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Abstract

In this paper the pure spinor formalism is used to obtain a compact expression for the superstring N -
point disk amplitude. The color-ordered string amplitude is given by a sum over (N − 3)! super-Yang–
Mills subamplitudes multiplied by multiple Gaussian hypergeometric functions. In order to obtain this
result, the cohomology structure of the pure spinor superspace is exploited to generalize the Berends–
Giele method of computing super-Yang–Mills amplitudes. The method was briefly presented in Mafra et
al. (2011) [1], and this paper elaborates on the details and contains higher-rank examples of building blocks
and associated cohomology objects. But the main achievement of this work is to identify these field-theory
structures in the pure spinor computation of the superstring amplitude. In particular, the associated set of
basis worldsheet integrals is constructively obtained here and thoroughly investigated together with the
structure and properties of the amplitude in Mafra et al. (2011) [2], arXiv:1106.2646 [hep-th].
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The computation of tree-level superstring scattering amplitudes is an important problem since
the birth of string theory (see e.g. [3]). But despite being already four decades old, explicit results
for tree amplitudes with more than four external legs [4] have only recently been completed using
the Ramond–Neveu–Schwarz (RNS) formalism at five points [5], at six points [6] and partially
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up to seven points [7]. In addition to conceptual issues about higher-point worldsheet integrals,
the huge amount of algebraic manipulations required to complete these calculations has proven to
be a major obstacle to further developments. When written in terms of ten-dimensional momenta
and polarizations, the amplitudes simply become too big.

However, since the year 2000 a new formalism for the superstring which can be used to
compute manifestly super-Poincaré invariant scattering amplitudes in superspace is available [8].
A general proof that the disk amplitudes in the pure spinor formalism for an arbitrary number
of bosonic and for up to four fermionic external state agree with the standard RNS prescription
was given in [9]; and the supersymmetric four-, five- and six-point tree amplitudes have been
explicitly computed in [10–13].

In this paper the general problem will be solved; i.e. the complete solution for all N -point
superstring color-ordered disk amplitudes AN ≡A(1,2, . . . ,N) is given by

AN =
∫

zi<zi+1

∏
i<j

|zij |−sij

[
N−2∏
k=2

k−1∑
m=1

smk

zmk

AYM(1,2, . . . ,N) +P(2, . . . ,N − 2)

]
, (1.1)

where AYM(1,2, . . . ,N) is the color-ordered N -point super-Yang–Mills subamplitude in ten
dimensions, P(2, . . . ,N − 2) means the summation over all (N − 3)! permutations of the labels
(2, . . . ,N − 2) inside the brackets, and the color ordering of the superstring subamplitude is
defined by the integration region

∫
zi<zi+1

≡ ∏N−2
j=2

∫ 1
zj−1

dzj .
It is straightforward to obtain subamplitudes associated with different color orderings

(1,2, . . . ,N) �→ (1σ ,2σ , . . . , (N − 1)σ ,N) for σ ∈ SN−1 and iσ ≡ σ(i) from (1.1). The world-
sheet integrand with its (N − 3)! kinematic AYM packages stay the same, only the integration
region has to be adapted to

Iσ ≡ {zi ∈ R, 0 = z1σ � z2σ � · · ·� z(N−2)σ � z(N−1)σ = 1},
according to the σ ∈ SN−1 permutation in question,

A
(
1σ ,2σ , . . . , (N − 1)σ ,N

)
=

∫
Iσ

N−2∏
l=2

dzlσ

∏
i<j

|zij |−sij

[
N−2∏
k=2

k−1∑
m=1

smk

zmk

AYM(1,2, . . . ,N) +P(2, . . . ,N − 2)

]
. (1.2)

By taking the α′ → 0 field-theory limit of (1.2) (in particular of the integrals involved using the
methods presented in [2]), it follows that all color-ordered field-theory amplitudes can be written
in terms of the (N − 3)!-dimensional basis {AYM(1,2σ , . . . , (N − 2)σ ,N − 1,N) | σ ∈ SN−3},
a result which was proposed in [14] and later proved in [15,16] using monodromy relations in
string theory. Furthermore, plugging in the explicit field-theory limits of the integrals appearing
in (1.1) (using the method described in [2]), one derives the BCJ relations among different color-
ordered subamplitudes discussed in [14].

This paper is organized as follows. In Section 2 a brief review of the pure spinor formalism is
given; with special emphasis to the elements necessary for the scattering amplitude computations
in the following sections. In Section 3 the BRST building blocks which encode the information
of the pure spinor CFT correlator will be defined and their BRST properties studied at length.
In particular, a diagrammatic method which associates arbitrary cubic graphs to certain build-
ing block combinations is fully presented (partial results have already been shown in [1]). In
Section 4 a pure spinor generalization of the recursive method of Berends–Giele [17] to com-
pute super-Yang–Mills in ten dimensions is developed which extends the previous results of [1].
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In Section 5 the general N -point CFT correlator of the superstring amplitude involved in the
pure spinor prescription is obtained in a compact form using the BRST cohomology objects of
the previous sections. Finally, using a mixture of pure spinor superspace manipulations together
with total derivative relations for the superstring integrals, the superstring N -point amplitude is
rewritten in terms of the field-theory subamplitudes as in the result (1.1) presented above. In
Appendix A, the calculations involving the explicit derivation of the building block T12345 in
terms of super-Yang–Mills superfields (which were omitted from the main text due to its lenghty
nature) are presented in full detail. In Appendix B, the explicit expressions for the pure spinor
Berends–Giele currents M123...p are written down in terms of BRST building blocks for up to
and including M1234567. Finally, in Appendix C the cubic graphs which were used to find the
expressions of Appendix B are depicted up to M123456 (the 132 graphs used to derive M1234567
would occupy too much space and were omitted).

2. The pure spinor formalism

In the pure spinor formalism [8], the worldsheet action for the type IIB superstring is

S = 1

2π

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θα + p̄α∂θα − ωα∂̄λα − ω̄α∂λα

)
, (2.1)

where [Xm(z, z̄), θα(z),pα(z); θ̄ α(z̄), p̄α(z̄)] and [λα(z),ωα(z); λ̄α(z̄), ω̄α(z̄)] are the Green–
Schwarz–Siegel matter variables [18,19] and the Berkovits ghosts. The bosonic pure spinor λα

satisfies

λαγ m
αβλβ = 0, m = 0, . . . ,9, α,β = 1, . . . ,16, (2.2)

where γ m
αβ are the symmetric 16 × 16 Pauli matrices in D = 10. The right-moving fields have

opposite chirality for the type IIA, for the heterotic superstring they are the same as in the RNS
formalism, and for the open superstring the boundary conditions relate the two sectors. This
paper only considers the open superstring, so the right-moving fields will be ignored.

The supersymmetric momentum and Green–Schwarz constraint are given by

Πm(z) = ∂Xm + 1

2

(
θγ m∂θ

)
,

dα(z) = pα − 1

2

(
γ mθ

)
α
∂Xm − 1

8

(
γ mθ

)
α
(θγm∂θ), (2.3)

while the ghost contribution to the Lorentz currents is denoted by Nmn(z) = 1
2 (λγ mnω). Fur-

thermore, the energy–momentum tensor T with vanishing central charge and the ghost-number
current J are given by

T (z) = −1

2
ΠmΠm − dα∂θα + ωα∂λα, J = ωαλα. (2.4)

Finally, the physical spectrum is obtained from the cohomology of the BRST charge [8]

Q =
∮

λα(z)dα(z). (2.5)

One can show that these operators satisfy the following relations [8,19,20]
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dα(z)dβ(w) → −γ m
αβΠm

z − w
, Πm(z)Πn(w) → − ηmn

(z − w)2
,

dα(z)θβ(w) → δ
β
α

(z − w)
, Nmn(z)Npq(w) → 4

z − w
N [m[pδ

n]
q] − 6

(z − w)2
δn[pδm

q],

Nmn(z)λα(w) → −1

2

(λγ mn)α

z − w
, dα(z)Πm(w) → (γ m∂θ)α

z − w
,

Πm(z)Xn(w) → − ηmn

z − w
, J (z)λα(w) → λα

z − w
, (2.6)

where the antisymmetrization bracket [· · ·] encompassing N indices is defined to contain an
overall factor of 1/N !. Furthermore, if f (X, θ) is a superfield containing only the zero modes of
θ and Dα = ∂α + 1

2 (γ mθ)α∂m is the supersymmetric covariant derivative,

dα(z)f
(
X(w), θ(w)

) → Dαf (X(w), θ(w))

z − w
,

Πm(z)f
(
X(w), θ(w)

) → −kmf (X(w), θ(w))

z − w
.

Hence, the action of the BRST operator on superfields is Qf = λαDαf . It is easy to show using
the OPEs of (2.6) and the pure spinor constraint (2.2) that the BRST charge indeed satisfies
Q2 = 0. So, the pure spinor formalism can be covariantly quantized, is manifestly space–time
supersymmetric and contains no worldsheet spinor fields; avoiding from the outset the issues
which make the computation of scattering amplitudes with the RNS and GS formalisms a difficult
task.

Throughout this paper k12...n
m stands for k1

m + k2
m + · · · + kn

m, the dimensionless (generalized)
Mandelstam invariants are given by

s12...n = α′(k1 + k2 + · · · + kn
)2

, (2.7)

and whenever an α′ is not explicitly written down the convention 2α′ = 1 has been used.

2.1. Massless vertex operators and SYM superfields

For the open superstring, the vertex operators for the massless states in unintegrated and inte-
grated forms are given by

V i = λαAi
α(x, θ), Ui = ∂θαAi

α + ΠmAi
m + dαWα

i + 1

2
F i

mnN
mn, (2.8)

where i denotes the label of the string whose massless modes are described by the ten-
dimensional super-Yang–Mills (SYM) superfields [Aα,Am,Wα,Fmn] satisfying [20,21]

DαAβ + DβAα = γ m
αβAm, DαAm = (γmW)α + kmAα,

DαFmn = 2k[m(γn]W)α, DαWβ = 1

4

(
γ mn

) β

α
Fmn. (2.9)

Their θ -expansions can be computed using the gauge θαAα = 0 [10,22],

Aα(x, θ) = 1

2
am

(
γ mθ

)
α

− 1

3
(ξγmθ)

(
γ mθ

)
α

− 1

32
Fmn(γpθ)α

(
θγ mnpθ

) + · · · ,

Am(x, θ) = am − (ξγmθ) − 1(
θγmγ pqθ

)
Fpq + 1 (

θγmγ pqθ
)
(∂pξγqθ) + · · · ,
8 12
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Wα(x, θ) = ξα − 1

4

(
γ mnθ

)α
Fmn + 1

4

(
γ mnθ

)α
(∂mξγnθ)

+ 1

48

(
γ mnθ

)α(
θγnγ

pqθ
)
∂mFpq + · · · ,

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) + 1

4

(
θγ[mγ pqθ

)
∂n]Fpq

+ 1

6
∂[m

(
θγ

pq
n] θ

)
(ξγqθ)∂p + · · · , (2.10)

where am(X) = emeik·X , ξα(X) = χαeik·X are the bosonic and fermionic polarizations and
Fmn = 2∂[man] is the field-strength. Using the OPEs (2.6) and equations of motion (2.9) one
can show that(

λγ mWi
)
(zi)U

j (zj )

→ 1

zj − zi

[(
λγ nWj

)
F i

mn − (
λγ mWi

)(
ki · Aj

) + Q
(
Wiγ mWj

)]
, (2.11)

which will be frequently used in the computations below.
As shown by Howe in 1991 [23], the use of a pure spinor field simplifies the description of ten-

dimensional super-Yang–Mills, and this is naturally incorporated in the pure spinor formalism.
For example, it can be shown that QV = 0 is equivalent to putting the SYM superfields on-shell
and it also implies that the BRST variation of the integrated vertex U is given by QU = ∂V

[20], and many simplifications occur due to this compact description. In fact, it has recently
been shown how the cohomology of pure spinor superspace [24,25] is enough to fix all N -
point scattering amplitudes of D = 10 SYM [26,1]. So unless otherwise stated, all superfield
manipulations in the next sections are done on-shell, where both QV = 0 and QU = ∂V are
satisfied.

