \ 213 223 214 224 234
T12345 S12 ( S13 $23 S14 524 §34

— B 1 p3.4,5="2( 2 ) (22 A

212223234245 212 \ 213 223 <14 224 234

S15 | 825 | 835 | 845
X(—~I——+—+ >M12345
215 225 235 245

+P(2,3,4,5). (5.11)

These identities heavily rely on the interplay of different terms in the permutation sum and on
the symmetry properties (3.20) of the BRST building blocks which leave no more than (p — 1)!
independent permutations of 7; iy AL level p.

The natural n-point generalization of (5.10) and (5.11) reads as follows:

k—1
T i Smk
———= 4 PQ...p=[]D] M., +PQ....p).
212223 Zp—1,p e ) Zmk
Tn_1,N—2,..., 1
VAR 16 3 )
IN—1,N=2"""Zp+2,p+1
N-2 N-1
Snk
=1 > *=Mvana.,pn+PQ....p)
fe=p+1 niet1 <k
N-2 N-1
skn
= 1] Z plpa2.N—1 + P2, p), (5.12)
k=p+1n= J+1 ©

where in the last line the rank N — 1 — p Berends—Giele current with leg N — 1 involved was
reflected via (4.7); My_1,_p+1 = (=DV"P2M, 1 N1

.....

5.4. Worldsheet integration by parts

This subsection focuses on the integrals rather than the kinematic factors in the superstring
amplitude. The chain of S’"’; sums which appears as a result of (5.12) when all the Ty, are
converted to M1z p is particularly suitable to perform integration by parts with respect to z;
variables. Further details on the structure and manipulations of the integrals can be found in [2].

The key idea is the vanishing of boundary terms in the worldsheet integrals:

d i< j12ij |7
/dz] /dzN z—n’f—” =0. (5.13)

92k Ziyjy - ZiN_4jN-4
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This identity provides relations between the integrals in an N-point superstring amplitude with
N — 3 powers of z;; in the denominator. They become particularly easy if the differentiation
variable z; does not appear in the denominator (i.e. if k ¢ {i;, ji}) because a% only hits the
[ Lk 12mi] ¥ factor in that case:

|zij | 7%
/ dzy-- / dayp s BT Yo ko (5.14)
ZipjiZiN-ajn-4 | Zmk
m#k

This can be directly applied to the integrands on the right-hand side of (5.10), (5.11) and (5.12),
namely:

e 812 (S13 8§23 g, S12 S34
H/dzjl_[kzﬂ Y”—(— ) l_[/dzjnlzljl Sij —= =,

<12 \<13 223 <12 234
i<j i<j

Hfdzjl_llzzjl‘“f“—z(“i+sﬁ)(m+sﬁ+s3—4>

212 \ %13 223 214 224 234
i<j
S13 4 53
om0
- J ij e S34 4 535
i< 212245 (234 235)

[ oo Tl 2222 2) (2 2 ) (2222 )

i< 212 \ %213 223 <14 224 234 215 225 <35 245
—_g:: 512 856 ( S13 §23 545 §46
—]_[fdzjl_[lzul i —<—+—><—+—>. (5.15)
<212 256 \X13 223 <45 246

i<j

k=1 smk

In the general N-point case, it is most economic to leave the first [NV /2] — 1 factors of Zmz 1 o

as they are, and to integrate the remaining [(N — 3)/2] such factors by parts:

N-2

S M) N - SN— —
Hfdzf [Tiziji 12( =+ 23) : ( LN2 |y L2 2)
i

212 \%13 223 Z1,N=2 IN—-1,N-2
l</
513 523 S1,[N/2 S[N/2]-1,[N/2
—l_[/dz/l_llmfl ( + ) <M++M)

i< Z12 \Z13 223 21,[N/2] Z[N/2]-1,[N/2]

S[N/2]+1,[N/2]4+2 S[N/2]+1,N—1
« <M++L)

