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Abstract

Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level
amplitude of N massless open strings and find a striking simple and compact form in terms of minimal
building blocks: the full N-point amplitude is expressed by a sum over (N — 3)! Yang—Mills partial sub-
amplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the
space—time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of
structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler
integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their
relations to monodromy equations, their minimal basis structure, and methods to determine their poles and
transcendentality properties are proposed. Finally, a Grobner basis analysis provides independent sets of
rational functions in the Euler integrals.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

During the last years remarkable progress has been accumulated in our understanding and
in our ability to compute scattering amplitudes, both for theoretical and phenomenological pur-
poses, cf. Ref. [2] for a recent account. Striking relations have emerged and simple structures
have been discovered leading to a beautiful harmony between seemingly different structures and
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aspects of gauge and gravity scattering amplitudes cf. Ref. [3]. As an example we mention the
duality between color and kinematics, which exhibits a new structure in gauge theory [4]. This
property allows to rearrange the kinematical factors in the amplitude such, that the form of the
amplitude becomes rather simple. Moreover, recently it has been shown [5], that the duality be-
tween color and kinematics allows to essentially interchange the role of color and kinematics in
the full color decomposition of the amplitude. Many of the nice properties encountered in gauge
amplitudes take over to graviton scattering.

The properties of scattering amplitudes in both gauge and gravity theories suggest a deeper un-
derstanding from string theory, cf. Ref. [6] for a recent review. In fact, many striking field-theory
relations such as Bern—Carrasco—Johansson (BCJ) or Kawai—Lewellen—Tye (KLT) relations can
be easily derived from and understood in string theory by tracing these identities back to the mon-
odromy properties of the string world-sheet [7-9]. Furthermore, recently it has been shown, how
superstring amplitudes can be used to efficiently provide numerators satisfying the color identi-
ties [10]. We shall demonstrate in this work, that the complete result for the N-point superstring
amplitudes displays properties and symmetries inherent in field theory and reveals structures rel-
evant to field theory. Moreover, we find a beautiful harmony of the string amplitudes with strong
interrelations between field theory and string theory.

When computing amplitudes it is highly desirable to obtain results which are both simple and
compact. In [1] we show how the pure spinor formalism [11] can be used to accomplish this for
the complete N-point superstring disk amplitude, which is given by

Al ... N)= Y Am(1,2.....(N=2)s. N — 1, N)F° (o), (1.1)

UESN,3

where Ay represent (N — 3)! color-ordered Yang—Mills (YM) subamplitudes, F° («’) are gen-
eralized Euler integrals encoding the full o’-dependence of the string amplitude and i, = o (i).
The intriguing result (1.1) disguises a lot of structure linking aspects of gauge amplitudes as
color and kinematics with properties of generalized Euler integrals. Both the Yang—Mills sub-
amplitudes Ay, and the hypergeometric integrals F are reduced to a minimal basis of (N — 3)!
elements each. Relations among the integrals F and relations among the string- or field-theory
subamplitudes are found to be in one-to-one correspondence, hinting a duality between color and
kinematics at the level of the full fledged superstring amplitude.

The pure spinor formalism proved to be crucial to arrive at the compact expression (1.1).
It provides a manifestly space—time supersymmetric approach to superstring theory which can
still be quantized covariantly [11]. Correlation functions of the world-sheet CFT in the pure
spinor formalism can be efficiently organized in terms of so-called BRST building blocks [12,
13]. These are composite superfields which transform covariantly under the BRST operator and
have the right symmetry properties to allow for an interpretation in terms of diagrams made of
cubic vertices [14]. As shown in [1], manipulations of the BRST-covariant building blocks and
the hypergeometric integrals reduce the number of distinct integrals in the N-point disk ampli-
tude down to (N — 3)!. At the same time, field-theory subamplitudes Ayy (1,2, ..., (N —2)4,
N — 1, N) build up as the associated kinematic factors.

So far, N-point superstring disk amplitudes have been computed up to seven open strings,
i.e. N < 7. The scattering amplitude of four open superstrings has been known for a long
time [15]. Five-point superstring disk amplitudes have been computed in the RNS formalism in
Refs. [16,17], while in the pure spinor formalism in Refs. [14,18]. Furthermore, six open string
amplitudes have been computed in Refs. [17,19-22] in the RNS formalism, while in pure spinor
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superspace in Refs. [12]. Finally, seven open string amplitudes with MHV helicity configura-
tions have been computed in the RNS formalism in [21]. However, the result (1.1) represents the
first superstring disk amplitude beyond N > 7 including the complete kinematics. In addition, in
contrast to the previous results, Eq. (1.1) yields also very compact expressions for arbitrary N
and independent on the chosen helicity configuration and the space—time dimension.

The organization of the present work is as follows. In Section 2 we discuss and explore the
result (1.1) to reveal the various structures shared by this result. We find a complementarity
between the system of equations derived by the monodromy relations (giving rise to relations
between subamplitudes of different color ordering for the same kinematics) and the system of
equations derived from partial fraction decomposition or partial integrations (giving rise to rela-
tions between functions referring to different kinematics for the same color ordering). We display
the full color decomposition of the full string amplitude and comment on a possible string man-
ifestation of the recently anticipated swapping symmetry between color and kinematics in the
color decomposition of the full amplitude [5]. In Section 3 the module of multiple hypergeo-
metric functions is analyzed in detail. We present a method to determine the leading poles of
Euler integrals. Partial fraction expansion of these integrals can be made according to their lead-
ing pole structure. Furthermore, a Grobner basis analysis provides an independent set of rational
functions or monomials for the Euler integrals without poles. Any partial fraction decomposition
of finite Euler integrals can be expressed in terms of this basis. In Section 4 we have some con-
cluding remarks and comment on applications and implications of our result in view of effective
D-brane action, recursion relation and graviton scattering amplitudes. In Appendix A we pro-
pose a method to analyze the transcendentality properties of Euler integrals. In Appendix B for
the six open superstring amplitude we present the extended set of functions and its relation to the
minimal basis set. Finally, in Appendix C we present «’-expansions of the basis functions F°
for N > 7.