2.2. Tree-level scattering amplitudes

The prescription to compute a tree-level open-string scattering amplitude with the pure spinor
formalism is given by [8] (see also [9])

AN =
〈
V 1(0)V (N−1)(1)V N(∞)

∫
dz2 U2(z2) · · ·

∫
dz(N−2) U

(N−2)(z(N−2))

〉
, (2.12)

where V i and Ui are the massless vertex operators of (2.8) and the SL(2,R) invariance of the
disk worldsheet has already been used to fix three vertex positions to the convenient values
(z1, zN−1, zN) = (0,1,∞). The pure spinor bracket 〈. . .〉 appearing in (2.12) denotes a zero-
mode integration prescription for the variables λα and θα , which are the only ones among
[dα,Πm,Nmn, θα, ∂θα,λα,ωα] to contain zero modes on the disk because they have confor-
mal weight zero [27]. Furthermore, the integration regions of (2.12) encode the different color
orderings of the external states. For example, the ordering AN(1,2,3, . . . ,N) is computed when
the integration region is 0 = z1 � z2 � · · ·� zN−2 � zN−1 = 1.

After integrating out the conformal weight-one variables [dα,Πm,Nmn, ∂θα] from the tree-
level amplitude (2.12) using the OPEs of (2.6) and evaluating the worldsheet integrals, one is left
with a generic pure spinor superspace expression containing the zero modes of λα and θα

AN = 〈
λαλβλγ f

i1...in
(
θ,α′)〉. (2.13)
αβγ
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In (2.13), f
i1...in
αβγ (θ,α′) is both a composite superfield in the labels [i1, . . . , in] of the exter-

nal states and a function of the string scale α′ satisfying λαλβλγ λδDδf
i1...in
αβγ (θ,α′) = 0. Its

specific form in terms of the super-Yang–Mills superfields [Ai
α,Ai

m,Wα
i ,F i

mn] follows from
the OPE contractions discussed above while its functional dependence on α′ is determined by
the momentum expansion of n-point hypergeometric integrals [5–7]. As explained in [8], the
zero-mode integration of 〈· · ·〉 selects from the θ -expansion of the enclosed superfields the
unique element in the cohomology of the pure spinor BRST operator at ghost-number three;
(λγ mθ)(λγ nθ)(λγ pθ)(θγmnpθ). Its tree-level normalization can be chosen as〈(

λγ mθ
)(

λγ nθ
)(

λγ pθ
)
(θγmnpθ)

〉 = 1, (2.14)

and although (2.14) involves only five θα out of sixteen, it can be shown to be supersymmetric
[8]. Furthermore, given the fact that there is only one scalar in the decomposition of (λ3θ5) it is
possible to compute any correlator using symmetry arguments and the normalization condition
(2.14) [28,29].

2.3. Component expansions of amplitudes: a simple example

Given a pure spinor superspace expression like in (2.13) it is straightforward to perform the
θ -expansion of the SYM superfields and select the terms according to (2.14) to obtain the su-
persymmetric result of the scattering amplitude in terms of the more familiar gluon and gluino
polarizations [ei

m,χα
i ] and their momenta km

i . For example, let us obtain the 3-gluon scattering
from the component expansion of the 3-point amplitude [8],

A3 = 〈(
λA1)(λA2)(λA3)〉. (2.15)

Plugging in the θ -expansions (2.10) and selecting the terms with a total of five θ ’s which contain
only gluon fields results in

A3 = − 1

64

(
k3
me1

r e
2
s e

3
n − k2

me1
r e

2
ne

3
s + k1

me1
ne

2
r e

3
s

)〈(
λγ rθ

)(
λγ sθ

)
(λγpθ)

(
θγ pmnθ

)〉
. (2.16)

In the appendix of [30] one finds a catalog of the most common pure spinor correlators and, in
particular, 〈(λγ rθ)(λγ sθ)(λγpθ)(θγ pmnθ)〉 = 1

120δ
rsp
pmn = 1

45δrs
mn. Therefore the 3-gluon ampli-

tude (2.16) is given by

A3 = − 1

2880

((
e1 · e2)(k2 · e3) + (

e1 · e3)(k1 · e2) + (
e2 · e3)(k3 · e1)). (2.17)

Performing the above steps becomes a tedious task when higher-point calculations are involved.
Fortunately, this procedure is suitable for an automated handling [31,32].

3. BRST building blocks

Only terms which are in the cohomology of the pure spinor BRST charge (2.5) contribute
to the n-point scattering amplitude (2.13). Therefore it will be convenient to foresee the BRST
properties of the objects which naturally appear in the tree-level calculation of (2.12). With this
intent in mind, in this section the OPEs among the massless vertex operators (2.8) are used to
define composite superfields L2131...p1 and their BRST properties are studied in detail. It will
be found that these superfields transform covariantly under the BRST charge and generically
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contain BRST-exact parts. A prescription to consistently remove these parts will then be given
and that will define the so-called BRST building blocks: T123...p .

In a later section these building blocks will be used to define other composite superfields
M123...p and E123...p with well-defined BRST cohomology properties. They will turn out to be
the natural objects with which to write the superstring scattering amplitudes. In the course of
doing that, several general structures of the string tree amplitudes will become apparent – like
the fact that they can be written using a (N − 3)!-dimensional basis of integrals as conjectured
some years ago in [6].

3.1. OPE residues of vertex operators

Motivated by the computations one needs to perform when computing tree-level higher-point
amplitudes [11–13] it is convenient to define composite superfields L2131...p1 as

lim
z2→z1

V 1(z1)U
2(z2) → L21

z21
,

lim
zp→z1

L2131...(p−1)1(z1)U
p(zp) → L2131...(p−1)1p1

zp1
, (3.1)

which transform covariantly under the action of the pure spinor BRST charge [26]. To see this
one uses QV = 0 and QU = ∂V to obtain

QL2131...p1 = lim
zp→z1

zp1
[
(QL2131...(p−1)1)(z1)U

p(zp) − L2131...(p−1)1(z1)∂V p(zp)
]
.

(3.2)

The OPE in the first term of (3.2) can be computed using the definition (3.1) recursively while
the second term evaluates to

∑p−1
j=1 sjpL2131...(p−1)1Vp; as one can easily show by using ∂V i =

(∂λα)Ai
α + ΠmkmV i + ∂θαDαV i and the OPEs of (2.6). Therefore,

QL21 = s12V1V2,

QL2131 = (s13 + s23)L21V3 + s12(L31V2 + V1L32),

QL213141 = (s14 + s24 + s34)L2131V4 + (s13 + s23)(L21L43 + L2141V3)

+ s12(L3141V2 + L31L42 + L41L32 + V1L3242),

QL21314151 = (s15 + s25 + s35 + s45)L213141V5

+ (s14 + s24 + s34)(L213151V4 + L2131L54)

+ (s13 + s23)(L214151V3 + L2141L53 + L2151L43 + L21L4353)

+ s12(L314151V2 + V1L324252 + L3141L52 + L3151L42 + L4151L32

+ L31L4252 + L41L3252 + L51L3242), (3.3)

while QL2131...p1 for p � 6 can be also be easily obtained (the general BRST variation of a
object related to L2131...p1 will be written down in the next subsection).

The expressions for L2131...p1 in terms of SYM superfields can be obtained using the OPEs of
(2.6) in the definition (3.1). For example,

L21 ≡ lim z21V
1(z1)U

2(z2) = −A1
m

(
λγ mW 2) − V 1(k1 · A2) + Q

(
A1W 2). (3.4)
z2→z1
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Similar calculations yield the expressions for L2131...p1 and one can show that (discarding BRST-
exact quantities for reasons to be explained in later sections) they are given by:

L21 = −A1
m

(
λγ mW 2) − V 1(k1 · A2),

L2131 = −L21
(
k12 · A3) − [(

L31 + V 1(k1 · A3))(k1 · A2) − (1 ↔ 2)
]

− (
λγ mW 3)((W 1γmW 2) − k2

m

(
A1 · A2)),

L213141 = −L2131
(
k123 · A4) − (

L2141 + L21
(
k12 · A4))(k12 · A3)

−
[(

L3141 + L31
(
k13 · A4))(k1 · A2) + (

L41 + V 1(k1 · A4))(k1 · A3)(k1 · A2)
− 1

4

(
λγ mW 4)(W 2γ pqγmW 3)F1

pq − (1 ↔ 2)

]
+ (

λγ mW 4)((W 1γ nW 2) − kn
2

(
A1 · A2))F3

mn,

L21314151 = −L213141
(
k1234 · A5) − (

L213151 + L2131
(
k123 · A5))(k123 · A4)

− [
L214151 + L2141

(
k124 · A5) + (

L2151 + L21
(
k12 · A5))(k12 · A4)](k12 · A3)

−
[[

L314151 + L3141
(
k134 · A5) + (

L3151 + L31
(
k13 · A5))(k13 · A4)

+ (
L4151 + L41

(
k14 · A5) + (

L51 + V 1(k1 · A5))(k1 · A4))(k1 · A3)](k1 · A2)
+ (

λγ mW 5)[1

4

(
W 1γ pqγ nW 3)F2

pqF4
mn

+ 1

16

(
W 4γ mγ pqγ rsW 1)F2

rsF3
pq

]
− (1 ↔ 2)

]

+ (
λγ mW 5)[(

W 1γ nW 2)(F4
mpF3

np − (
W 3γmW 4)k3

n

− 1

2

(
W 4γmγnγ

pW 3)k12
p

)
− 1

2

(
W 3γ pqγmW 4)F1

paF2
qa

+ (
A1 · A2)(F3

pqF4
mpk2

q + (
W 3γmW 4)(k2 · k3))], (3.5)

and can be checked to satisfy the BRST identities (3.3).
Due to the recursive definition of L2131...p1 care must be taken when discarding BRST-exact

terms when evaluating the OPEs for the next p + 1 step. For example, if the BRST-exact term in
L21 is kept then it follows that [12]

L2131 = [
A1

m

(
λγ mW 2) + V 1(k1 · A2)](k12 · A3)

+ (
λγ mW 3)[A1

m

(
k1 · A2) + A1nF2

mn − (
W 1γmW 2)]

+ s12
[(

A1W 3)V 2 − (
A2W 3)V 1] + (s13 + s23)

(
A1W 2)V 3. (3.6)

Eq. (3.3) implies that after discarding Q(AiWj ) from Lji the last line of (3.6) must be dis-
carded as well, in order for QL2131 = s12(L31V2 + V1L32) + (s13 + s23)L21V3 continue to hold.
Equivalently, one can consider the expressions in (3.5) as an explicit representation for composite
superfields L2131...p1 which satisfy the BRST identities of (3.3).
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It is worth mentioning that the BRST-exact terms dropped from Lji , Ljiki and Ljikili were
observed to cancel out in the final superspace expressions for the five- and six-point computations
of [12,13]. This seems natural in view of the requirement that the overall amplitude should live
in the BRST cohomology like its basic ingredients, the vertex operators. This will be the main
idea to be exploited in the next subsection.

Furthermore, the energy–momentum tensor and the ghost-number current of (2.4) can be used
together with the OPEs of (2.6) to show that the conformal weight h of L2131...p1 and its ghost
number are given by

h(L2131...p1) = (
k1 + · · · + kp

)2 �= 0, ghost #(L2131...p1) = +1. (3.7)

This will prove essential to argue that the BRST cohomology for composite superfields is gener-
ically empty.

3.2. Definition of BRST building blocks T123...p

The definition of a rank-q BRST building block T123...q follows from two steps

L2131...q1
(i)−→ T̃123...q

(ii)−→ T123...q (3.8)

which are designed to remove BRST-exact terms in L2131...q1 and in T̃123...q while still preserving
the fundamental BRST variation identities (3.3) when the combined redefinition L2131...q1 −→
T123...q is used in both sides of (3.3).