Z[N/2]+1,[N/2]+2 Z[N/2]+1,N-1

<SN 3,N—2 SN—3,N—1)SN—2,N—1

IN-3,N-2 iN-3,N—-1/ ZN-2,N-1

N-2 [N/2] k—1 ]
T (T 2)( T ¥ ) 516
j=2 i<j k=2 m=1 <Mk ]\ k[N /2141 nmieg1 SRn

In contrast to the T2, — Mi2...p reshuffling identities from the previous subsection, (5.15)
and (5.16) are valid before summing over permutations of (2,3,..., N —2).
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5.5. The complete N -point superstring disk amplitude

This subsection completes the derivation of the striking result (5.22) for the superstring
N-point amplitude Ay = A(1,2, ..., N) by combining the results of the previous subsections.
Let us first look at the four-, five- and six-point examples to get a better feeling of the mechanisms
at work.

After using T;; = s;; M;;, the total derivative relation 523, 5 52 as well as E1p3 = M1 V3 +

23 212
V1 M»3, the four-point open string disk amplitude is easily seen to be

[ T12 V3V, Vi T3, V.
A4=/dzzl_[|zl‘j|_s’f< 1VaVs | ViTs 4>

<12 32

i<j

—s;i ] S12 $23
k) GO ERE D
Z12 223

i<j
s S12
=/d221_[|2ij| == ((M12V3 + Vi M23) Vs)
i 212
s
- / dz [The ™% 22 Avm(1,2,3,4). (5.17)
L2 212
1<j

Similarly, the five-point superstring amplitude (5.6) contains six different integrands and kine-
matic terms. After applying (5.10), the T;; and T;jx conspire to give M;; and M;;; with modified
integrals, then we use integration by parts according to (5.15) on the way to the third equality
of (5.18). Remarkably, many of the initially (N — 2)! = 6 distinct integrals now coincide: The
three kinematic terms M123V4 Vs, M12M34Vs and V1 M334 Vs are multiplied by the same integral
after partial integration, the same is true for the (2 <> 3) permutation. That is why we can identify
color-ordered field-theory amplitudes (4.12) in the last line:

N T123VaVs  TiaTa3Vs  ViTazV:
ASZ/dZ2dZ31_[|Zij|S”< 123Va¥s | f12743¥5 | V11432 5+(2<_>3)>

i 212223 212243 243232
S S S S128
= /dzzdz3 l—[ |Zij|_s']<£<£ + £>M123V4V5 + 22 My M3y Vs
oy Z12\213 223 212234
S. S. S
ﬁ(ﬁ + ﬁ>v1M432v5 + (2<»3>>
43 \242 232
[ s128
= /dzz dz3 l—[ |Zij|_s']{ P28 M123ViaVs + MiaMsg Vs + ViMaza Vs) + (2 < 3)}
iy 212234
] S128 5135
=/dzzdzs l_[|zl-j|~‘w{ 22 Avm(1,2,3,4,5) + - AYM(1,3,2,4,5>}.
iy 212234 213224

(5.18)

Simplifying the six-point amplitudes Ag follows similar steps. In this case, (5.11) takes care of
the conversion of T;ji; into M;j, then integration by parts makes the four integrals within a
given (2, 3, 4) permutation coincide:
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4
As = H/de
j=2

V115432 Ve
_I_ - - = -
254243232

4
s [S12 (S13  $23 )\ [ S14  S24  S34
T s T2 (2 2 ) (22 5
j=2

o[ T1234 V5V, T123T54 Vi T12T543 Vi
nlzijl s,l< 1234V5 6+ 123154 6+ 1214543 Ve

i<j 212223234 212223254 212254243

+ P2, 3,4)>

g Z12\213 223/ \214 224 234
i<j
S12 (513 | 523\ 845 S12 545 (834 | 835
+ —(— + _>_M123M45V6 +—— <— + —)M12M543V6
212 \213 223/ 245 212245 \ 234 235

S S R) S S. S
i ﬁ(ﬁ i i) (2 N i) ViMsgpaVe + P23, 4)>
245 \ 234 235 252 242 232

4
_;; | S12845 (513 s23
- l_[ / dz; 1_[ |2ij| ™ { <— + —> (M1234Vs Ve + M123M4s Ve
P i 212245 \ 213 223