2. The structure of the N-point superstring disk amplitude

The complete superstring N -point disk subamplitude is given by [1]
Al Ny= Y Am(1.2.....(N=2)s. N = LN)FG (). 2.1)

oeSy-_3

In Eq. (2.1), F° =F ﬁ ..... N) denotes the set of (N — 3)! integrals which will be explicitly given
in Subsection 2.4. The labels (1, ..., N) in Fﬁ ’’’’’ Ay are related to the integration region of the
integrals and are responsible for dictating which color ordering of the superstring subamplitude
is being computed. The result (2.1) is valid in any space—time dimension D, for any compactifi-
cation and any amount of supersymmetry. Furthermore, the expression (2.1) does not make any
reference to any kinematical or helicity choices. In the following we explore the result (2.1) to
illuminate the role of color and kinematics.

2.1. Basis representations: Kinematics vs. color

In field theory there are in total (N — 3)! independent YM color-ordered subamplitudes Ays
[4], see Refs. [8,9] for a string-theory derivation of this result. Hence, in field theory any subam-
plitude Ayy (1, ..., Ng), with IT € Sy, can be expressed as

Aym(p,...,Nn) = Z Ko Aym,o, (2.2)

(TESN,j;
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with i;7 = I1(i), some universal and state-independent kinematic coefficients K7, generically
depending on the kinematic invariants, cf. Eq. (2.7) for a straightforward derivation. Besides, we
introduced the abbreviation:

Ao = Am(1,25,...,(N=2),, N = 1,N). (2.3)

One crucial property of (2.1) is the fact that the superstring N-point (sub)amplitude is decom-

posed in terms of a (N — 3)! basis of Yang—Mills color-ordered amplitudes Ay o, i.e. the whole

superstring amplitude can be decomposed w.r.t. the kinematics described by the set of Ay,

o € Sy—_3. Hence, by these results it is obvious, that in the sum of (2.1) only (N — 3)! terms and

as many different multiple hypergeometric functions can appear since any additional kinematical

term could be eliminated by redefining the functions F° thanks to the amplitude relations (2.2).
Moreover, the string subamplitudes (2.1) solve the system of relations given by

A(,2,...,N)+ ™2 42,1,3,....,N —1,N) + 762t 423 1,...,N — 1, N)
o TR ESINGD A2 3 N~ 1,1, N) =0 (2.4)

and permutations thereof. Throughout this work, we will be mostly using dimensionless Man-
delstam invariants:

Sij =Ol/(ki +kj)2. (2.5)

The set of identities (2.4) has been derived from the monodromy properties of the disk world-
sheet [8,9].

Furthermore, since there exists a basis of (N — 3)! YM building blocks allowing for the de-
composition (2.2), we may express any string subamplitude by one specific set of YM amplitudes
Ayu o referring e.g. to the string amplitude (2.1):

A(lpmg,...,Nn) = Z Aymo Ff (o), (2.6)

oeSN_3

with [T € Sy. Inserting the set (2.6) into the monodromy relations yields a set of relations for the
functions F7; for each given o € Sy_3. E.g. (2.4) gives the following set of identities:

.....

4t gi”(512+sl3+"'+sm*l)F&ﬁ ’’’’’ NoLLN) = 0, oeSy_s. 2.7

Hence, for a given o € Sy_3 corresponding to the given YM amplitude Ayy » the set of func-
tions F, IT € Sy enjoys the monodromy relations. As a consequence for each permutation
o € Sy—3 or YM basis amplitude Ayy , there are (N — 3)! different functions FY; all related
through Egs. (2.7) and permutations thereof.

Note that the o’ — 0 limit of Eq. (2.6) reproduces explicit expressions of the kinematic
coefficients K¢, introduced in (2.2) (which were already given in [4] for N-point field-theory
amplitudes):

Kf =Fg ()| (2.8)

a'=0"
This relation enables to compute the matrix elements K7, directly by means of extracting the

field-theory limit of the string world-sheet integrals F; (a) (by the method described in Subsec-
tion 3.3) rather than by solving the monodromy relations (2.4).
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Further insights can be gained when looking at different representations for the same ampli-
tude (2.1):

Al Ny= Y A Fl (@), (2.9)

with some permutations 7w € Sy_3 singling out a basis of (N — 3)! independent basis amplitudes
Avym . More precisely, in contrast to the set Ayy o in (2.3), the new set Ay  in (2.9) represents
a more general basis of (N — 3)! independent subamplitudes Ayy , where three legs i, j, k
(possibly other than 1, N — 1, N) are fixed and the remaining ones are permuted by 7 € Sy_3.
By applying the decomposition (2.2) and comparing the two expressions (2.9) and (2.1) we
find the relation between the set of (N — 3)! new and old independent basis functions F' (71 N
and F(j
Foom= > (KTYIFL v o€Sya (2.10)

7T€SN73

In this case the matrix K becomes a quadratic (N — 3)! x (N — 3)! matrix, cf. Subsection 2.6
for explicit examples. Hence, for a given fixed color ordering (1, ..., N) any function F° may
be expressed in terms of a basis of (N — 3)! functions F” referring to the same color ordering.
With (2.10) sets of systems of equations involving the kinematics functions F” (of the same
color ordering) can be generated. According to (2.8) the field-theory limits of the functions F7;
are enough to determine the coefficients of these equations.