The first step (i) of (3.8) to obtain T̃123...q1 from the composite superfield L2131...q1 depends
on all the previous redefinitions of L2131...p1 with p < q which were made to get the BRST
building blocks T123...p . Its purpose is to absorb the extra terms (in the left-hand side) when the
substitutions L2131...p1 → T123...p are made in the right-hand side of the BRST variation identity
for QL2131...q1. Therefore the first step (i) ensures that QT̃123...q is written in terms of T123...p

rather than L2131...p1,

QT̃123 = s12(T13V2 + V1T23) + (s13 + s23)T12V3,

QT̃1234 = (s14 + s24 + s34)T123V4 + (s13 + s23)(T12T34 + T124V3)

+ s12(T134V2 + T13T24 + T14T23 + V1T234), (3.9)

and similarly for T̃123...q with q � 5.
One can check using (3.9) that there are certain specific combinations of T̃ ’s which are BRST-

closed, like for example Q(T̃123 + T̃231 + T̃312) = 0. Furthermore, it was shown in (3.7) that the
composite superfields L2131...p1 (and therefore also T̃123...p) have conformal weights h �= 0, so
those combinations must also be BRST-exact – because the cohomology of Q at ghost-number
+1 is nontrivial only at zero conformal weight.1

So the second step (ii) of (3.8) will involve searching for sums of T̃123...q which are BRST-
closed in order to subtract the corresponding BRST-exact parts from T̃123...q . In principle these
sums can be found by a brute-force analysis of the identities in (3.9), but in Section 3.4 a simple
diagrammatic method to find all those sums will be presented. That in turn allows one to obtain
the explicit expressions for all q − 1 BRST-exact parts R

(I)
123...q of T̃123...q :

1 We thank Nathan Berkovits for illuminating discussions on this point.



428 C.R. Mafra et al. / Nuclear Physics B 873 (2013) 419–460
∑
T̃123...q = QR

(I)
123...q , I = 1,2,3, . . . , q − 1, (3.10)

where the q − 1 different sums will involve different label permutations of T̃123...q with ± signs,
see Section 3.4 for their precise forms.

The prescription to remove the BRST-exact parts from T̃123...q – which completes the second
step (ii) of (3.8) – will be explained in Section 3.5. After doing that, the previous BRST-closed
sums of T̃123...q become BRST-symmetries of the building blocks T123...q , i.e.,∑

T123...q = 0. (3.11)

In summary, the two steps in (3.8) are:

(i) Redefine L2131...q1 → T̃123...q such that QT̃123...q is expressed in terms of building blocks
T123...p of lower-level p < q .

(ii) Remove the BRST-exact parts of T̃123...q given by (3.10) such that T123...q satisfies the sym-
metry properties (3.11).

The composite superfields T123...q defined in this way are the BRST building blocks and obey the
following identities,

QT12 = s12V1V2,

QT123 = (s13 + s23)T12V3 + s12(T13V2 + V1T23),

QT1234 = (s14 + s24 + s34)T123V4 + (s13 + s23)(T12T34 + T124V3)

+ s12(T134V2 + T13T24 + T14T23 + V1T234),

QT12345 = (s15 + s25 + s35 + s45)T1234V5 + (s14 + s24 + s34)(T1235V4 + T123T45)

+ (s13 + s23)(T1245V3 + T124T35 + T125T34 + T12T345)

+ s12(T1345V2 + V1T2345 + T134T25 + T135T24 + T145T23

+ T13T245 + T14T235 + T15T234), (3.12)

and so forth. The relations (3.12) can be generalized as follows:

QT12...n =
n∑

j=2

∑
α∈P(βj )

(s1j + s2j + · · · + sj−1,j )T12...j−1,{α}Tj,{βj \α}, (3.13)

where βj = {j + 1, . . . , n}, P(βj ) is the powerset of βj and Vi ≡ Ti . Furthermore, the first few
BRST symmetries of (3.11) are given by

0 = T12 + T21,

0 = T123 + T231 + T312,

0 = T1234 − T1243 + T3412 − T3421,

0 = T12345 − T12354 + T12543 − T12453 + T45321 − T45312, (3.14)

where each higher-order building block T123...q inherits all the lower-order identities in its first
q − 1 labels (this can be seen from the recursive definition of L2131...p1 in (3.1)). For example,
T1234 not only satisfies the third equation of (3.14) but also the previous two in the form of
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T1234 +T2134 = T1234 +T2314 +T3124 = 0. Using the diagrammatic method explained below, the
following general BRST symmetries for building blocks will be derived,

p = 2n + 1: T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] = 0,

p = 2n: T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0. (3.15)

The notation [i[jk]] means consecutive antisymmetrization of pairs of labels starting from the
outermost label, e.g. [i[jk]] = 1/2(i[jk] − [jk]i) = 1/4(ijk − ikj − jki + kji).

3.3. Diagrammatic interpretation of T123...p building blocks

As discussed in [14], every color-ordered tree-level field-theory amplitude can be arranged
into a form which manifests the kinematic poles that appear,

AYM(1,2, . . . ,N) =
∑

i

ni∏
αi

p2
αi

(3.16)

where the sum is over the set of (2N −4)!/((N −1)!(N −2)!) diagrams with only cubic vertices,
ni represent some kinematic numerator factor and p2

αi
are the propagators of each diagram. Using

this representation for the N -point amplitudes it was suggested in [26] that the BRST cohomol-
ogy of the pure spinor formalism might be enough to fix the ten-dimensional SYM amplitudes,
bypassing the need to perform the α′ → 0 limit of their corresponding open superstring ampli-
tudes. To that end it is useful to require that the numerator factors ni have BRST transformations
which are proportional to the Mandelstam invariants associated to their poles, Qni = ∑

j p2
αj

mj

for some mj . This makes sure that each term in Qni cancel one of the poles and different terms
can be concocted to yield an overall BRST-closed amplitude. So in order for the empirical co-
homology method of [26] to work, one needs to have explicit mappings between cubic diagrams
and ghost-number three pure spinor superspace expressions. Although some lower-order exam-
ples were presented in [26], a general solution was still missing. But as it became clear later, it is
better to have mappings between cubic diagrams and ghost-number one composite superfields;
the BRST building blocks. This realization led to the discovery in [1] of a general recursive
method to construct expressions in the cohomology of the BRST charge with the correct prop-
erties of N -point SYM amplitudes. So in this section we describe in detail the solution of [1]
to find the general dictionary between cubic-vertex diagrams and ghost-number one pure spinor
building blocks.

The idea to obtain the dictionary is to find the precise sums of building blocks whose BRST
variation contains the same set of Mandelstam variables associated to a particular cubic diagram.
And this problem can be solved by understanding the patterns present in the BRST variation
identities of (3.13).

To see this consider the diagram (a) of Fig. 1 where one leg has been removed and which
contains the set of kinematic poles {si1i2, si1i2i3, . . . , si1...in}. From Eq. (3.13) one checks that all
terms in the BRST variation of Ti1i2i3...in... contain at least one of those Mandelstam variables
without exception, schematically

QTi1i2i3...in... −→ {si1i2, si1i2i3, . . . , si1i2i3...in...} (3.17)

where the trailing dots on the labels of the building block correspond to the amputated part of
the diagram. Given this match, we associate the building block of (3.17) to the cubic graph of
Fig. 1(a).
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Fig. 1. (a) A tail-end cubic diagram with kinematic poles {si1i2 , . . . , si1i2...in } corresponds to the building block
Ti1i2...in.... (b) Branches of cubic diagrams and their associated building blocks. The motivation behind this dictio-
nary lies on the fact that all kinematic invariants specified by the cubic graphs are present in the BRST variation of their
corresponding building blocks.

To find the appropriate BRST building blocks which can be associated with the branches con-
taining two amputated legs in Fig. 1(b), note the pattern that certain sums of T123...p with different
label orderings have a different set of Mandelstam invariants in their BRST variation. As seen
on (3.17), the BRST variation of Ti1i2...in contains all elements of the set {si1i2, si1i2i3, . . . , si1...in}
but antisymmetrization in certain labels replaces some elements by others, e.g.

QTi1...ip[jk]r1...rq −→ sjk instead of si1i2...ipj ,

QTi1...ip[j [kl]]r1...rq −→ skl, sjkl instead of si1...ipj , si1...ipjk,

QTi1...ip[j [k[lm]]]r1...rq −→ slm, sklm, sjklm instead of si1...ipj , si1...ipjk, si1...ipjkl, (3.18)

where the two sets of dots in the building blocks correspond to the amputated parts of the
graphs (b) in Fig. 1. The patterns shown in (3.18) therefore justify the general dictionary given
in Fig. 1(b).

3.4. BRST symmetries of building blocks

It is not difficult to use the BRST variations of T̃123...q in (3.9) to find their BRST-closed sums
for small q by trial and error. Since the cohomology at conformal weight h �= 0 is empty, these
same BRST-closed combinations of T̃ ’s are also BRST-exact. As explained in the previous sub-
section, the removal of the BRST-exact parts of T̃123...q gives rise to the definition of the building
block T123...q and at the same time the BRST-closed sum of T̃ ’s translates into a symmetry of
the associated T12...n (see Eq. (3.11)). Therefore it is imperative to find the general BRST-closed
sums of T̃ ’s, or equivalently, the general symmetries of T ’s.

So in this subsection we use the diagrammatic interpretation of building blocks to predict the
symmetry properties of T12...n which in turn allow the BRST-exact parts of T̃123...n to be found
(see Section 3.5).

As a first example, consider the diagram of Fig. 2. In the first expression the diagram is
interpreted as a tail-end graph like the one depicted in (a) of Fig. 1 and is associated with the
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Fig. 2. Two different ways to interpret the same diagram give rise to an identity for Tijk . In the first expression it is
viewed as a tail-end graph, while in the second it is interpreted as a branch.

Fig. 3. Diagrammatic derivation of the BRST symmetries of higher-order building blocks. The top (bottom) line cor-
responds to the building block association which follow from reading the diagram in a counter-clockwise (clockwise)
direction.

building block T123. However, in the second expression the diagram is viewed as a branch like
the first graph of (b) in Fig. 1, where one of the “missing” legs now contains the label 3 and it is
therefore associated with 2T3[21] = T321 − T312. The fact that both interpretations have to agree
implies the symmetry identity (3.14) for Tijk ,

0 = T123 − T321 + T312 = T123 + T231 + T312.

The relative sign between the two viewpoints is fixed by the fact that diagram associated with
T12...n catch a (−1)n−1 sign under inversion (1,2,3, . . . , n − 1, n) ↔ (n,n − 1, . . . ,1). Hence,
we have to make sure that the sign of T123...n relative to Tn,n−1,...21 is (−1)n in (3.11), e.g.
T123 + (−1)3T321 + · · · = 0.

This same idea can be used to obtain the BRST symmetries for higher-order building blocks.
For example, the symmetries of T123...n for n = 4, 5, 6, 7, 8 are obtained from the diagrams of
Fig. 3,

0 = 2T12[34] + 2T43[21],
0 = 2T123[45] − 4T54[3[21]],
0 = 4T123[4[56]] + 4T654[3[21]],
0 = 4T1234[5[67]] − 8T765[4[3[21]]],
0 = 8T1234[5[6[78]]] + 8T8765[4[3[21]]]. (3.19)

Using the BRST variations (3.12) we checked up to T12345678 that these relations are indeed
BRST-closed and obtained their explicit BRST-exact parts for up to T̃12345. The latter was made
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using the explicit expressions of T̃123...p in terms of super-Yang–Mills superfields to find the

explicit solutions R
(n)
123...p of Eq. (3.10), and that will be presented in the next section.

To write down the generalization of (3.19) to higher p > 8, let us distinguish between odd and
even ranks for ease of notation:

p = 2n + 1: T12...n+1[n+2[...[2n−1[2n,2n+1]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] = 0,

p = 2n: T12...n[n+1[...[2n−2[2n−1,2n]]...]] + T2n...n+1[n[...[3[21]]...]] = 0. (3.20)

The relations for p = 2n + 1 and p = 2n involve 3 · 2n−1 and 2n terms, respectively.
We should emphasize again that the lower rank identities for T12...q carry over to T12...p with

p > q . The last labels q + 1, . . . , p are then simply left untouched, e.g. 0 = T(12)345 = T[123]45 =
T12[34]5 + T43[21]5 at rank p = 5. By applying the p − 1 symmetries available at rank p, one can
successively move a particular label to the first position, i.e. express Ti1i2...ip as a combination of
T1j1j2...jp−1 . Hence, there are (p − 1)! independent rank-p building blocks Ti1i2...ip .

3.5. Explicit construction of T12...p

The definition of the first BRST building block T12 requires only the step (ii) in (3.8), as
there are no lower-order redefinitions to take into account in the first step (i); that is T̃12 ≡ L21.
From the BRST variation of T̃12 in (3.3) together with the equations of motion (2.9) one sees
that its symmetric part is BRST-closed: Q(T̃21 + T̃12) = s12(V1V2 + V2V1) = 0, and also BRST-
exact [26]

T̃21 + T̃12 = −Q
(
A1 · A2) ≡ −QD12. (3.21)

As discussed in (3.11), the definition of the BRST building block T12 must be made to satisfy
T12 + T21 = 0. This is accomplished by

T12 = T̃[21] = T̃21 + 1

2
QD12. (3.22)

The definition of the building block T123 now proceeds using both steps of (3.8). The first

redefinition L2131
(i)→ T̃123 is found by substituting Lji = T̃ij = Tij − 1

2QDij in the right-hand
side of QL2131 in (3.3), which leads to:

Q

(
L2131 + 1

2
s12[D13V2 − D23V1] + 1

2
(s13 + s23)D12V3

)
= s12(T13V2 + V1T23) + (s13 + s23)T12V3.