+ M12M345Ve + Vi Ma3a5Ve) +P(2, 3, 4)}

<12245 \ 213 <23

4
= ]‘[/dzj I1 |Zi,-|—Sff{w<sﬁ + SE)AYM(L 2,3,4,5,6) + P(2.3, 4)}.
j=2

i<j
(5.19)

The identities (5.11) and (5.15) are sufficient to also reduce the superstring seven-point amplitude
A7 to its field-theory constituents:

5
A7=nfd1j
j=2

T12Tes543 V7 + V1Tes5432V7
212265254243 265254243232

5
] S128 N S S. S.
= H/dz,» H|Zij|“‘f-f{ﬂ<ﬁ+2) (ﬁ +ﬁ)AYM<1,2,3,4,5,6,7)
j=2

212256 \Z13 223/ \Z45 246
+ 73(2,3,4,5)}. (5.20)

_s. | T12345VeV7 T1234Tes5 V7 T123T654V7
1_[ |zij| 7% < + +

i<j 212323234245 212223234265 212223265254

+P(2,3,4, 5)>
i<j

The N-point generalization is based on introducing currents Mii,..i, via (5.12) followed by
integration by parts using (5.16). The latter makes the integral independent on p such that the z;;
can be placed outside the p sum and SYM amplitudes emerge from the kinematics:

N2 = To.p IN—1,N—2 1VN
. —1,N-2,..., +
AN_ | | /dzj | ||le| Sz_/<§ P 14
./':2

i< o (z12223** Z2p—1,p) @N=1,N=2 " * Zp+2,p+1)

+P@&””N—D>
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N-2 2/ p k-l )
=[] /de lewf<2(ﬂ > Z’"—lez.,_p>
j=2 =17

i<j p=1

— N—-1
N
( 1_[ Z ﬂMp—Fl ’’’’’ N—2,N—1>VN+P(273’""N_2)>

k=p+1 n—kt1 kn

T emer (M) 15 =)

i< k=2 m=1 <mk [N /2141 n=k+1

N—
Z M. p p+1...N2,NIVN)+P(2’37~-7N_2)}

N-2 N2l k=t ]
- H/dz.fﬂlw'”’K“ Zﬂ)( n.x )
j=2 k=2 m=1 <"k Lkn

i<j [N/2]+1 n=k+1

XAYM(1,2,3,...,N—1,N)+’P(2,3,...,N—2)}. (5.21)

Equivalently, by undoing the total derivative relation used in (5.21) the full N-point superstring
amplitude becomes

N-2 k-1
[ ]zl [HZ—AYM(12 N)+7?(2,...,N—2):|, (5.22)

2i<Zitl i<j k=2 m=1

where the integration region fz i<z ]_[N;22 fz 1]_71 dz; is responsible for dictating which color-
ordered string subamplitude is being computed. Therefore the end result of all these pure spinor
superspace manipulations is that the N-point superstring disk amplitude is written in terms of
the explicit sum of (N — 3)! basis of field-theory amplitudes multiplied by an equal number of
hypergeometric integrals, as mentioned in the Introduction and further elaborated in [2].
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Appendix A. The explicit construction of 773345

In order to find the appropriate redefinition of L»1314151 leading to T12345 one simply uses the
known redefinitions of [L21, L2131, L213141] = [T12, T123, T1234] in the right-hand side of (3.3).
Even though it is not obvious, all terms from these lower-order redefinitions group together into
a BRST-exact combination which can be moved to the left-hand side of (3.3). Doing that finally
leads to the definition of T12345, given by

T12345 = L21314151

1
- Z(SB + 523)[ D12D34V5(s535 + 545) + D12D35Vas3a — D12Das V3ssa|

- %S12[013D24V5 (525 +545) + D14 D23 V5 (525 + 535) + D15D23 Va(s24 + 534)
+524(D13D25V4 — D13Dys5V2) + 513(D34D25V1 + D35D24 V1)