The relation (2.10) should be compared with (2.2): While in the first identity one specific
color ordered amplitude is decomposed w.r.t. to a set of (N — 3)! independent color-ordered
amplitudes all referring to the same kinematics, in the second identity one functions referring
to one specific kinematics is decomposed to w.r.t. to a set of (N — 3)! independent kinematics
functions all referring to the same color ordering. Moreover, as we shall show in Subsection 2.3,
for a fixed color ordering (1,..., N) an explicit set of (N — 2)! functions F(IK'.N), IT € Sy
can be given, which fulfills (2.10) — just as a set of (N — 2)! YM amplitudes Ayys ;7 fulfills
(2.2) for a fixed kinematics. Since the latter fact is a result of the (imaginary part) field-theory
monodromy relations, also the relations (2.10) should follow from a system of equations for the
(N — 2)! functions. Relations between functions F (IK N of same color ordering are obtained by
either partial fraction decomposition of their integrands or applying partial integration techniques
within their N — 3 integrals. The partial fraction expansion yields linear equations with integer
coefficients for the functions F/T — just like the (real part) field-theory monodromy relations
yield linear identities (e.g. subcyclic identities) for the color-ordered subamplitudes .Ayys. On the
other hand, the partial integration techniques applied to the (N — 2)! functions FI provides a
system of equations of rank (N — 3)!, whose solution is given by (2.10). Hence, we have found a
complete analogy between the monodromy relations equating subamplitudes Ayys, 7 of different
color orderings Il € Sy_; at the same kinematics and a system of equations relating functions
FTT referring to different kinematics IT € Sy _» at the same color ordering.

To conclude, behind the expression (2.1) there are two sets of equations: one set, derived
from the monodromy relations (2.4) and equating all subamplitudes of different color orderings
and an other set, derived from the partial fraction decomposition and partial integration relations
equating all kinematics functions F”. Both systems are of rank (N — 3)! and allow to express all
colored ordered subamplitudes in terms of a minimal basis or to express all kinematic functions
in terms of a minimal basis.
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2.2. Color decomposition of the full open superstring amplitude

The color decomposition of the full N-point open superstring amplitude My can be ex-
pressed by (N —3)! x (N — 3)! different functions F; with (N —3)! YM building blocks Ay, -
Firstly, the monodromy relations (2.4) allow to decompose each superstring subamplitude in an
(N — 3)! element basis [8,9]'

Alm....Nm= > KFA(1L2z.....(N = 2)z,N — 1,N), 2.11)
TeSy_3

which generalizes the field-theory equation (2.2) in the sense that IC% (@)|g'=0 =K 1’5 The basis
expansion (2.11) simplifies the color dressed superstring amplitude to

My= Y To(T“T% .. .T™m) Y Awe Y KRFS, (2.12)
ITeSy_ ogeSN_3 TeESN_3
with:
F = F 2@ av-2 N—1.3) (@) (2.13)

In the sum (2.12) the same set of basis elements Ay » is used for all color orderings I7. This
enables to reorganize the color decomposition sum and to interchange the two sums over color
and kinematics:

My= Y Awo Y. To(TT% .. .T%) Y KLFS. (2.14)

oeSN_3 ITeSy_ weSn_3

Now in (2.14) the role of color and kinematics is swapped. While (2.12) represents a color
decomposition in terms of (N — 1)!/2 color-ordered subamplitudes, the sum (2.14) is a decom-
position w.r.t. to (N — 3)! kinematical factors Ay . The sum (2.14) could be the string-theory
realization of the recently found observation, that in the color decomposition of a gauge-theory
amplitude the role of color and kinematics may be swapped [5]. In these lines the sum over IT
may represent the pre-version of a dual amplitude A%, in which all kinematical factors Aym.
are replaced by color traces. However, further studies are necessary to establish a clear dictionary
between Yang—Mills building blocks Ay, ;7 and the kinematic analogue 712, x) of color traces:
On the one hand, our Ay ;7 have the required cyclicity property, on the other hand, they still
carry the kinematic poles which should ultimately be outsourced from the local 7(j2.. ) into the
dual amplitudes Af\}‘al.

2.3. Yang—Mills subamplitudes

Compact expressions for Ayy (1,24, ..., (N —2)s, N — 1, N) in D = 10 are derived in [13]
and can be used to describe the YM subamplitudes of (2.1). On the other hand for D = 4, compact
forms for Ayy(1,24,...,(N —2)s, N — 1, N) in the spinor helicity basis can be looked up

1 In Ref. [23], systems of equations of this type are neatly rephrased in terms of the so-called momentum kernel matrix
S,mlo], which keeps track of relative monodromy phases between two Sy _o permutations 7 and o. It has non-
maximal rank (N —2)! — (N —3)!, so the linear relations between color-ordered superstring amplitudes can be compactly
represented as ZaeSN_z SylrlolAl, 26,34, ..., (N —1)¢,N) =0, 7 € Sy_2. On the level of the functions, this

relation implies: ZUESNfz Sa’[”b]F(pl,zJja (N—Dyg.N) =0-T.p €Sy 2.
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in the literature: In the maximal helicity violating (MHV) case, the subamplitudes reduce to
the famous Parke-Taylor or Berends—Giele formula [24,25]. For the general NMHV case, the
complete expressions for Ayy (1,24, ..., (N —2)s, N — 1, N) can be found in [26].

Since in the sum (2.1) the kinematical factors Ayy and the functions F® encoding the
string effects are multiplied together, supersymmetric Ward identities established in field theory
[27-29] hold also for the full superstring amplitude, cf. also [21]. At any rate, after component
expansion the pure spinor result provides the N-point amplitude involving any member of the
SYM vector multiplet [30].

2.4. Minimal basis of multiple hypergeometric functions F®

The system of (N — 3)! multiple hypergeometric functions F° appearing in (2.1) are given as
generalized Euler integrals [1]?