Therefore by defining

T̃123 = L2131 + 1

2
s12[D13V2 − D23V1] + 1

2
(s13 + s23)D12V3, (3.23)

one obtains the desired identity QT̃123 = s12(T13V2 + V1T23) + (s13 + s23)T12V3.
Two BRST-closed combinations of T̃ijk are easily identified,

Q(T̃123 + T̃213) = 0, Q(T̃123 + T̃312 + T̃231) = 0, (3.24)

and one can show using SYM equations of motion (2.9) that they originate as the BRST variation
of ghost number zero superfields R

(1) , R
(2) [13,1]
123 123
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T̃123 + T̃213 = QR
(1)
123, T̃123 + T̃312 + T̃231 = QR

(2)
123, (3.25)

where R
(1)
123 = D12(k

12 · A3), R
(2)
123 = D12(k

2 · A3) + cyclic(123). The BRST building block T123
is obtained by removing these BRST-exact pieces

T123 = T̃123 − QS
(1)
123, S

(1)
123 = 1

2
R

(1)
123 + 1

3
R

(2)
[12]3, (3.26)

which implies the following BRST symmetries for Tijk :

T123 + T213 = T123 + T312 + T231 = 0. (3.27)

The definition of T1234 is done similarly and uses the information from the lower-order redefini-
tions of L21 and L2131. First one rewrites Lji and Ljiki in terms of Tij and Tijk in the RHS of
the identity for QL213141 given in (3.3). After some algebra one finds

T̃1234 = L213141 − 1

4

[
(s13 + s23)D12QD34 + s12(D13QD24 + D14QD23)

]
+ 1

2

[
(s13 + s23)(D12T34 − D34T12)

+ s12(D13T24 + D14T23 − D23T14 − D24T13)
]

− (s14 + s24 + s34)S
(1)
123V4 − (s13 + s23)S

(1)
124V3 + s12

(
S

(1)
234V1 − S

(1)
134V2

)
(3.28)

which satisfies the required property of

QT̃1234 = s12(T134V2 + T13T24 + T14T23 + V1T234)

+ (s13 + s23)(T12T34 + T124V3) + (s14 + s24 + s34)T123V4. (3.29)

Using (3.29) it is easy to check that the lower-order identities of T̃123 given by (3.24) are inherited
by the first three labels of T̃1234 and that there is one additional BRST identity involving the fourth
label,

Q(T̃1234 + T̃2134) = Q(T̃1234 + T̃3124 + T̃2314) = Q(T̃1234 − T̃1243 + T̃3412 − T̃3421) = 0,

in accord with the discussions of Section 3.4. Using the SYM equations of motion in a long
sequence of calculations shows that these combinations are indeed BRST-exact,

T̃1234 + T̃2134 = QR
(1)
1234,

T̃1234 + T̃3124 + T̃2314 = QR
(2)
1234,

T̃1234 − T̃1243 + T̃3412 − T̃3421 = QR
(3)
1234, (3.30)

where

R
(1)
1234 = −R

(1)
123

(
k123 · A4) − 1

4
s12[D13D24 + D14D23],

R
(2)
1234 = −R

(2)
123

(
k123 · A4) − 1

4
[s12D23D14 + s23D24D13 + s13D34D12],

R
(3)
1234 = (

k1 · A2)[D14
(
k4 · A3) − D13

(
k3 · A4)]

− (
k2 · A1)[D24

(
k4 · A3) − D23

(
k3 · A4)]

+ 1
D12D34(s14 + s23 − s13 − s24)
4
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+ D12
[(

k4 · A3)(k2 · A4) − (
k3 · A4)(k2 · A3)]

+ D34
[(

k2 · A1)(k4 · A2) − (
k1 · A2)(k4 · A1)]

+ (
W 1γ mW 2)(W 3γmW 4). (3.31)

Removing these BRST-exact parts leads to the rank-four BRST building block – which is ac-

complished with the second redefinition T̃1234
(ii)−→ T1234,

T1234 = T̃1234 − QS
(2)
1234, (3.32)

where S
(2)
1234 is defined recursively by

S
(2)
1234 = 3

4
S

(1)
1234 + 1

4

(
S

(1)
1243 − S

(1)
3412 + S

(1)
3421

) + 1

4
R

(3)
1234,

S
(1)
1234 = 1

2
R

(1)
1234 + 1

3
R

(2)
[12]34. (3.33)

To see that (3.32) and (3.33) imply the BRST symmetries of

T1234 + T2134 = T1234 + T3124 + T2314 = T1234 − T1243 + T3412 − T3421 = 0, (3.34)

it suffices to check that the following identities hold,

S
(2)
1234 + S

(2)
2134 = R

(1)
1234,

S
(2)
1234 + S

(2)
3124 + S

(2)
2314 = R

(2)
1234,

S
(2)
1234 − S

(2)
1243 + S

(2)
3412 − S

(2)
3421 = R

(3)
1234. (3.35)

Following this same procedure for L21314151 is straightforward but somewhat tedious, there-
fore the calculations leading to the explicit superfield expression for the building block T12345

will be deferred to Appendix A.
As will be explained in Section 4.4, the explicit superfield expressions for Tij , Tijk , Tijkl and

Tijklm allows one to obtain the expansions of any superstring or field-theory amplitudes up to
N = 11 legs in terms of momenta and polarization [31].

4. Supersymmetric Berends–Giele recursions

In Section 3.3 we have given a superfield representation in terms of Ti1...ip for each color-
ordered diagram made of cubic vertices with p on-shell external leg and one off-shell leg. In
this section, we combine these diagrams to (p + 1)-point field-theory amplitudes with one off-
shell leg. These objects were firstly considered in [17] in order to derive recursion relations for
gluon scattering at tree-level and were referred to as “currents”. The pure spinor supersymmetric
analogue of the p-point Berends–Giele current Jp will be referred to as M12...p .

These M12...p allow for a compact representation of the ten-dimensional N -point SYM am-
plitude AYM(1, . . . ,N) which nicely exhibits its factorization channels. The recursive nature of
the Berends–Giele currents is inherited by the amplitudes and leads to the recursive method to
compute higher-point SYM amplitudes presented below.
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Fig. 4. Diagrammatic construction of the Berends–Giele current M1234 in terms of the cubic graphs of the five-point
amplitude with one leg off-shell.

4.1. Construction of Berends–Giele currents M123...p

The Berends–Giele currents M123...p are written in terms of building blocks T123...p and Man-
delstam invariants {s12, s123, . . . , s123...p} and follow from the recursive definition

E123...p ≡
p−1∑
j=1

M12...jMj+1...p,

QM123...p ≡ E123...p, (4.1)

where M1 = V1. Although the defining system (4.1) is purely algebraic, it can be conveniently
solved with the recourse of a diagrammatic interpretation for M123...p . To see this, the current
M123...p is first associated to the sum of (2p − 2)!/(p!(p − 1)!) cubic graphs which enter the
p + 1 amplitude where the leg p + 1 is put off-shell. Using the dictionary of Section 3.3 each
one of these cubic graphs can be written in terms of building blocks T123...p and their relative
signs are fixed by requiring the system (4.1) to be satisfied. For example, using the cubic graphs
for the three- and four-point amplitudes the currents M12 and M123 are interpreted as

while M1234 is associated to the graphs of the color-ordered five-point amplitude shown in Fig. 4.
Under the dictionary of Section 3.3 these graphs correspond to the following expressions in terms
of building blocks

M12 = T12

s12
, M123 = 1

s123

(
T123

s12
+ T321

s23

)
,

M1234 = 1

s1234

(
T1234

s12s123
+ T3214

s23s123
+ T3421

s34s234
+ T3241

s23s234
+ 2T12[34]

s12s34

)
, (4.2)

where their signs can be fixed by requiring that they form a solution of (4.1). To see this one uses
the BRST variations (3.13) to obtain
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Fig. 5. Decomposition of M12...p into its factorization channels under the action of the pure spinor BRST charge:

QM12...p = ∑p−1
j=1 M12...j Mj+1...p .

QM12 = V1V2 = M1M2,

QM123 = V1T23

s23
+ T12V3

s12
= M1M23 + M12M3,

QM1234 = V1

s234

(
T234

s23
+ T432

s34

)
+ T12T34

s12s34
+

(
T123

s12
+ T321

s23

)
V4

s123

= M1M234 + M12M34 + M123M4 (4.3)

and therefore the expressions for M12, M123 and M1234 given above form a solution of the sys-
tem (4.1) up to this order. Using this method it is straightforward to obtain higher-point currents,
and the explicit expressions of currents up to M1234567 will be given in Appendix B.

Therefore by using the diagrammatic interpretation of M123...p in terms of the p+1 amplitude
with one leg off-shell one is able to efficiently construct any higher-order current in terms of
building blocks. However, in the later Section 5.2 we will derive a formula for M123...p in terms
of the field-theory limit α′ → 0 of hypergeometric integrals occurring in a (p + 2) point string-
theory amplitude. This allows for a direct computation of M12...p , therefore bypassing the need
to draw the cubic diagrams of the (p + 1)-point SYM amplitude to find their corresponding
building blocks.

Note that (4.1) can be written as

QM12...p =
p−1∑
j=1

M12...jMj+1...p (4.4)

and therefore one can interpret the action of Q as cutting M12...p in each way compatible with
the color ordering, see Fig. 5. Furthermore, Eq. (4.4) is the supersymmetric pure spinor analogue
of the recursive construction of the Berends–Giele gluon currents in [17], whose schematic form
is

Jn ∼ 1

s12...n

(
n−1∑
m=1

Jm,Jn−m +
n−2∑
m=1

n−1∑
k=m+1

JmJk−mJn−k

)
. (4.5)

The cubic term in the lower-order currents represents the four-gluon vertex in the QCD action.
It does not enter into our supersymmetric version (4.4) which encompasses diagrams with cubic
vertices only. After multiplying the external propagator 1/s12...n to the left-hand side of (4.5) one
could symbolically reproduce (4.4) by identifying s12...n ≡ Q.
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4.2. Symmetry properties of M12...p

As a further motivation for identifying M12...p with supersymmetric Berends–Giele currents,
we discuss their symmetry properties in this subsection. First of all, M12 trivially satisfies M12 +
M21 = 0 because the building block Tij is antisymmetric. Similar identities hold for M123

M123 + M231 + M312 = 0, M123 − M321 = 0, (4.6)

as one can easily check by plugging in the expression for Mijk given in (4.2).
At higher n� 4, this generalizes as follows:

M12...n = (−1)n−1Mn...21,
∑

σ∈cyclic

Mσ(1,2,...,n) = 0. (4.7)

The proof of these identities is most conveniently carried out on the level of the correspond-
ing E12...n = QM12...n = ∑n−1

p=1 M12...pMp+1...n. Since all the BRST closed components of the
M12...n have been removed by construction of its T12...n constituents, the BRST variation E12...n

contains all information on the symmetry properties of its M12...n ancestor. The reflection identity
can be easily checked by induction, and the vanishing cyclic sum follows from

∑
σ∈cyclic

Eσ(1,2,...,n) =
∑

σ∈cyclic

n−1∑
p=1

Mσ(1,2,...,p)Mσ(p+1,...,n)

=
∑

σ∈cyclic

n−1∑
p=1

1

2
(Mσ(1,2,...,p)Mσ(p+1,...,n)

+ Mσ(p+1,...,n)Mσ(1,2,...,p)) = 0 (4.8)

where the last step exploits the overall cyclic sum to shift all labels of the second term by p and
that the M12...p anticommute.

The properties (4.7) are shared by the n-gluon Berends–Giele currents Jn of [17] and can
be naturally explained by the construction of currents M123...n as (n + 1)-point amplitudes with
one off-shell leg. Inspired by this explanation, we explicitly checked using the expressions of
Appendix B that M12...n for n � 7 also satisfy an additional relation – obtained by removing the
(n + 1)-th leg from the (n + 1)-point Kleiss–Kuijf identity [33]:

M{β},1,{α} = (−1)nβ
∑

σ∈OP({α},{βT })
M1,{σ }. (4.9)

The summation range OP({α}, {βT }) denotes the set of all the permutations of {α} ∪ {βT } that
maintain the order of the individual elements of both sets {α} and {βT }. The notation {βT }
represents the set {β} with reversed ordering of its nβ elements. The Kleiss–Kuijf identity is
well known to reduce the number of independent color-ordered (n + 1)-point amplitudes down
to (n − 1)!.