+ 523(D14D25V3 — D14D35Va + Di5D24 V3 — D15D34 V) + s14D45 D23 V1 |
— (s15 + 525 + 535 + S45)S%4 Vs — (514 + 524 + 534) (5%%4 + S%S V4)

— (513 +923)(S{p4 L3 + S{ps Laz — S§ Lot + S5 V)

—sna[Si3yLs2 + i35 Laz + Sj5Lao + S1345Va — (1 2)]

1
- E[Tm Dys(s14 + 524 + 534) + (T125 D34 — T345 D12 + T124 D35) (513 + 523)
+ s12(T134 D25 + T135 D24 + Tias Doz — (1 <> 2)) ] (A.T)
which, by construction, is guaranteed to satisfy
OTi23a5 = +(s15 + 525 + 535 + 545) T1234 Vs + (514 + 524 + 534) (T1235 Va + T123T45)
+ (513 +523) (T1245 V3 + T124 T35 + T125T34 + T12T345)
+ 512(T1345 V2 + ViT2345 + T134T25 + Th3sToa + TiasTo3
+ T13T245 + T14T23s5 + Ti5T234). (A2)
One can also show that*
- = 1
T12345 + To1345 = QR§2)345,
- = = 2
T12345 + T23145 + T31245 = QR§2)345,
Ti2345 — Ti2435 + Tsa125 — T3a215 = OR 8)345,
~ = = = = = 4
T12345 — T12354 + Tas123 — Tus213 — Tus312 + Tys301 = QR52)345, (A.3)
where the BRST-exact parts are given by
@ 12 A3\ (7123 A4\ (11234 45
R12345—D12(k A )(k A )(k A )
1 4 43\ (15 A3
+ 6(S13 +523) D12 Das((k* - A7) — (k- A7)

+ Das (- AT) = (k- 4%)) = 2D3g (7 - A7) +2(k* - 47))],

4 The tedious algebra was handled using FORM [32].
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1
R%2345 _ Dlz(kz )(k123 . A4)(k1234 . AS) + 6[S12D13(D45((k4 . AZ) _ (kS . AZ))

+ Dos((k° - A*) — (k7 - A*)) —2Dp4((K* - A%) +2(k* - A))) + cyclic(123)],
RBs = — (W W) (WEy " W) (634 )

i [Dlg(k3-A4)(k2-A3)(k1234~A5)

1 4 45
+ §(S24 —2523) D34 Do (k* - A°) — 3 < 4)

+é(s14+S24)[Dst34(( ) ( ))
+ DisD3a((k - A%) — (k' - A%))]
+é(s23+524)[D45D12(( A%) = (k- A%))
+ D3sDpp (k7 - AY) — (k7 - A%))]

+ [(D13(k1 A% (K- AY) + Doy (k% - A" (k* - AY)
+D34(k1 'Az)(k4'A1))(k1234-A5)
+ %(524 - 2S14)D34D12(k2 . AS) -1« 2)},

Ryss = (Why" W[(Why" W) B, — (Why W) (62 4%)]
+ |:(W1ymW2)(W3y’"W5)(k5 A + %(lesz)(Wsy"”ymW3)]-',‘:p
+ Dip(k* - A%) (kP - AY) (k* - A%) + Dio (k' - A%) (K2 - AY) (k* - A7)
+ éD12D35 (k3 : A4)S23 + 2D12035 (k5 ] A4)Sz3 + %D12D45 (k4 . A3)523
+D14(k1 .AZ)(kIZ . A3)(k4 . AS) +D25(k2 . Al)(kl2 ~A3)(k5 ~A4)
+ Dag(k*- AY) (k3 - A?) (k* - A%) + Das(k* - AY) (k' - A% (K- AY) — (4 < 5)]
+ [(W2y’” W) (Whymwd) (k* - A') + i(w“ymwS)(wly"Pym W) Fr,
+ Dis(k' - A%) (k3 - AY) (k* - A%) — Dis(k° - A*) (k' - A%) (K - A)
+ Dys(k* - AY) (k7 - A%) (K - A%) + Das(k° - AT) (k' - A%) (k2 - A7)