(23..N-2) _ N-3 g sl gl Smk
F (sij) = (=1) [Tdzi (JTlzal )3T D. =+ (2.15)
2

A i<l k=2 m=1 <"k

with permutations o € Sy_3 acting on all indices within the curly brace. Integration by parts
admits to simplify the integrand in (2.15). As a result the length of the sum over m becomes
shorter for k > [N /2]:

N-2
F23..N-2) (sij) = (—I)N_3 / l—[ dz; (l—[ |Zil|sil>

zi<ziy J=2 i<l

x (U]\Z[Z]lis’"—"x Iﬁz IS S"—”) (2.16)

k=2 m=1 2"k ) \ k=[N /2141 nkt1 Skn

In the above, [...] denotes the Gauss bracket [x] = max,ez,,<x 1, Which picks out the nearest
integer smaller than or equal to its argument.

The result (2.1) is manifestly gauge invariant as a consequence of gauge invariance of the
YM subamplitudes .Ayy. Hence, gauge invariance does not impose further restrictions on the
(N — 3)! functions Fg Ny which would further reduce the basis. The set (2.15) of (N — 3)!
functions represents a minimal basis for the set of multiple Gaussian hypergeometric functions
or Euler integrals appearing at N-point and referring to the same color ordering (1,..., N) or
integration region z; < - - - < zy. Any function of this ordering can be expressed in terms of this
basis.

The lowest terms of the o’-expansion of the functions F° assume the form

FOo=1+a?pSc2)+a®p3cB3)+---, 0=(23...N—-2),
FO=a?pSc2)+a3pic(B3)+---, o#(Q23...N-2), (2.17)

with some polynomials p{ of degree n in the dimensionful kinematic invariants §;; =
(ki + kj)2 =sij/a’ and §; ;= (ki +--- + k))?> = s;_;/o’. Note that starting at N > 7 sub-
sets of F? start at even higher order in o/, i.e. p3,..., py =0 forsome v > 2, cf. Section 3 and

2 In contrast to [1] here we use momenta redefined by a factor of i. As a consequence the signs of the kinematic
invariants are flipped, e.g. |z;;| 75l — |z;;|%il.
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Appendix C for further details. Hence, only the first term of (2.1) contributes to the field-theory
limit of the full N-point superstring amplitude. The power series expansions (2.17) in ¢’ is such,
that to each power o’ a transcendental function of degree n shows up. More precisely, a set of
multizeta values (MZVs) of fixed weight n appears at o’'”. The latter are multiplied by a polyno-
mial pg of degree n in the kinematic invariants § with rational coefficients. We refer the reader
to Subsection 3.1 and Appendix A for more details on o’-expansions and MZVs. From (2.17) we
conclude, that the whole pole structure of the amplitude (2.1) is encoded in the YM subampli-
tudes Ay, while the functions F? are finite, i.e. do not have poles in the kinematic invariants.
A detailed account on multiple Gaussian hypergeometric functions can be found in [31].

2.5. Extended set of multiple hypergeometric functions F'!

A system of (N — 2)! functions £, which fulfills (2.10) can be given as follows

(23..N—-1) _ sil ( I)N 3 I lSmk
F (sij) = / ]‘[dz, [ J1zul ]‘[Z (2.18)

zi<zip1 J=2 i<l B 1 Cmk

with permutations [T € Sy_» acting on all indices within the curly brace. The set of (N — 2)!
functions (2.18) can be expressed in terms of the basis (2.15) as a consequence of the rela-
tions (2.10). This allows to express (N — 2)! — (N — 3)! = (N — 3) x (N — 3)! functions of
(2.18) in terms of (2.15). This will be demonstrated at some examples in the next subsection.

In contrast to the minimal set of functions F°, o € Sy_3, some elements of the extended
set F1, T e Sn—2, might have poles in individual Mandelstam invariants.

2.6. Examples

2.6.1. N=4
The unique integral appearing in (2.1) for the four-point amplitude is

F(2):—/d12 <HIZ1|A’1)S12 (1 +512) (1 + 523)
l 12 I'(1+ 512+ 523)

i<l

=1—¢(2)s12523 + £ B)s12813523 + O('?). (2.19)

The extended set of two functions consists of (2.19) (with F® = F23) and the additional func-
tion (2.18):

1
F(32)=—/dz2 (leizl‘v"’)isﬁzm I'(A+s512)1"(1 +523)
0

21213 Sz (1 +s12+523)

i<l
= ;ﬁ — C@)s13523 + £ B)sTysa3 + O(a?). (2.20)

With this extended set of two functions we may explicitly verify the relation (2.10). For the new
basis m ={(1, 3,2,4)} in Eq. (2.2) we have

Ko =312 2.21)
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w.r.t. the reference basis o = {(1,2,3,4)} as a consequence of the field-theory relation
Aym(1,3,2,4) = ‘;%AYM(I, 2,3,4). According to (2.10) the following identity indeed holds:

FOY = g1 @, (2.22)

2.6.2. N=5
The set of two basis functions appearing in (2.1) and following from (2.15) is:

N N S
FO = / dzadzs (]_[|zl|sll> 2 <ﬁ+£>
212 \%13 223

i<l

O<zp<z3<l
12 $34
= / dz2dz3 (H |Zzlls"> — =1+2(2)(s153 — 5354 — 5155)
i<l 212 3234
0<zp<z3<l i<

— {(3)(312S3 + 2515283 + s1s32 — s3ZS4 — S3S4% — S12S5 s1s5) + O( )