The specialization of (4.9) to sets {β} with one element only, say {β} = {n}, reproduces the
second property of (4.7). However, this so-called dual Ward identity or photon decoupling iden-
tity by itself is not sufficient for a reduction to (n− 1)! independent Mi1i2...in at n� 6 [33]. Since
there are only (n − 1)! independent Ti1i2...in which constitute the Mi1i2...in , also the latter must
have a basis of no more than (n − 1)! elements. This suggests the Kleiss–Kuijf identity (4.9) to
hold beyond our checks for n� 7.
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The reflection and Kleiss–Kuijf identity for the M12...n are inherited from their associated
(n + 1)-point amplitudes with one leg off-shell. The off-shellness of one leg is no obstruction
for the aforementioned identities to hold because they do not involve any kinematic factors.
However, the field theory version of the monodromy relations [15,16]

s12AYM(2,1,3, . . . ,N) + (s12 + s13)AYM(2,3,1, . . . ,N) + · · ·
+ (s12 + · · · + s1,N−1)AYM(2,3, . . . ,N − 1,1,N) = 0 (4.10)

rely on having on-shell momenta, so the M12...n do not obey any analogue of (4.10) and cannot
be reduced to (n − 2)! independent permutations.

4.3. The N -point field-theory tree amplitude

The expressions found for QM12...p = E12...p might look familiar from lower-order field-
theory amplitudes such as

AYM(1,2,3) = 〈V1V2V3〉 = 〈E12V3〉,
AYM(1,2,3,4) =

〈(
V1T23

s23
+ T12V3

s12

)
V4

〉
= 〈E123V4〉. (4.11)

From QV = 0, one might naively expect that the three-point amplitude would be BRST-exact,
A(1,2,3) = 〈Q(T12V3/s12)〉, and thus doomed to vanish. However, all Mandelstam invariants
sij vanish in the momentum phase space of three massless particles – therefore writing V1V2 =
Q(T12/s12) is not allowed and BRST triviality of the amplitude is avoided.

More generally, the prefactor M12...p ∼ 1/s12...p in the p-point current is incompatible with
putting the external state with kp+1 = −∑p

i=1 ki on-shell k2
p+1 = 0. Since N particle kinematics

forbids the existence of M12...N−1, the corresponding E12...N−1 is not BRST exact. Hence, the
following expression for the N -point field-theory amplitude is in the cohomology of the pure
spinor BRST charge2 [1]

AYM(1,2, . . . ,N) = 〈E12...N−1VN 〉 =
N−2∑
j=1

〈M12...jMj+1...N−1VN 〉. (4.12)

The diagrammatic representation of
∑p−1

j=1 M12...jMj+1...p in Fig. 5 can be uplifted to the on-
shell N = (p + 1)-point amplitude AYM(1, . . . ,N) where an additional cubic vertex connects
the N -th leg with the two currents of rank j and N − 1 − j , respectively, see Fig. 6.

The N -point formula (4.12) is analogous to the Berends–Giele formula for the color-ordered
N gluon amplitude of [17]. The latter is written as a product of a rank N − 1 current JN−1
and another J1 for the N -th leg, multiplied by the Mandelstam factor s12...N−1 to cancel the
divergent propagator; AYM = s12...N−1J (1, . . . ,N − 1) J (N). In our case, the somewhat artifi-
cial object s12...N−1JN−1 is replaced by E12...N−1, which could be written as QM12...N−1 in a
larger momentum phase space. Therefore this parallel also suggests the schematic identification
s12...N−1 → Q mentioned after (4.5).

2 It is interesting to note that the cohomology formula (4.12) together with the property of En(n−1)...1 =
(−1)n−1E12...n (which follows from (4.7)) imply that if the amplitude satisfies the reflection property of A(n,n −
1, . . . ,1) = (−1)nA(1,2, . . . , n) then it is also cyclically symmetric, A(2,3, . . . , n,1) =A(1,2, . . . , n).
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Fig. 6. Berends–Giele decomposition of AYM according to the pure spinor cohomology formula (4.12).

4.4. BRST integration by parts and cyclic symmetry

The strength of our presentation (4.12) of the N -point field-theory amplitude is the mani-
festation of its factorization properties. But singling out a particular leg VN obscures the cyclic
symmetry required for color stripped amplitudes. The essential tool to restore manifest cyclicity
is BRST integration by parts,

〈Mi1...ipEj1...jq 〉 = 〈Ei1...ipMj1...jq 〉. (4.13)

Using the definition of E123...p in (4.1) it follows that

E12...N−1VN = E23...NV1 +
N−2∑
j=2

(M12...jEj+1...N − E12...jMj+1...N ), (4.14)

therefore 〈E12...N−1VN 〉 = 〈E23...NV1〉 and the N -point subamplitude (4.12) is cyclically in-
variant. However, to obtain a formula with manifest cyclic symmetry one needs to explicitly
use BRST integration by parts in (4.12). And as a byproduct of that, the maximum rank of
the Berends–Giele currents needed for the N -point amplitude is reduced. To see this, note that
the term containing the maximum rank of Mi1...ip appearing in the N -point amplitude (4.12) is
p = N − 2 and has the form 〈Mi1...iN−2ViN−1VN 〉, therefore the use of (4.14) leads to

〈Mi1...iN−2ViN−1VN 〉 = 〈Mi1...iN−2QMiN−1N 〉 = 〈Ei1...iN−2MiN−1N 〉, (4.15)

so the BRST integration reduced the maximum rank to p = N − 3 (because E12...(N−2) contains
at most M12...N−3). It turns out that the cohomology formula (4.12) allows enough BRST integra-
tion by parts as to reduce the maximum rank of the currents to p = [N/2], leading to manifestly
cyclic-symmetric amplitudes

AYM(1,2, . . . ,5) = 〈M12V3M45〉 + cyclic(12345),

AYM(1,2, . . . ,6) = 1

3
〈M12M34M56〉 + 1

2
〈M123E456〉 + cyclic(123456),

AYM(1,2, . . . ,7) = 〈M123M45M67〉 + 〈V1M234M567〉 + cyclic(1234567),

AYM(1,2, . . . ,8) = 〈M123M456M78〉 + 1

2
〈M1234E5678〉 + cyclic(12345678). (4.16)

The fractional prefactors 1
2 or 1

3 compensate for the fact that cyclic orbits for particularly sym-
metric superfield kinematics are shorter than the number N of legs. At N = 6, for instance,
M12M34M56 has just one distinct cyclic image M23M45M61, hence the full cyclic(123456) over-
counts the occurring diagrams by a factor of three.
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Fig. 7. Cyclic factorization of the N -point field-theory amplitude AYM(1,2, . . . ,N) into different Berends–Giele parti-
tions according to Eq. (4.18).

4.5. Factorization in cyclically symmetric form

In this subsection, we introduce a cyclically symmetric presentation of SYM amplitudes
where their factorization into two Berends–Giele currents becomes even more obvious.

One can check by evaluating the BRST variations that the amplitudes in (4.16) can be equiv-
alently written as

AYM(1,2, . . . ,4) = 1

2
〈M12QM34〉 + cyclic(1234),

AYM(1,2, . . . ,5) = 1

4

(〈M12QM345〉 + 〈M123QM45〉
) + cyclic(12345),

AYM(1,2, . . . ,6) = 1

6

(〈M12QM3456〉 + 〈M123QM456〉 + 〈M1234QM56〉
)

+ cyclic(123456),

AYM(1,2, . . . ,7) = 1

8

(〈M12QM34567〉 + 〈M123QM4567〉 + 〈M1234QM567〉
+ 〈M12345QM67〉

) + cyclic(1234567),

AYM(1,2, . . . ,8) = 1

10

(〈M12QM345678〉 + 〈M123QM45678〉 + 〈M1234QM5678〉
+ 〈M12345QM678〉 + 〈M123456QM78〉

) + cyclic(12345678). (4.17)

Note that some terms in the formulæ are naively overcounted by a factor of 2 because the cyclic
orbits of 〈M12...jQMj+1...N 〉 and 〈M12...N−jQMN−j+1...N 〉 are the same. The purpose of includ-
ing both of them is to obtain a uniform overall coefficient in (4.17) and to simplify the transition
to the general N -point formula,

AYM(1,2, . . . ,N) = 1

2(N − 3)

N−2∑
j=2

〈M12...jQMj+1...N 〉 + cyclic(1 . . .N) (4.18)

whose graphical representation is shown in Fig. 7. We have explicitly checked up to N = 10
points that the formula (4.18) exactly reproduces the expression AYM = 〈E12...N−1VN 〉 of [1],
including prefactors.

The factorization formula (4.18) can also be interpreted as coming from the factorization chan-
nels of two amplitudes with one leg x off-shell each with the form 〈E12...j Vx〉 and 〈VxEj+1...N 〉
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that are connected by a pure spinor propagator which effectively replaces3 Vx Vx → 1
Q

, resulting
in

AYM(1,2, . . . ,N) = 1

2(N − 3)

N−2∑
j=2

〈
E12...j

1

Q
Ej+1...N

〉
+ cyclic(1 . . .N)

= 1

2(N − 3)

N−2∑
j=2

〈M12...jQMj+1...N 〉 + cyclic(1 . . .N)

which reproduces the formula (4.18).

5. The superstring tree amplitude in pure spinor superspace

This section derives our central result (5.22) for the superstring N -point tree amplitude of
the massless gauge multiplet. The BRST building blocks T12...p and their combinations to form
supersymmetric Berends–Giele currents M12...p turn out to be very efficient bookkeeping devices
to handle the kinematic structures of a superstring amplitude in a universal way, i.e. for any
number N of external legs.

According to the tree-level prescription (2.12), the task in computing superstring amplitudes
in the canonical color ordering (1,2, . . . ,N) is to evaluate the CFT correlator

N−2∏
j=2

∫
dzj

〈
V 1(0)V (N−1)(1)V N(∞)U2(z2)U

3(z3) · · ·U(N−2)(z(N−2))
〉

(5.1)

integrated over z1 = 0 � z2 � · · · � zN−2 � zN−1 = 1. We will first of all give a representation
of (5.1) in terms of (N − 2)! different zi polynomials in the integrand. Then, performing manip-
ulations on the level of both the building blocks and the associated integrals reduces the number
of distinct integrals to (N − 3)! each of which multiplies a full-fledged SYM amplitude (4.12) in
a color ordering specific to the integral.

5.1. The CFT correlator

Since the conformal h = 1 primaries [∂θα,Πm,dα,Nmn] within the integrated vertex do not
have zero modes at tree level, the correlator (5.1) can be computed by summing all their OPE
singularities. Generically, this gives rise to a set of (N − 2)! worldsheet functions where all
the zij appear as single poles, and additionally to a set of double pole integrands ∼ z−2

ij . It has
been observed in [13] that the role of the double pole integrals is to correct the numerators of the
(N −2)! single pole integrals such that any OPE residue Ljiki...li is transformed to the associated
BRST building block Tijk...l . This is the consequence of a subtle interplay between the integrals
along the lines of Section 5.4, in particular the tachyon poles due to double pole integrals are
canceled by the superfield kinematics in a highly nontrivial way.

A bit of care is needed to reduce the single pole residue among two integrated vertices
Ui(zi)U

j (zj ) to the more basic Ljiki...li superfields which appear when UjUk · · ·Ul suc-
cessively approach an unintegrated vertex V i . The required manipulations are based on the

3 C.M. thanks Nathan Berkovits for suggesting back in 2006 how one could view an operation like Vx Vx → 1
Q

as
possibly being related to a massless propagator in pure spinor superspace.
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independence of correlation functions on the order of integrating out the h = 1 fields [12]. The
relations up to the six-point case can be found in [12,13],

V 1(z1)U
2(z2)U

3(z3) ∼ L3121 − L2131

z23z31
=: 2L[31,21]

z23z31
,

V 1(z1)U
2(z2)U

3(z3)U
4(z4) ∼ L413121 − L412131 + L213141 − L312141

z23z34z41
=: 4L[41,[31,21]]

z23z34z41
,

(5.2)

we are picking out one particular residue here when the arguments approach each other in the
order z2 → z3 → z1 and z2 → z3 → z4 → z1, respectively. This order is reflected in the specific
zij in the denominator.