+ DDk A% (=2 L DD (i - 42
3Pn 45 (k* - A%)( S15+S25+S35)+6 13D4s5(k° - A%) (515 + 525 + 535)

1
- ng3D45 (k1 . Az)(SIS + 525 — Ss35) — (1 < 2)]- (A.4)

Removing these BRST-exact parts is accomplished by the second redefinition T12345 —
T12345, leading to the rank-five BRST building block

= 3
T12345 = T12345 — Qsz)345, (A5)
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. 3) . .
where the expression for §,33,5 can be written recursively as

3 _4. L @ @ @ @ @ 1@
S12345s = =S12345 T 5(512354 — S45125 + Sasa13 + Sasa12 — Sasaar) + < Rizaase

5 5
3 1 1
(2 1) 1) (1) (1) 3)
Si2345 = 1512345 + Z(S12435 — S34105 + S3215) + ZR]2345’

o _1lom e
Sio34s = §R12345 + gR[12]345~

To see that (A.5) and (A.6) imply all the BRST-symmetries of 775345

0= Th2345 + T21345,

0= "Ti2345 + T31245 + T23145,

0= Ti2345 — T12435 + T34125 — T34215,

0= Ti2345 — T12354 + Tu5123 — Tu5213 — Tas312 + Tus321
it suffices to check that the following identities hold,

553)345 + 5531)345 = R§12>3457
(3)

3) 3 _ p®
S123as 1 531245 T 523145 = Rizaas:

(3) 3 3 3 _ pB
S123a5 — S12a35 t S34125 — S3a215 = Ridas:

(3) 3) 3 (3) (3) 3 _ p@
S123a5 — 12354t S45123 — Sas213 — Saszia T Sasan = Rinzas:

451

(A.6)

(A7)

(A.8)

Having the explicit superfield expressions for the building blocks up to 712345 allows all compo-

nent amplitudes up to N = 11 to be evaluated.

Appendix B. The solutions for M;,;,...;, in terms of BRST building blocks

From the relation between M1»3., and the cubic diagrams of the (n + 1)-point amplitude
discussed in Section 4.1, it follows that the solutions for Mi73, M1234, M12345, M123456 and
M 234567 Which satisfy (4.1) contain 2, 5, 14, 42 and 132 different kinematic pole configura-
tions, which are represented by the cubic-graph expansion of the tree amplitudes. Their explicit
expressions can then be read off from the dictionary between those cubic graphs and the BRST
building blocks; as discussed in Section 3.3. Furthermore, using the antisymmetry on the first
two labels of 7jji..., one can always choose an ordering such that all terms in M|23._, have a

positive coefficient, leading to:

Ty
Mp=—,
S12
I (Tiz T3
Mip=—|—+—|,
5123 \ S12 523

T1234 T3214 T3241 T3421 2T12(34
M4 = < + + + + B4,
51234 \ 5125123 $235123 5235234  S§345234  S128534
1 1 Ti2345  Tao145 | T32415 T3p15  2T12134)5
+ + + A
$12345 | S1234 \ S125123  $235123 235234  $345234 512534
1 T34251 T32451 T34521 Ts4321  2Tusp23n1
+ + + + B
$2345 \ §345234 82385234 S345345  $455345 $23545

M2345 =

(B.1)

(B.2)