N N N
FOY = / dz2dz3 (]‘[mﬁﬂ) = <£+ﬁ>
713 \ 212 132

O<zp<z3<l i<l
= / dzpdz3 (H |zi llg”) 513 524
o . i<l 213 224
<72<z3<
= £ (2)513524 — £(3)513524 (51 + 52 + 53 + 54+ 55) + O(e'?), (2.23)

where s; = o (ki + kit )2 subject to cyclic identification k; 4y =k;.
The extended set of six functions consists of (2.23), with

F®4 . 23 FG2M . pG2) (2.24)
and the additional four functions (2.18):
1 s148
p@23) _ / dzzdz3( |Zl|m> 514523
. 231 214 223
0<zp<z3<l i<
1 s;28
F243) _ / dzrdzs (l_[ |le|Szl> ﬁﬁ’
[ 231 212 243
O<zp<z3<l i<
1 si48
F®? = / dzadz3 (l_[ |zi zls’l> BB
. 221 214 232
O<zp<z3<l L=<
(342) s\ L 813 824
FO% = dzadzy ([ Jlzul ) ——=== (2.25)
i<l 221 213 Z42
O<zp<z3<l i<

With this extended set of six functions we may explicitly verify the relation (2.10). For the new
basis 7 ={(1,4,2,3,5), (1,2,4,3,5)} in Eq. (2.2) we have

Ko — _ 1 512 834 —513(534 + $45)
514535 \ S14(S12 — $45) —514513

w.r.t. the reference basis o = {(1,2,3,4,5), (1,3,2,4,5)}. According to (2.10) the following
identity indeed holds (with K* = (K ~1)"):

(2.26)
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F423) F(234)
. %
(£ =i (F20), -
On the other hand, for the new basis 7 ={(1,4,3,2,5), (1, 3,4,2,5)} we have
Ko =— 1 <S12(S14 + 534) 513524 ) ’ (2.28)
514525 —812514 —s514(s12 + 523)
and the following relation can be checked:
F432) i} F(234)
<F(342)) =K (F(324)>' (2.29)

Hence, the relations (2.27) and (2.29) allow to express the additional set of functions (2.25) in
terms of the minimal basis (2.23).

2.6.3. N=6
The set of six basis functions appearing in (2.1) and following from (2.15) is

512 § N N
F&Y = — / dzpdzzdzs <l_[ |2i l|”> 28 <L3 + 2)

I 212 245 \Z13 223
O<zp<z3<z4<1 1<

1 —£(2)(s455 + 5156 — s4t1 — S1t3 + 1113)
+ £(3) (2515254 + 2515354 + 5355 + 5452 + 5156 + 5158 — 2535411

— Sitl —S4t1 — 251541 —S1t3 — 2518513 —l—tl 13 —S1t3 +t1t3) ~|—O(Oé/4),

S S S S
FO — _ / dzrdz3dzs <l_[ |le|Stl) B2 <£ + ﬁ)

. 213 245 \ 212 232
i<l

O<zp<z3<z4<1
=—{(2)s13do + £ B)s13(s152 + 53 — 25254 — 25354 — S156 — S¢
+ $2t1 — Set1 + 25413 + s1t3 + 25213 + 1113 + t%) + O(a/4),

F@2 — _ / dzadzzdzs (H |z l|S”> o 22 (SL3 + E)

g 214 725 \Z13 243
O<zp<zz3<za<l i<

—£(2)514525 + £ (3)514525(—s2 — 83+ 55+ 56 + 11 + 12 +13) + O (o),

S S S R)
FO2) — _ / dzodzzdzs (HIZ[I”’) D22 (ﬁ+ﬁ>

213 225 \Z14 234
i<l

O<zp<z3<z4<l

£(2)513525 + £ (3)513525(—S1 + 52 + 253 — 56 — 1] — 21 — 13) + O(e'?),

S S S S
F@23) — _ f dzrdz3dzs (H |ziz % ’) 1423 (ﬁ + ﬁ)

. 214 235 \ 212 242
i<l

O<zo<z3<z4<1

=¢(2)514535 + £ (3)514535(252 + 53 — 54 — 55 — 11 — 20 — 13) + (9(0/4),

FO® = _ / dzadzzdzy <H |zi zls”) M2 <Sﬁ + ﬁ)

I 212 235 \Z14 224
O<zp<z3<za<l I<

= —(2)s35d) + £ (3)s35(—25152 — 25153 + 53 + 5354 — 5455 — 53
+ 25301 4 sat1 + 1] + 25112 + 5313 — s5t3+ 113) + O(a'?), (2.30)
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with dj =53 — 55411, do =50 — 56 + 13, and t; :=t;j1,i42 = & (ki + ki1 +kiz2)?, i =1,2,3.
The extended set of 24 functions consists of (2.30) with
F(2345) . p(234)

F(3245) — F(324) F(4325) — F(432)

F(3425) — F(342), F(4235) — F(423), F(2435) — F(243), (231)
and the additional 18 functions (2.18) are given by:
N\ 1 512, 8 S s
F Q03054 _ _ dzrdzsdes (l—llzt‘zls’l>— 12, 455( £ 253(,)’
el 241 2125 25,4 \Z13, 22,34
O<zp<z3<z4<1 i<
(2.32)
A\ 1 512, 8 S s
Foto303) — _ / dzpdzzdzs (l_[ Izuls”> — e 5 (—14” 4 ot )
2l 231 2125 25,3 \Zldy 22,44
O<za<z3<z4<1 i<
(2.33)
A\ 1 s13, s s s
FOrtod0?) = _ dzadzzdzy (l_[ |Zil|w> — B 2 (—14” 4 Dodo )
il 221 2134 25,2 \Z14, 23,44
O<zp<z3<z4<1 i<
(2.34)