Higher-order analogues of (5.2) involve nested antisymmetrizations:

V 1(z1)U
2(z2)U

3(z3)U
4(z4)U

5(z5) ∼ 8L[51,[41,[31,21]]]
z23z34z45z51

,

V 1(z1)U
2(z2)U

3(z3) · · ·Up(zp) ∼ 2p−2L[p1,[(p−1)1,[...,[41,[31,21]]...]]]
z23z34 · · · zp−1,pzp1

. (5.3)

When all the single pole numerators are reduced to Ljiki...li and the double pole corrections are
absorbed into Ljiki...li �→ Tijk...l , the integrated correlator (5.1) assumes a manifestly symmetric
form in the labels 2,3, . . . ,N − 2 of the Uj vertices

N−2∏
j=2

∫
dzj

〈
V 1(0)V (N−1)(1)V N(∞)U2(z2)U3(z3) · · ·U(N−2)(z(N−2))

〉

=
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

N−2∑
p=1

〈
T12...p TN−1,N−2,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2zN−2,N−3 · · · zp+2,p+1)

+P(2,3, . . . ,N − 2)

〉
, (5.4)

where P(2,3, . . . ,N − 2) denotes a symmetric sum over the (N − 3)! permutations of the labels
(2,3, . . . ,N − 2). The zij polynomials associated with a specific BRST building block Tij1j2...jp

follow an intriguing pattern (where the first label i belongs to an unintegrated vertex V 1 or V N−1

and the remaining ones to the integrated vertices jk ∈ {2,3, . . . ,N − 2}):

Tij1j2...jp ↔ 1

zij1zj1j2zj2j3 · · · zjp−1,jp

. (5.5)

Since there are (N − 3)! permutations of the (2,3, . . . ,N − 2) labels and the p sum collects
(N − 2) distinct permutation orbits, (5.4) yields an expression for the N -point superstring am-
plitude (2.12) in terms of (N − 2)! kinematic numerators and hypergeometric integrals,

AN ≡A(1,2, . . . ,N) =
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

×
N−2∑〈

T12...pTN−1,N−2,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2 · · · zp+2,p+1)
+P(2, . . . ,N − 2)

〉
. (5.6)
p=1
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The cases N = 5 and N = 6 of (5.6) reproduce the formulæ obtained in [13,26] and (5.6) has also
been used in [34] to obtain (via the field-theory limit α′ → 0) local expressions for all (2N − 5)!!
kinematic numerators entering the field-theory N -point amplitude which manifestly satisfy all
BCJ numerator identities [14].

5.2. A closed formula for M12...p from the superstring

In this subsection we will show that the result (5.6) for the N -point superstring amplitude
allows to extract a closed formula for the Berends–Giele current M12...p . The p sum in (5.6)
partitions the legs 2,3, . . . ,N − 2 into two groups – one of them gets connected to leg 1, the
other to leg N − 1. The same structure is also present in the cohomology formula (4.12) for the
field-theory amplitude; AN

YM = ∑N−2
p=1 〈M12...pMp+1...N−1VN 〉.

Since the kinematic factors within individual terms of the p sum are linearly independent, we

can directly compare the p = N − 2 term on both sides of AN
α′→0−→ AN

YM – with the string- and
field-theory amplitudes given respectively by (5.6) and (4.12):

AN = (
2α′)N−3

N−2∏
j=2

∫
dzj

∏
i<j

|zij |−2α′sij
〈

T12...N−2VN−1VN

z12z23 · · · zN−3,N−2
+P(2, . . . ,N − 2) + · · ·

〉

α′→0−→ 〈M12...N−2VN−1VN 〉 + · · · . (5.7)

This yields a closed-formula solution for the rank p = N − 2 current M12...p ,

M12...p = lim
α′→0

(
2α′)p−1

×
p∏

j=2

1∫
zj−1

dzj

p+1∏
i<j

|zij |−2α′sij
(

T12...p

z12z23 · · · zp−1,p

+P(2,3, . . . , p)

)
, (5.8)

where z1 = 0 and zp+1 = 1 as customary for a (p + 2)-point amplitude. For example, using
the momentum expansion of the five-point superstring integrals [5] and the BRST symmetry
T123 + T231 + T312 = 0 of (3.14) the following M123 is generated

M123 = lim
α′→0

(
2α′)2

1∫
0

dz2

1∫
z2

dz3

4∏
i<j

|zij |−2α′sij
(

T123

z12z23
+ T132

z13z32

)

= T123

s12s123
+ T123

s23s123
− T132

s23s123
= T123

s12s123
+ T321

s23s123
, (5.9)

which is easily shown to satisfy QM123 = E123. Similarly, we checked that the formula (5.8)
correctly generates solutions of (4.4) up to and including M1234567.

5.3. Trading T12...p for M12...p

As will be shown in the next subsections, in order to simplify even further the expression (5.6)
of the superstring N -point amplitude it will be convenient to trade the BRST building blocks
T12...p for the Berends–Giele currents M12...p .
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This exchange will be possible because of the particular pattern (5.5) of zij dependence along
with the T12...p . The lowest-order example of T ↔ M conversion is a triviality T12

z12
= s12

z12
M12,

but already the simplest generalization is a result of partial fraction relations and the symmetry
properties of Tijk :

T123

z12z23
+P(2,3) = s12

z12

(
s13

z13
+ s23

z23

)
M123 +P(2,3). (5.10)

Similar identities have been checked at p = 4 and p = 5 level:

T1234

z12z23z34
+P(2,3,4) = s12

z12

(
s13

z13
+ s23

z23

)(
s14

z14
+ s24

z24
+ s34

z34

)
M1234 + P(2,3,4),

T12345

z12z23z34z45
+P(2,3,4,5) = s12

z12

(
s13

z13
+ s23

z23

)(
s14

z14
+ s24

z24
+ s34

z34

)

×
(

s15

z15
+ s25

z25
+ s35

z35
+ s45

z45

)
M12345

+P(2,3,4,5). (5.11)

These identities heavily rely on the interplay of different terms in the permutation sum and on
the symmetry properties (3.20) of the BRST building blocks which leave no more than (p − 1)!
independent permutations of Ti1...ip at level p.

The natural n-point generalization of (5.10) and (5.11) reads as follows:

T12...p

z12z23 · · · zp−1,p

+P(2, . . . , p) =
p∏

k=2

k−1∑
m=1

smk

zmk

M12...p +P(2, . . . , p),

TN−1,N−2,...,p+1

zN−1,N−2 · · · zp+2,p+1
+P(2, . . . , p)

=
N−2∏

k=p+1

N−1∑
n=k+1

snk

znk

MN−1,N−2,...,p+1 +P(2, . . . , p)

=
N−2∏

k=p+1

N−1∑
n=k+1

skn

zkn

Mp+1,p+2,...,N−1 +P(2, . . . , p), (5.12)

where in the last line the rank N − 1 − p Berends–Giele current with leg N − 1 involved was
reflected via (4.7); MN−1,...,p+1 = (−1)N−p−2Mp+1,...,N−1.

5.4. Worldsheet integration by parts

This subsection focuses on the integrals rather than the kinematic factors in the superstring
amplitude. The chain of smk

zmk
sums which appears as a result of (5.12) when all the T12...p are

converted to M12...p is particularly suitable to perform integration by parts with respect to zj

variables. Further details on the structure and manipulations of the integrals can be found in [2].
The key idea is the vanishing of boundary terms in the worldsheet integrals:∫

dzj · · ·
∫

dzN−2
∂

∏
i<j |zij |−sij

= 0. (5.13)

∂zk zi1j1 · · · ziN−4jN−4
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This identity provides relations between the integrals in an N -point superstring amplitude with
N − 3 powers of zij in the denominator. They become particularly easy if the differentiation
variable zk does not appear in the denominator (i.e. if k /∈ {il , jl}) because ∂

∂zk
only hits the∏

m �=k |zmk|−smk factor in that case:

∫
dz2 · · ·

∫
dzN−2

∏
i<j |zij |−sij

zi1j1 · · · ziN−4jN−4

N−1∑
m=1
m �=k

smk

zmk

= 0. (5.14)

This can be directly applied to the integrands on the right-hand side of (5.10), (5.11) and (5.12),
namely:

3∏
j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

(
s13

z13
+ s23

z23

)
=

3∏
j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

s34

z34
,

4∏
j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

(
s13

z13
+ s23

z23

)(
s14

z14
+ s24

z24
+ s34

z34

)

=
4∏

j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

s45

z45

{
(

s13
z13

+ s23
z23

)

(
s34
z34

+ s35
z35

)
,

5∏
j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

(
s13

z13
+ s23

z23

)(
s14

z14
+ s24

z24
+ s34

z34

)(
s15

z15
+ s25

z25
+ s35

z35
+ s45

z45

)

=
5∏

j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

s56

z56

(
s13

z13
+ s23

z23

)(
s45

z45
+ s46

z46

)
. (5.15)

In the general N -point case, it is most economic to leave the first [N/2]− 1 factors of
∑k−1

m=1
smk

zmk

as they are, and to integrate the remaining [(N − 3)/2] such factors by parts:

N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

(
s13

z13
+ s23

z23

)
· · ·

(
s1,N−2

z1,N−2
+ · · · + sN−1,N−2

zN−1,N−2

)

=
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij
s12

z12

(
s13

z13
+ s23

z23

)
· · ·

(
s1,[N/2]
z1,[N/2]

+ · · · + s[N/2]−1,[N/2]
z[N/2]−1,[N/2]

)

×
(

s[N/2]+1,[N/2]+2

z[N/2]+1,[N/2]+2
+ · · · + s[N/2]+1,N−1

z[N/2]+1,N−1

)
· · ·

×
(

sN−3,N−2

zN−3,N−2
+ sN−3,N−1

zN−3,N−1

)
sN−2,N−1

zN−2,N−1

=
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

( [N/2]∏
k=2

k−1∑
m=1

smk

zmk

)(
N−2∏

k=[N/2]+1

N−1∑
n=k+1

skn

zkn

)
. (5.16)

In contrast to the T12...p → M12...p reshuffling identities from the previous subsection, (5.15)
and (5.16) are valid before summing over permutations of (2,3, . . . ,N − 2).
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5.5. The complete N -point superstring disk amplitude

This subsection completes the derivation of the striking result (5.22) for the superstring
N -point amplitude AN ≡ A(1,2, . . . ,N) by combining the results of the previous subsections.
Let us first look at the four-, five- and six-point examples to get a better feeling of the mechanisms
at work.

After using Tij = sijMij , the total derivative relation s23
z23

�→ s12
z12

as well as E123 = M12V3 +
V1M23, the four-point open string disk amplitude is easily seen to be

A4 =
∫

dz2

∏
i<j

|zij |−sij

〈
T12V3V4

z12
+ V1T32V4

z32

〉

=
∫

dz2

∏
i<j

|zij |−sij

〈
s12

z12
M12V3V4 + s23

z23
V1M23V4

〉

=
∫

dz2

∏
i<j

|zij |−sij
s12

z12

〈
(M12V3 + V1M23)V4

〉

=
∫

dz2

∏
i<j

|zij |−sij
s12

z12
AYM(1,2,3,4). (5.17)

Similarly, the five-point superstring amplitude (5.6) contains six different integrands and kine-
matic terms. After applying (5.10), the Tij and Tijk conspire to give Mij and Mijk with modified
integrals, then we use integration by parts according to (5.15) on the way to the third equality
of (5.18). Remarkably, many of the initially (N − 2)! = 6 distinct integrals now coincide: The
three kinematic terms M123V4V5, M12M34V5 and V1M234V5 are multiplied by the same integral
after partial integration, the same is true for the (2 ↔ 3) permutation. That is why we can identify
color-ordered field-theory amplitudes (4.12) in the last line:

A5 =
∫

dz2 dz3

∏
i<j

|zij |−sij

〈
T123V4V5

z12z23
+ T12T43V5

z12z43
+ V1T432V5

z43z32
+ (2 ↔ 3)

〉

=
∫

dz2 dz3

∏
i<j

|zij |−sij

〈
s12

z12

(
s13

z13
+ s23

z23

)
M123V4V5 + s12s34

z12z34
M12M34V5

+ s43

z43

(
s42

z42
+ s32

z32

)
V1M432V5 + (2 ↔ 3)

〉

=
∫

dz2 dz3

∏
i<j

|zij |−sij

{
s12s34

z12z34
〈M123V4V5 + M12M34V5 + V1M234V5〉 + (2 ↔ 3)

}

=
∫

dz2 dz3

∏
i<j

|zij |−sij

{
s12s34

z12z34
AYM(1,2,3,4,5) + s13s24

z13z24
AYM(1,3,2,4,5)

}
.