(B.3)
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n 2T123(45) n 2T3;1145] n 2T453112] n 2T435[12]} (BA)
$1251238545  $235123545  $455345512 5345345512
Mipsase = 1 |:4T12[34][56] 4T34156)121] 4T123(14516] 4T12314156]]
$123456 | S1253455651234  $1253455653456  $1254551235456  S1285651235456
41311154161 4T3114[657] 2734502116 2T3456[21]
$2354551235456  $2355651235456  $125345345512345  S12534534553456
2T2134156 2T12314516 2Ts4312116 2T5436[21]
51253451234512345  S125455123512345  S125455345512345  $12545534553456
2Ty563(12] 2T1234156] 2T5643121] 2123115416
512545545653456  S12556512351234  S12556545653456  $235455123512345
2Tys56[2311 2T34156121 2T23(54116
$235455456523456  53455652345653456  $2354551234552345
n 2123154161 212314165 212341165 213416511
$2354552345523456  $23556512351234  $23556523451234  $235565234523456
256413211 2T3421156) 2T340156]1 T321456
$235565456523456  $34556523451234  $345565234523456  $23512351234512345
T34156 T324516 T324561
$23523451234512345  523523451234552345  $23523452345523456
T342156 T342516 T342561
§34523451234512345  534523451234552345  $34523452345523456
T345216 T345261 T345621
$34534551234552345  $34534552345523456  $34534552345653456
+ Ts43216 T543261 T123456
545534551234552345  $45534552345523456  S12512351234512345
Ts43621 T546321 T564321 ] ’ (B.5)
545534552345653456  S45545652345653456  $56545652345653456
51234567 M 1234567
. 8Tipaysem 8T54167]11[231] 8T12(34]15[671] 8T4s[671131121]
 S12534556556751234  S23545567512354567  S12534567556751234  S12545567512354567
4T567134112) 4T 12034115617 ATy3156)11217
$125345565567534567  S12534556512345123456  $12534556512345653456
4Ty3s[12167) 4Tu3s51671112) 4T765[341112]
$125345675345512345  S125345675345534567  $125345675567534567
AT 123415(67) 4T123145167) 4T4s31121167]
$1253456751234512345  S125455675123512345  $125455675345512345
4Tys3167[12) ATys(6713(12) 4T123((451617
$125455675345534567  S1254556753456754567  $12545512354565123456
4T5467((1213) 4T654([1213) 4T1234(5(677)
$125455123545654567  S125675123556754567  S125675123556751234
4T301145)[67) 4T3014511(67) AT301451167]1
$235455675123512345  S2354556751234552345  $23545567523455234567
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4T5647([1213) n 4T1234[5617] n 4T5674((1213)
5125565123545654567  S125565123556751234  S128565123556754567
AT12314(56117 n 4Ts64711123]) n AT30141[5617]
$12556512354565123456  $235565123545654567  $235565123556751234
4T5674111231) N 4T32114156117 N 4T32145[671]
$235565123556754567  $23556512354565123456  $235675123556751234
4T7654111231) n 4T304115[671] n AT30415167111
$235675123556754567  S235675234556751234  S23567523455675234567
4Tys167112311 n 4T301(1451617 n 4Ts467111231)
$23545567523456754567  $23545512354565123456  $235455123545654567
4T3241([5617) N 4T3241156171 N 4Ts3421115617]
$235565234556751234  S23556523455675234567  $345565234556751234
4T342115611 n 4T3001(5[671) n ATs342(5067111
$34556523455675234567  S345675234556751234  $34567523455675234567

2743512167 n 274356127 n 2T43567[12]
51253453455123455123456  $125345345512345653456  S12534534553456534567
2121341567 n 2Tys53112167 n 2T4s53611217
512534512345123455123456  51254553455123455123456  $125455345512345653456
2T45367112) i 2Tus56311217 + 2T45637112)
$12545534553456534567  S125455456512345653456  S12545545653456534567
2T45673[12) n 2T1234[56]7 n 2T123145167
$12545545653456754567  S125565123512345123456  51254551235123455123456
2T6s54311217 n 2T65437112) n 2T65473(12)

5125565456512345653456  S12556545653456534567  S12556545653456754567
2T65743[12] n 2T12345[67] n 2T67543[12]
$12556556753456754567  S12567512351234512345  S12567556753456754567

2T31145167 n 2Tys6[23117 n 2Tys56[23171
$2354551235123455123456  $2354554565123456523456  $2354554565234565234567
2Tys56712311 n 2T31451167 n 2T324115617
$235455456523456754567  S23545512345512345652345  $235565234512345123456
2T321451617 " 2T301451671 + 2T3214(5617
$23545512345652345523456  523545523455234565234567  S235565123512345123456
2T324(56117 n 2T324156171 n 2654123117
$2355652345123456523456  $2355652345234565234567  $2355654565123456523456
2Te54023171 n 2T6547[2311 n 2Te57412311