For the new basis 7 = {(1,2,3,5,4,6),(1,3,2,5,4,6),(1,5,3,2,4,6),(1,3,5,2,4,6),
(1,5,2,3,4,6),(1,2,5,3,4,6)} in Eq. (2.2) we have

o __ —1
Kz =546
s5—1 0 0 0 S14 —d
0 s5 —1 514 53+ 514 0 0
515440 54513 (525—346) 513514925 —513%05(3+514)  S14Ga6—51)dp  $1(53+s4)dp
5151246 5151246 5151246 5151246 5151246 5151246
x —5154 —54(51+52) 51444 (14+53)dy 514(51—546) —s1(53+s4)
1246 246 1246 246 1246 246
5154(535=546) 54513d3 (546=513)d3514 (s4+524)513d3 =51514535 51535d]
5151125 5151125 5151125 5157125 5151125 5151125
54051 -11) 54513 514(513—546) —513(54+524) —S14dp 41
125 1125 1125 1125 125 125

w.r.t. the reference basis o = {(1,2,3,4,5,6),(1,3,2,4,5,6),(1,4,3,2,5,6),(1,3,4,2,5,6),
(1,4,2,3,5,6),(1,2,4,3,5,6)}. According to (2.10) the following identity indeed holds:

F(2354) F(2345)
F3254) F(3245)
F(5324) F(4325)
pose) | =K * F(3425) (2.36)
F(5234) F4235)
F(2534) F(2435)

In the above matrix (2.35) we have introduced do = s15+ 535, dp =51 — 54 — 55, d3 = 53 — 55 — 13,
dy =54+ 55 — 513 and t;j = oz’(kikj + kiky + kjki). The other two sets of basis 7 and their
relations (2.10) to the reference basis o are displayed in Appendix B.
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2.7. Properties of the full amplitude

The factorization properties of tree-level amplitudes are well studied in field theory [32].
These properties represent an important test of our string result.

2.7.1. Soft limit
According to Subsection 2.2 it is sufficient to focus on the N-gluon amplitude. We consider
the limit ky_, — 0. In this limit the amplitude (2.1) behaves as>:

Ekn—o  Ekn_3
ky—ok  kn_3k

This can be proven by considering the limits of the individual summands of (2.1):

A, ...,N)— < ),A(l,...,N—l). (2.37)

(i) o € Sy_q with (N —3)y = N — 3

Am(1,25,....,(N=3)g, N =2,N —1,N)F°(a)

N <§kN—2 _ Ekns

_ _ _N\Eo ('
Tvak kN_3k>AYM(1’2"""’(N 3o, N=2,N —1)F° (),

(2.38)
(ii) o € Sy_a with (N —3), £ N — 3:

Am(1,26,....,(N=3)s, N=2,N —1,N)F? (o)

(Ekzvz Ek(N—3),
— _
kn_2k k(N—3)Uk

)AYM(l,zg,..., (N =3)5, N —2,N —1)F° (),
(ili) o € Sy—4 With N =3 € {2,,...,is}andi=2,...,N —4,ie. (N —3), #N —3:
Am(1, 26, .. ig, N =2, + Dg,....(N =3)s, N =1, N)F° ()

— <% — %)AyM(l,Zmn-,(N—3)0,N—2aN_ I)FG(O‘/)’
(iv) o € Sy_4:

Api(1N =2,25, ..., (N =3)5, N — 1, N)F° (o) = 0,
(V) o0 €Sy_qwithN =3 €{(i+Dg.....(N=3)s}andi=2,....N —4:

At (1,26, - yigs N =2, + D, ..o s (N =3)s, N = 1, N)F? (') — 0.

The above functions F° refer to the N — 1-point amplitude. While the (N — 5)! summands of
case (i) already have the right form (2.37) and give rise to (N — 5)! terms of the N — 1-point
amplitude (2.1), the remaining non-vanishing limits (ii) and (iii) for a given o € Sy_s4 with
(N —3)s # N — 3 conspire to comprise the remaining (N — 5)(N — 5)! terms of (2.1) thanks to
the relation:

3 The vectors & and k refer to the transverse polarization and momentum of the soft gluon, respectively. Furthermore,
k; denote the external momenta of remaining legs. One could also express the kinematic dependent factor as soft or
eikonal factor written e.g. in the D =4 spinor helicity basis [32,33].
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N4

(ékzv—z B Sk(N—3)(,) Py <§k(i+1)(, 3 éki> _ <§k1v—2 3 ékN—3>

vk kov_a k £ kit k ki k kn ok kysk)
N=3€{2qeenic)

The remaining %(N — 3)! terms of the cases (iv) and (v) do not contribute in the soft limit.

2.7.2. Collinear limit

Again, according to Subsection 2.2 it is sufficient to focus on the N-gluon amplitude. The
collinear limit is defined as two adjacent external momenta k; and k;1, with i + 1 mod N,
becoming parallel. Due to cyclic symmetry, these can be chosen as ky_3 and ky_», with ky_3
carrying the fraction x of the combined momentum ky_3 + ky_2 — ky—3. Formally,

ky—3 = xky-_3, ky—o— (I = x)ky-3, (2.39)

where the momenta appearing in the limits describe the scattering amplitude of N — 1 gluons. In
this limit the amplitude (2.1) behaves as*

1 d
A,...,N)— vH A,...,N—-1), 2.40)
( ey o ) (

with the three-gluon vertex V* = (fN_3f;‘N_2)(k1’f,72 — klltl—3) + Z(EN_sz_3)§I’\L,73 —
Z(SN_gkN_z)EI’G_Z. This can be proven by considering the limits of the individual summands
of (2.1). First, if the two states N — 3 and N — 2 are not neighbors, we have:

(i) 0 € Sy—q with2, AN — 3:
A (1,N =2,25,....,(N =3)s, N —1,N) = 0,

(i) 0 € Sy—q withiy, i+ 1) #N —-3andi=2,...,N —4:
AYM(I,Z(,,...,iU,N—Z, (i+1)g,...,(N—3)a,N—1,N)—>0. (2.41)