(5.18)

Simplifying the six-point amplitudes A6 follows similar steps. In this case, (5.11) takes care of
the conversion of Tijkl into Mijkl , then integration by parts makes the four integrals within a
given (2,3,4) permutation coincide:
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A6 =
4∏

j=2

∫
dzj

∏
i<j

|zij |−sij

〈
T1234V5V6

z12z23z34
+ T123T54V6

z12z23z54
+ T12T543V6

z12z54z43

+ V1T5432V6

z54z43z32
+P(2,3,4)

〉

=
4∏

j=2

∫
dzj

∏
i<j

|zij |−sij

〈
s12

z12

(
s13

z13
+ s23

z23

)(
s14

z14
+ s24

z24
+ s34

z34

)
M1234V5V6

+ s12

z12

(
s13

z13
+ s23

z23

)
s45

z45
M123M45V6 + s12

z12

s45

z45

(
s34

z34
+ s35

z35

)
M12M543V6

+ s45

z45

(
s34

z34
+ s35

z35

)(
s52

z52
+ s42

z42
+ s32

z32

)
V1M5432V6 +P(2,3,4)

〉

=
4∏

j=2

∫
dzj

∏
i<j

|zij |−sij

{
s12s45

z12z45

(
s13

z13
+ s23

z23

)
〈M1234V5V6 + M123M45V6

+ M12M345V6 + V1M2345V6〉 +P(2,3,4)

}

=
4∏

j=2

∫
dzj

∏
i<j

|zij |−sij

{
s12s45

z12z45

(
s13

z13
+ s23

z23

)
AYM(1,2,3,4,5,6) +P(2,3,4)

}
.

(5.19)

The identities (5.11) and (5.15) are sufficient to also reduce the superstring seven-point amplitude
A7 to its field-theory constituents:

A7 =
5∏

j=2

∫
dzj

∏
i<j

|zij |−sij

〈
T12345V6V7

z12z23z34z45
+ T1234T65V7

z12z23z34z65
+ T123T654V7

z12z23z65z54

+ T12T6543V7

z12z65z54z43
+ V1T65432V7

z65z54z43z32
+P(2,3,4,5)

〉

=
5∏

j=2

∫
dzj

∏
i<j

|zij |−sij

{
s12s56

z12z56

(
s13

z13
+ s23

z23

)(
s45

z45
+ s46

z46

)
AYM(1,2,3,4,5,6,7)

+ P(2,3,4,5)

}
. (5.20)

The N -point generalization is based on introducing currents Mi1i2...ip via (5.12) followed by
integration by parts using (5.16). The latter makes the integral independent on p such that the zij

can be placed outside the p sum and SYM amplitudes emerge from the kinematics:

AN =
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

〈
N−2∑
p=1

T12...p TN−1,N−2,...,p+1VN

(z12z23 · · · zp−1,p)(zN−1,N−2 · · · zp+2,p+1)

+P(2,3, . . . ,N − 2)

〉
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=
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

〈
N−2∑
p=1

(
p∏

k=2

k−1∑
m=1

smk

zmk

M12...p

)

×
(

N−2∏
k=p+1

N−1∑
n=k+1

skn

zkn

Mp+1,...,N−2,N−1

)
VN +P(2,3, . . . ,N − 2)

〉

=
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

{([N/2]∏
k=2

k−1∑
m=1

smk

zmk

)(
N−2∏

k=[N/2]+1

N−1∑
n=k+1

skn

zkn

)

×
N−2∑
p=1

〈M12...pMp+1...N−2,N−1VN 〉 +P(2,3, . . . ,N − 2)

}

=
N−2∏
j=2

∫
dzj

∏
i<j

|zij |−sij

{([N/2]∏
k=2

k−1∑
m=1

smk

zmk

)(
N−2∏

k=[N/2]+1

N−1∑
n=k+1

skn

zkn

)

×AYM(1,2,3, . . . ,N − 1,N) +P(2,3, . . . ,N − 2)

}
. (5.21)

Equivalently, by undoing the total derivative relation used in (5.21) the full N -point superstring
amplitude becomes

AN =
∫

zi<zi+1

∏
i<j

|zij |−sij

[
N−2∏
k=2

k−1∑
m=1

smk

zmk

AYM(1,2, . . . ,N) +P(2, . . . ,N − 2)

]
, (5.22)

where the integration region
∫
zi<zi+1

≡ ∏N−2
j=2

∫ 1
zj−1

dzj is responsible for dictating which color-
ordered string subamplitude is being computed. Therefore the end result of all these pure spinor
superspace manipulations is that the N -point superstring disk amplitude is written in terms of
the explicit sum of (N − 3)! basis of field-theory amplitudes multiplied by an equal number of
hypergeometric integrals, as mentioned in the Introduction and further elaborated in [2].
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Appendix A. The explicit construction of T12345

In order to find the appropriate redefinition of L21314151 leading to T̃12345 one simply uses the
known redefinitions of [L21,L2131,L213141] → [T12, T123, T1234] in the right-hand side of (3.3).
Even though it is not obvious, all terms from these lower-order redefinitions group together into
a BRST-exact combination which can be moved to the left-hand side of (3.3). Doing that finally
leads to the definition of T̃12345, given by

T̃12345 = L21314151

− 1

4
(s13 + s23)

[
D12D34V5(s35 + s45) + D12D35V4s34 − D12D45V3s34

]
− 1

4
s12

[
D13D24V5(s25 + s45) + D14D23V5(s25 + s35) + D15D23V4(s24 + s34)

+ s24(D13D25V4 − D13D45V2) + s13(D34D25V1 + D35D24V1)

+ s23(D14D25V3 − D14D35V2 + D15D24V3 − D15D34V2) + s14D45D23V1
]

− (s15 + s25 + s35 + s45)S
(2)
1234V5 − (s14 + s24 + s34)

(
S

(1)
123L54 + S

(2)
1235V4

)
− (s13 + s23)

(
S

(1)
124L53 + S

(1)
125L43 − S

(1)
345L21 + S

(2)
1245V3

)
− s12

[
S

(1)
134L52 + S

(1)
135L42 + S

(1)
145L32 + S

(2)
1345V2 − (1 ↔ 2)

]
− 1

2

[
T123D45(s14 + s24 + s34) + (T125D34 − T345D12 + T124D35)(s13 + s23)

+ s12
(
T134D25 + T135D24 + T145D23 − (1 ↔ 2)

)]
(A.1)

which, by construction, is guaranteed to satisfy

QT̃12345 = +(s15 + s25 + s35 + s45)T1234V5 + (s14 + s24 + s34)(T1235V4 + T123T45)

+ (s13 + s23)(T1245V3 + T124T35 + T125T34 + T12T345)

+ s12(T1345V2 + V1T2345 + T134T25 + T135T24 + T145T23

+ T13T245 + T14T235 + T15T234). (A.2)

One can also show that4

T̃12345 + T̃21345 = QR
(1)
12345,

T̃12345 + T̃23145 + T̃31245 = QR
(2)
12345,

T̃12345 − T̃12435 + T̃34125 − T̃34215 = QR
(3)
12345,

T̃12345 − T̃12354 + T̃45123 − T̃45213 − T̃45312 + T̃45321 = QR
(4)
12345, (A.3)

where the BRST-exact parts are given by

R
(1)
12345 = D12

(
k12 · A3)(k123 · A4)(k1234 · A5)

+ 1

6
(s13 + s23)D12

[
D45

((
k4 · A3) − (

k5 · A3))
+ D35

((
k5 · A4) − (

k3 · A4)) − 2D34
((

k3 · A5) + 2
(
k4 · A5))],

4 The tedious algebra was handled using FORM [32].
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R
(2)
12345 = D12

(
k2 · A3)(k123 · A4)(k1234 · A5) + 1

6

[
s12D13

(
D45

((
k4 · A2) − (

k5 · A2))
+ D25

((
k5 · A4) − (

k2 · A4)) − 2D24
((

k2 · A5) + 2
(
k4 · A5))) + cyclic(123)

]
,

R
(3)
12345 = −(

W 1γ mW 2)(W 3γ mW 4)(k1234 · A5)
+

[
D12

(
k3 · A4)(k2 · A3)(k1234 · A5)

+ 1

3
(s24 − 2s23)D34D12

(
k4 · A5) − (3 ↔ 4)

]

+ 1

6
(s14 + s24)

[
D25D34

((
k2 · A1) − (

k5 · A1))
+ D15D34

((
k5 · A2) − (

k1 · A2))]
+ 1

6
(s23 + s24)

[
D45D12

((
k4 · A3) − (

k5 · A3))
+ D35D12

((
k5 · A4) − (

k3 · A4))]
+

[(
D13

(
k1 · A2)(k3 · A4) + D24

(
k2 · A1)(k4 · A3)

+ D34
(
k1 · A2)(k4 · A1))(k1234 · A5)

+ 1

3
(s24 − 2s14)D34D12

(
k2 · A5) − (1 ↔ 2)

]
,

R
(4)
12345 = (

W 1γ mW 2)[(W 4γ nW 5)F3
mn − (

W 4γ mW 5)(k12 · A3)]
+

[(
W 1γ mW 2)(W 3γ mW 5)(k5 · A4) + 1

4

(
W 1γ mW 2)(W 5γ npγ mW 3)F4

np

+ D12
(
k2 · A3)(k23 · A4)(k4 · A5) + D12

(
k1 · A3)(k2 · A4)(k4 · A5)

+ 1

6
D12D35

(
k3 · A4)s23 + 5

6
D12D35

(
k5 · A4)s23 + 1

3
D12D45

(
k4 · A3)s23

+ D14
(
k1 · A2)(k12 · A3)(k4 · A5) + D25

(
k2 · A1)(k12 · A3)(k5 · A4)

+ D34
(
k2 · A1)(k3 · A2)(k4 · A5) + D35

(
k3 · A1)(k1 · A2)(k5 · A4) − (4 ↔ 5)

]

+
[(

W 2γ mW 3)(W 4γ mW 5)(k2 · A1) + 1

4

(
W 4γ mW 5)(W 1γ npγ mW 3)F2

np

+ D13
(
k1 · A2)(k3 · A4)(k4 · A5) − D13

(
k5 · A4)(k1 · A2)(k3 · A5)

+ D45
(
k2 · A1)(k3 · A2)(k5 · A3) + D45

(
k5 · A1)(k1 · A2)(k12 · A3)

+ 1

3
D12D45

(
k2 · A3)(−2s15 + s25 + s35) + 1

6
D13D45

(
k3 · A2)(s15 + s25 + s35)

− 1

6
D13D45

(
k1 · A2)(s15 + s25 − 5s35) − (1 ↔ 2)

]
. (A.4)

Removing these BRST-exact parts is accomplished by the second redefinition T̃12345 −→
T12345, leading to the rank-five BRST building block

T12345 = T̃12345 − QS
(3)

, (A.5)
12345
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where the expression for S
(3)
12345 can be written recursively as

S
(3)
12345 = 4

5
S

(2)
12345 + 1

5

(
S

(2)
12354 − S

(2)
45123 + S

(2)
45213 + S

(2)
45312 − S

(2)
45321

) + 1

5
R

(4)
12345,

S
(2)
12345 = 3

4
S

(1)
12345 + 1

4

(
S

(1)
12435 − S

(1)
34125 + S

(1)
34215

) + 1

4
R

(3)
12345,

S
(1)
12345 = 1

2
R

(1)
12345 + 1

3
R

(2)
[12]345. (A.6)

To see that (A.5) and (A.6) imply all the BRST-symmetries of T12345

0 = T12345 + T21345,

0 = T12345 + T31245 + T23145,

0 = T12345 − T12435 + T34125 − T34215,

0 = T12345 − T12354 + T45123 − T45213 − T45312 + T45321 (A.7)

it suffices to check that the following identities hold,

S
(3)
12345 + S

(3)
21345 = R

(1)
12345,

S
(3)
12345 + S

(3)
31245 + S

(3)
23145 = R

(2)
12345,

S
(3)
12345 − S

(3)
12435 + S

(3)
34125 − S

(3)
34215 = R

(3)
12345,

S
(3)
12345 − S

(3)
12354 + S

(3)
45123 − S

(3)
45213 − S

(3)
45312 + S

(3)
45321 = R

(4)
12345. (A.8)

Having the explicit superfield expressions for the building blocks up to T12345 allows all compo-
nent amplitudes up to N = 11 to be evaluated.