$2355654565234565234567  S235565456523456754567  $235565567523456754567
2T32145[67] n 2T32415[67] n 2T32451[67]
$23867512351234512345  $23567523451234512345  $23567523451234552345

2T304516711 n 2T675412311 . 2T342115617
$235675234523455234567  S235675567523456754567  S345565234512345123456
2T342[56]17 n 2T342[56171 n 2T657134121

$3455652345123456523456 $3485652345234565234567 $3455655675234567534567
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21341561217 21341561271 2T34(561721
534556512345652345653456  $34556523456523456753456  S34556523456753456534567
2T34215(67] 2T34251(67] 2T3425[6711
$34567523451234512345  S34567523451234552345  S345675234523455234567
2T543206711 2Ts43167121 2541671321
5455675345523455234567  S4556753455234567534567  S45567523456753456754567
2T34521(67) 2T345216711 2T345(67121
534567534551234552345  S34S675345523455234567  $3456753455234567534567
2T675[34121 2T54321(67] T1234567
$3456755675234567534567  S45567534551234552345  S125123512345123455123456
13214567 T3241567 T3245167
$235123512345123455123456  $235234512345123455123456  $235234512345512345652345
n T3245617 13245671 T3456217
$235234512345652345523456  S235234523455234565234567  $345345512345652345653456
T3421567 T3425167 T3452617
$345234512345123455123456  $345234512345512345652345  $345345512345652345523456
+ T3425617 T3425671 T3450167
$345234512345652345523456  $345234523455234565234567  $345345512345512345652345
T3452671 T3456271 T3456721
$345345523455234565234567  S345345523456523456753456  $345345523456753456534567
n T5432167 T5432617 T5436217
5455345512345512345652345  S455345512345652345523456  $455345512345652345653456
T5432671 Ts436271 Ts436721
$455345523455234565234567  S455345523456523456753456  S455345523456753456534567
n T5463217 Ts463271 T5463721
5455456512345652345653456  S455456523456523456753456  S455456523456753456534567
T5467321 Ts643217 Ts643271
$455456523456753456754567  5565456512345652345653456  S565456523456523456753456
+ T5643721 Ts647321 Ts674321
$565456523456753456534567  5565456523456753456754567  S565567523456753456754567
n T7654321 (B.6)

S675567523456753456754567

Appendix C. The cubic graphs of M123...,

As discussed in Section 4.1, the expressions for M123.., of Appendix B were found using the
dictionary between the cubic diagrams of the (n + 1)-point amplitude with one leg off-shell and

2 3

S123 . _

Ti23

3

512 -

Fig. 8. The two cubic diagrams which constitute M{;3.

8125123

S123 . _

T321

523

2 1

5235123
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2 3 4
S12 | s123¢. _ Thozy s234  Thum
5123 " S12512381234 534| |51234 " $34523451234
1 2 1
3 4 4
523 | s123¢  Tyoua |5234 Tso41
|5123 T saas12381934 523 |91234 " 523523451234
2 1 1
2 3
S12 534 27534
51234 T S1283451234
1 4

Fig. 9. The five cubic diagrams which constitute M1234. The signs match the corresponding terms given in the for-

mula (B.3).
2 3 4 5 3 4 5
|‘9123| | 512345 Tia345/512345 |5234| 512345 T3a451/512345
512 51234 512 5123 51234 523 52341 523 5234 52345
1 2 1
3 4 5 4 5
|5234 512345 T3p415/512345 534 52345 Ts4521/512345
S23 |51234 893 8234 S1234 v5'345| $12345  S34 S345 $2345
2 1 3 2 1
3 4 5 4 5
5123| | 512345 T39145/512345 5234| 512345 T34951/512345
523 | 51234 593 5123 S1234 534 | 52345 534 5234 52345
2 1 3 2 1
5
15 Taa15/512345 T54321/512345
834 5234 1234 $45 5345 52345
4
1 2 3 4
2T54132)1/ 512345 512 834 2T1934)5/ 512345
523 545 52345 51234 512 534 51234
5
- 512345
1 2
523 s S. 2T. e S S 534 27, e
123 545 321[45]/ 512345 12 5345 - 135[12]/ 512345
1 | 512345 523 5123 545 512345 | 5 5125345345
1 2 4 5
3 4 5 1 2 3
S 3 ; S.
12 545 2T'93145)/ S12345 512 45 2Tys3119)/ 512345
5123 | $12345 512 5123 545 9345 812 845 5345