On the other hand, the remaining 2(N — 4)! terms of (2.1) pair up into (N — 4)! tuples (o, 0)
each giving rise to one of the (N — 4)! terms of the N — 1-point amplitude (2.1):

0,6 €Sy_4 withiz=>G+1)s;=N—-3andi=2,...,N—4:
A (1, 26,... i, N =2,(i+ Dg,...,(N=3)o, N— 1, N)F° (o)
+ Am(1,25, . ig, N =2, + D, ..., (N =3)5, N — 1, N)F° (')
1 a

VH Ay (1,25, ..., (N =3)g, N =2, N — 1) F° (/). 2.42
_>kN—3kN—2 9l (1, 24 ( )o )F7 () (2.42)

Note that in the above combination the x-dependent parts of the two functions F° and F?, which
stems from the limit (2.39), add up to zero.

4 One could also express the kinematic dependent factor as splitting amplitude written e.g. in the D = 4 spinor helicity
basis [32,33].
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2.7.3. Cyclic invariance

While the YM constituent Ay (1, ..., N) of (2.1) is invariant under cyclic transforma-
tions of its labels i — i 4+ 1 mod N, all others transform non-trivially. More precisely, the
set {Aym(1,2¢,...,(N —2)s, N — 1, N) | 0 € Sy_3} is mapped to the set {Ayy(1,2,3,,...,
(N =2)s, (N —1)5, N) | 0 € Sy_3} by virtue of the cyclic properties of the Ayys. The latter set
belongs to the extended Sy_» family {Ayy (1, 217,..., (N —1);7, N) | IT € Sy_»}, which can be
expanded in terms of the original basis Ay (1, 25, ..., (N —2)s, N — 1, N) according to (2.2).
The cyclic transformation properties of the minimal basis functions ¢ are such that the change
of Aym.o into Ayy o) = ZnesN% Kg(G)AYM’” is compensated:

=F1@ = 3 (kO Fe. (2.43)
PESN-3

The map I1(o) is defined by Crr(5),.... (N = D) = 2,26 +1,..., (N =2)s + 1).

o
F }ki—>ki+1

3. The module of multiple hypergeometric functions

The functions F? describing the full N-point amplitude (2.1) have been introduced in
Eqgs. (2.15) and (2.18) and are given by generalized Euler integrals. Generalized Euler integrals
appear in any higher-point open string amplitude computation. Therefore, we find it useful in this
section to investigate the properties of these integrals on general grounds.

3.1. Generalized Euler integrals and multiple hypergeometric functions

For the color ordering (1, ..., N) the integrals of interest can be written
N ~
~ -1 oo Mjj
By1]=Vekg / (H dzf) [T lervegy, G.h
si<za V=l 1<i<j<N

with some set 72 of integers 71;; € Z and the factor Vcxg accounting for the volume of the confor-
mal Killing group of the disk after choosing the conformal gauge. The integers 72;; must fulfill
the conditions®

N N
D odi+ Y iji==2 j=1.....N, (3.2)
i<j i>j

as a result of conformal invariance on the string world-sheet. After fixing three of the vertex
positions as

71 =0, -1 =1, IN = 00, (3.3)

and parameterizing the integration region z3 < --- < zy—2 as
N-3
%= ]—[xl, k=2,...,N—=2, (3.4)

I=k—1

with 0 < x; < 1 the integrand in (2.15) takes the generic form:

5 Note that the integrands of (2.15) and (2.18) can always be completed to meet this condition.
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N-3 | N-3 Sjtivatnji
w1t
By[n] = <]‘[ /dx,-) I1 x;u AT ]_[ (1 — ka) , (3.5)
i=17 j=1 I=j
with the set of %N(N —3)integersnj,nj; € Z and s; j = s;;:
nj=njy1i+2, Jj<I,
Jj+1
nj=j—1+Y A 1<j<N-=3. (3.6)
i<j
The integrals represent generalized Euler integrals and integrate to multiple Gaussian hypergeo-

metric functions [20].
With (3.2) and (3.6) from a rational function

N-3  N-3 !
"
R(xi)zl_[xj’ 1_[ I—ka
Jj=1 I=j k=j
in the N — 3 variables x; multiplying the integrand of (3.5) an other rational function

ﬁ(zij) = 1_[ z?ﬁj

I<i<j<N-1

depending on the N — 1 variables z; and multiplying the integrand of (3.1) can be computed. In
the following we write this correspondence as:

R(xi) = R(zij). 3.7
3.2. Fartial fraction decomposition and finding a basis

There are many relations among integrals (3.1) with different sets 7 of integers as a result® of
partial fraction decomposition

1 1 1
+

= (3.8)
TijZjk  Zik%kj  Zijlik
and partial integration of their integrands:
N=2 3 )
— ; C1Sij M
o= [[Masge T1 leulvs)
j=2 1<i<j<N-1
N2 A s 7 7
o N km mk km
[Mes T mrd(Time s ree) 39
j=2  1<i<j<N-1 i Chm LTk Gmk
Note that in this way any integral (3.1) with powers 71;; < —1 can always be expressed by a chain

of mtegrals with 72;; > —1. Hence, in the following it is sufficient to concentrate on those cases
nij 2 —1. A quantitative handiness on finding a minimal set of functions can be obtained by
performing

6 In fact, these tools have allowed to boil down the set of functions appearing in the open superstring N -point amplitude
[1] to the set (2.15).
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(i) aclassification of the integrals (3.1) according to their pole structure in the kinematic invari-
ants s;;, and
(i1) a Grobner basis analysis for those integrals (3.1) without poles.