Appendix B. The solutions for Mi1i2...in in terms of BRST building blocks

From the relation between M123...n and the cubic diagrams of the (n + 1)-point amplitude
discussed in Section 4.1, it follows that the solutions for M123, M1234, M12345, M123456 and
M1234567 which satisfy (4.1) contain 2, 5, 14, 42 and 132 different kinematic pole configura-
tions, which are represented by the cubic-graph expansion of the tree amplitudes. Their explicit
expressions can then be read off from the dictionary between those cubic graphs and the BRST
building blocks; as discussed in Section 3.3. Furthermore, using the antisymmetry on the first
two labels of Tijk..., one can always choose an ordering such that all terms in M123...n have a
positive coefficient, leading to:

M12 = T12

s12
, (B.1)

M123 = 1

s123

(
T123

s12
+ T321

s23

)
, (B.2)

M1234 = 1

s1234

(
T1234

s12s123
+ T3214

s23s123
+ T3241

s23s234
+ T3421

s34s234
+ 2T12[34]

s12s34

)
, (B.3)

M12345 = 1

s12345

[
1

s1234

(
T12345

s12s123
+ T32145

s23s123
+ T32415

s23s234
+ T34215

s34s234
+ 2T12[34]5

s12s34

)

+ 1
(

T34251 + T32451 + T34521 + T54321 + 2T45[23]1
)

s2345 s34s234 s23s234 s34s345 s45s345 s23s45
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+ 2T123[45]
s12s123s45

+ 2T321[45]
s23s123s45

+ 2T453[12]
s45s345s12

+ 2T435[12]
s34s345s12

]
, (B.4)

M123456 = 1

s123456

[
4T12[34][56]

s12s34s56s1234
+ 4T34[56][21]

s12s34s56s3456
+ 4T123[[45]6]

s12s45s123s456
+ 4T123[4[56]]

s12s56s123s456

+ 4T231[[54]6]
s23s45s123s456

+ 4T231[4[65]]
s23s56s123s456

+ 2T345[21]6
s12s34s345s12345

+ 2T3456[21]
s12s34s345s3456

+ 2T12[34]56

s12s34s1234s12345
+ 2T123[45]6

s12s45s123s12345
+ 2T543[21]6

s12s45s345s12345
+ 2T5436[21]

s12s45s345s3456

+ 2T4563[12]
s12s45s456s3456

+ 2T1234[56]
s12s56s123s1234

+ 2T5643[21]
s12s56s456s3456

+ 2T231[54]6
s23s45s123s12345

+ 2T456[23]1
s23s45s456s23456

+ 2T34[56]21

s34s56s23456s3456
+ 2T23[54]16

s23s45s12345s2345

+ 2T23[54]61

s23s45s2345s23456
+ 2T2314[65]

s23s56s123s1234
+ 2T2341[65]

s23s56s234s1234
+ 2T234[65]1

s23s56s234s23456

+ 2T564[32]1
s23s56s456s23456

+ 2T3421[56]
s34s56s234s1234

+ 2T342[56]1
s34s56s234s23456

+ T321456

s23s123s1234s12345

+ T324156

s23s234s1234s12345
+ T324516

s23s234s12345s2345
+ T324561

s23s234s2345s23456

+ T342156

s34s234s1234s12345
+ T342516

s34s234s12345s2345
+ T342561

s34s234s2345s23456

+ T345216

s34s345s12345s2345
+ T345261

s34s345s2345s23456
+ T345621

s34s345s23456s3456

+ T543216

s45s345s12345s2345
+ T543261

s45s345s2345s23456
+ T123456

s12s123s1234s12345

+ T543621

s45s345s23456s3456
+ T546321

s45s456s23456s3456
+ T564321

s56s456s23456s3456

]
, (B.5)

s1234567M1234567

= + 8T12[34][[56]7]
s12s34s56s567s1234

+ 8T54[67][1[23]]
s23s45s67s123s4567

+ 8T12[34][5[67]]
s12s34s67s567s1234

+ 8T45[67][3[12]]
s12s45s67s123s4567

+ 4T567[34][12]
s12s34s56s567s34567

+ 4T12[34][56]7
s12s34s56s1234s123456

+ 4T43[56][12]7
s12s34s56s123456s3456

+ 4T435[12][67]
s12s34s67s345s12345

+ 4T435[67][12]
s12s34s67s345s34567

+ 4T765[34][12]
s12s34s67s567s34567

+ 4T12[34]5[67]
s12s34s67s1234s12345

+ 4T123[45][67]
s12s45s67s123s12345

+ 4T453[12][67]
s12s45s67s345s12345

+ 4T453[67][12]
s12s45s67s345s34567

+ 4T45[67]3[12]
s12s45s67s34567s4567

+ 4T123[[45]6]7
s12s45s123s456s123456

+ 4T5467[[12]3]
s12s45s123s456s4567

+ 4T7654[[12]3]
s12s67s123s567s4567

+ 4T1234[5[67]]
s12s67s123s567s1234

+ 4T321[45][67] + 4T32[45]1[67] + 4T32[45][67]1

s23s45s67s123s12345 s23s45s67s12345s2345 s23s45s67s2345s234567
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+ 4T5647[[12]3]
s12s56s123s456s4567

+ 4T1234[[56]7]
s12s56s123s567s1234

+ 4T5674[[12]3]
s12s56s123s567s4567

+ 4T123[4[56]]7
s12s56s123s456s123456

+ 4T5647[1[23]]
s23s56s123s456s4567

+ 4T3214[[56]7]
s23s56s123s567s1234

+ 4T5674[1[23]]
s23s56s123s567s4567

+ 4T321[4[56]]7
s23s56s123s456s123456

+ 4T3214[5[67]]
s23s67s123s567s1234

+ 4T7654[1[23]]
s23s67s123s567s4567

+ 4T3241[5[67]]
s23s67s234s567s1234

+ 4T324[5[67]]1
s23s67s234s567s234567

+ 4T45[67][23]1
s23s45s67s234567s4567

+ 4T321[[45]6]7
s23s45s123s456s123456

+ 4T5467[1[23]]
s23s45s123s456s4567

+ 4T3241[[56]7]
s23s56s234s567s1234

+ 4T324[[56]7]1
s23s56s234s567s234567

+ 4T3421[[56]7]
s34s56s234s567s1234

+ 4T342[[56]7]1
s34s56s234s567s234567

+ 4T3421[5[67]]
s34s67s234s567s1234

+ 4T342[5[67]]1
s34s67s234s567s234567

+ 2T435[12]67

s12s34s345s12345s123456
+ 2T4356127

s12s34s345s123456s3456
+ 2T43567[12]

s12s34s345s3456s34567

+ 2T12[34]567

s12s34s1234s12345s123456
+ 2T453[12]67

s12s45s345s12345s123456
+ 2T4536[12]7

s12s45s345s123456s3456

+ 2T45367[12]
s12s45s345s3456s34567

+ 2T4563[12]7
s12s45s456s123456s3456

+ 2T45637[12]
s12s45s456s3456s34567

+ 2T45673[12]
s12s45s456s34567s4567

+ 2T1234[56]7
s12s56s123s1234s123456

+ 2T123[45]67

s12s45s123s12345s123456

+ 2T6543[12]7
s12s56s456s123456s3456

+ 2T65437[12]
s12s56s456s3456s34567

+ 2T65473[12]
s12s56s456s34567s4567

+ 2T65743[12]
s12s56s567s34567s4567

+ 2T12345[67]
s12s67s123s1234s12345

+ 2T67543[12]
s12s67s567s34567s4567

+ 2T321[45]67

s23s45s123s12345s123456
+ 2T456[23]17

s23s45s456s123456s23456
+ 2T456[23]71

s23s45s456s23456s234567

+ 2T4567[23]1
s23s45s456s234567s4567

+ 2T32[45]167

s23s45s12345s123456s2345
+ 2T3241[56]7

s23s56s234s1234s123456

+ 2T32[45]617

s23s45s123456s2345s23456
+ 2T32[45]671

s23s45s2345s23456s234567
+ 2T3214[56]7

s23s56s123s1234s123456

+ 2T324[56]17

s23s56s234s123456s23456
+ 2T324[56]71

s23s56s234s23456s234567
+ 2T654[23]17

s23s56s456s123456s23456

+ 2T654[23]71

s23s56s456s23456s234567
+ 2T6547[23]1

s23s56s456s234567s4567
+ 2T6574[23]1

s23s56s567s234567s4567

+ 2T32145[67]
s23s67s123s1234s12345

+ 2T32415[67]
s23s67s234s1234s12345

+ 2T32451[67]
s23s67s234s12345s2345

+ 2T3245[67]1
s23s67s234s2345s234567

+ 2T6754[23]1
s23s67s567s234567s4567

+ 2T3421[56]7
s34s56s234s1234s123456

+ 2T342[56]17 + 2T342[56]71 + 2T657[34]21
s34s56s234s123456s23456 s34s56s234s23456s234567 s34s56s567s234567s34567
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+ 2T34[56]217

s34s56s123456s23456s3456
+ 2T34[56]271

s34s56s23456s234567s3456
+ 2T34[56]721

s34s56s234567s3456s34567

+ 2T34215[67]
s34s67s234s1234s12345

+ 2T34251[67]
s34s67s234s12345s2345

+ 2T3425[67]1
s34s67s234s2345s234567

+ 2T5432[67]1
s45s67s345s2345s234567

+ 2T543[67]21

s45s67s345s234567s34567
+ 2T54[67]321

s45s67s234567s34567s4567

+ 2T34521[67]
s34s67s345s12345s2345

+ 2T3452[67]1
s34s67s345s2345s234567

+ 2T345[67]21

s34s67s345s234567s34567

+ 2T675[34]21

s34s67s567s234567s34567
+ 2T54321[67]

s45s67s345s12345s2345
+ T1234567

s12s123s1234s12345s123456

+ T3214567

s23s123s1234s12345s123456
+ T3241567

s23s234s1234s12345s123456
+ T3245167

s23s234s12345s123456s2345

+ T3245617

s23s234s123456s2345s23456
+ T3245671

s23s234s2345s23456s234567
+ T3456217

s34s345s123456s23456s3456

+ T3421567

s34s234s1234s12345s123456
+ T3425167

s34s234s12345s123456s2345
+ T3452617

s34s345s123456s2345s23456

+ T3425617

s34s234s123456s2345s23456
+ T3425671

s34s234s2345s23456s234567
+ T3452167

s34s345s12345s123456s2345

+ T3452671

s34s345s2345s23456s234567
+ T3456271

s34s345s23456s234567s3456
+ T3456721

s34s345s234567s3456s34567

+ T5432167

s45s345s12345s123456s2345
+ T5432617

s45s345s123456s2345s23456
+ T5436217

s45s345s123456s23456s3456

+ T5432671

s45s345s2345s23456s234567
+ T5436271

s45s345s23456s234567s3456
+ T5436721

s45s345s234567s3456s34567

+ T5463217

s45s456s123456s23456s3456
+ T5463271

s45s456s23456s234567s3456
+ T5463721

s45s456s234567s3456s34567

+ T5467321

s45s456s234567s34567s4567
+ T5643217

s56s456s123456s23456s3456
+ T5643271

s56s456s23456s234567s3456

+ T5643721

s56s456s234567s3456s34567
+ T5647321

s56s456s234567s34567s4567
+ T5674321

s56s567s234567s34567s4567

+ T7654321

s67s567s234567s34567s4567
. (B.6)

Appendix C. The cubic graphs of M123...n

As discussed in Section 4.1, the expressions for M123...n of Appendix B were found using the
dictionary between the cubic diagrams of the (n + 1)-point amplitude with one leg off-shell and

Fig. 8. The two cubic diagrams which constitute M123.
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Fig. 9. The five cubic diagrams which constitute M1234. The signs match the corresponding terms given in the for-
mula (B.3).

Fig. 10. The 14 cubic diagrams which constitute M12345. The signs of their corresponding formulæ are in one-to-one
agreement with the terms in expression for M12345 given by (B.4), which is reproduced by summing all 14 graphs
displayed here.
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Fig. 11. The 42 cubic diagrams which constitute M123456. The signs of their corresponding formulæ are in one-to-one
agreement with the terms in expression for M123456 given by (B.5), which is reproduced by summing all 42 graphs
displayed here.

BRST building blocks. The graphs which compose the expressions for M123, . . . ,M123456 are
given in Figs. 8–11 (the 132 graphs used in the derivation of M1234567 would occupy to much
space and were omitted).
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Fig. 11. (continued)
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Fig. 11. (continued)
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