812345 !

Fig. 10. The 14 cubic diagrams which constitute M1,345. The signs of their corresponding formul® are in one-to-one
agreement with the terms in expression for M{2345 given by (B.4), which is reproduced by summing all 14 graphs
displayed here.
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3 4 5 6 3 4 5 6
| 5123 | |812345| | 5234 | |823456
S12 51234 5123456 523 52345 |~9123456
2
1
T123456 / 5123456 T324561 / 5123456
512 5123 51234 512345 523 5234 52345 523456
4 5 6 5 6
4
| 5234 | 512345| 5345 | 523456
523 52345 | 5123456 534 53456 | |8123456
3
1 2 1
T324516 / 5123456 T345621 / 5123456
23 5234 52345 S12345 $34 8345 53456 523456
4 5 6 5 6
4
| 5234 812345| 5345 |823456
523 | 1234 5123456 $34 | 52345 | 5123456
3
1 2 1
_ Ts24156 / 5123456 _ Tsas261 / 5123456
823 5234 51234 S12345 534 §345 52345 523456
5 6 6
5
| §345 512345 | 5456 523456
534 |82345 | 5123456 S45 |53456 | |5123456
4
2 1 3 2 1
~ Tsas216 / 123456 _ Tsae321 / 123456
534 $345 52345 512345 545 S456 S3456 S23456
4 5 6 5 6
4
S123 | |812345| 5234 | |823456
$23 | $1234 5123456 534 | 52345 |8123456
3
1 2 1
T321456 / 5123456 T342561 / 5123456
523 5123 51234 512345 534 5234 52345 523456
5 6 . 6
5]
5234 512345 5345 523456
534 | 82345| $123456 S45 | 53456 |8123456
4
2 1 3 2 1

T342516 / 5123456

S$34 5234 52345 512345

Ts43621 / 5123456

845 5345 53456 523456

Fig. 11. The 42 cubic diagrams which constitute M123456. The signs of their corresponding formul are in one-to-one
agreement with the terms in expression for M{345¢ given by (B.5), which is reproduced by summing all 42 graphs
displayed here.

BRST building blocks. The graphs which compose the expressions for M3, ..., M123456 are
given in Figs. 8—11 (the 132 graphs used in the derivation of M234567 would occupy to much
space and were omitted).
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5 6
4
S234 |812345|
S34 | |51234 5123456
3
2 1
T340156 / 5123456
$34 5234 51234 S12345
6
5
8345 512345|
845 | |82345 5123456
4
3 2 1
_ Tsuz216 / 5123456
845 5345 52345 512345
4
3
5123456
512345
2
1 _ 2Tap34556 / S123456
S12 834 51234 512345
5
4
5123456
$12345
3
2 _ 2T3s5)16 / S123456
523 845 52345 512345
2 3 4 5

523456

5123456 .

512345
6=

1 8123456

5123456 .

2T546(32)1/ 5123456
6 823 S45 S456 523456

2T521145)6/ 5123456

523 545 5123 512345

2T345[21]6/5123456
5 S$12 $34 S345 S12345

6
5
8345 |823456
845 | 592345 | 5123456
4
3 2 1
Ts43261 / 5123456
545 $345 52345 523456
6
5456 523456
S56 | |53456 |8123456
5
4 3 2 1
_ Txeaz21 / 5123456
856 5456 53456 523456
5

5123456

2T32[45]61 /8123456
523 545 52345 $23456
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