Any partial fraction decomposition of an Euler integral with poles can be arranged according
to its pole structure (modulo finite or subleading pieces) and the classification (i) yields a basis
for them. This is achieved by performing a partial fraction expansion of the leading singularity
in the kinematic invariants s;;. On the other hand, the Grobner basis analysis (ii) provides an
independent set of rational functions or monomials in the Euler integrals and any integral (3.1)
without poles can be expanded in terms of this set. Combining (i) and (ii) yields an independent
set of integrals (3.1) and any partial fraction decomposition of Euler integrals (3.1) can be ex-
pressed in terms of the basis obtained this way. In Subsections 3.3 and 3.4 we explicitly construct
this partial fraction basis for the cases N =4, 5 and N = 6 and verify its dimension (N — 2)!.

The first classification (i) of the integrals (3.1) is done w.r.t. their pole structure in the kine-
matic invariants s;;. The maximum number of possible simultaneous poles of an N -point ampli-
tude is N — 3. Integrals of this type play an important role, since they capture the field-theory
limit of the full amplitude. They assume the following power series expansion in o’:

/

o
Bylil=o N ps ylil+> N D o™ N p (AN da)

m=0 ireN,i;>1
i1+-Fig=m+2

Npsonlal + o 7N ps_yllc2) + o'V pe_n[lc3) + - - -. (3.10)

The above rational functions or monomials pgf Netm [] are of degree 5 — N + m in the dimen-
sionful kinematic invariants §;; = s;; /o’ and depend on the integer set 7. Furthermore, we have
introduced the MZVs

d
(Grs..ni= Y J]n" ireN =1

ny>-->ng>0r=1

— a/3—

of transcendentality degree Zle i, =m + 2 and depth d, cf. e.g. [34] for more details and ref-
erences. The prime at the sum (3.10) means, that the latter runs only over a basis of independent
MZVs of weight m + 2. In (3.10) at each order 5 — N + m in o’ a set of MZVs of a fixed
transcendentality degree m + 2 appears. We call such a power series expansion transcendental,
cf. Appendix A for a detailed discussion. In Subsection 3.3 we present a method to extract the
first term of (3.10) corresponding to integrals (3.1) with N — 3 simultaneous poles. In fact, this
method allows to extract any lowest order poles from integrals (3.1) with fewer simultaneous
poles. However, as we shall demonstrate, their type of integrals generically does not assume the
transcendental power series expansion (3.10). At any rate, the method of Subsection 3.3 deter-
mines the lowest order poles of the integral (3.1).

The second classification (ii) of the integrals (3.1) is appropriate, if the latter have no poles, i.e.
their power series expansion in ¢’ starts with some zeta constants. In Subsection 3.4 we introduce
a Grobner basis analysis, which allows to find an independent set of finite integrals (3.1), which
serves as basis. Any other finite integral (3.1) is an R-linear combination of this basis.

Note that the individual integrals entering the functions (2.15) and (2.18) are of both types —
some of them have N — 3 simultaneous poles and their o’-expansion assumes the form (3.10),
others have no poles and start with some zeta constants. In either case our methods (i) or (ii) can
be applied to further reduce them.
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7
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N

u1,3 / U4 ‘ uis / Uu1,6
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3 4 5 6 7 ks 6

Fig. 1. Multiperipheral configuration and corresponding dual diagram for N =8§.

3.3. Structure of multiple resonance exchanges

Generically, an N-point scattering process has multiple resonance exchanges. As a result, the
power series expansion in «’ of the integrals (3.5) may have multiple poles in the Mandelstam
variables. These poles come from regions of the integrand for which x; — 0 or x; — 1 for some
of the variables x;. To obtain information on the pole structure of the integrals (3.5) it is useful
to transform the integrand to a different form, in which the poles can be easily extracted.

For an N-point scattering process there are %N (N — 3) planar channels (i, j) € P associated
to the Mandelstam variable S; ; = o (ki +kiv1+---+ kj)z, with

P={p]2<j<N=-2}U{(p.9[2<p<qg<N-1} (3.11)

for the color ordering (1,2, ..., N). The channels (i, j) with states from i, ..., j and (j + 1,
i — 1) with states from j 4+ 1,..., N, 1,...,i — 1 are identical. The set of N — 3 kinematic in-
variants, which can simultaneously appear in the denominator of the o’-expansion of the N-point
amplitude, describe the allowed (planar) channels of the underlying field-theory diagram in-
volving cubic vertices. Not all combinations of channels are allowed. E.g. adjacent channels as
(i,i 4+ 1) and (i 4+ 1, i 4 2) cannot appear simultaneously in denominators (dual or incompatible
channels). On the other hand, for non-dual channels coincident poles are possible. A geomet-
ric way to find all compatible channels is to draw a convex N-polygon of N sides representing
momentum conservation. The number of ways of cutting this polygon into N — 2 triangles with
N — 3 non-intersecting straight lines gives the number of distinct sets of allowed channels. Ac-

N-2
cording to Euler’s polygon division problem this number is given by Cny_, = W with

# (2’7) The N — 3 diagonals of this polygon represent the momenta

of possible intermediate states. To each of the %N (N — 3) channels (i, j) a variable u; ; € (0, 1)
may be ascribed, with u; j = u ;1. For an account and references on the multiparticle dual
model see [35].

For a given channel (i, j) with u; ; = 0 all incompatible channels (p, q) are required to have

up.q = 1. This property is described by the %N (N — 3) duality constraint equations

the Catalan number C,, =

wij=1— [] wpg [ ws 1<i<j<N, (3.12)
1<p<i i<r<j
i<g<j j<s<N-1

which are sufficient for excluding simultaneous poles in incompatible channels. We define
ui; =0, u;,y—1 =1 and have uy y = uy x—1, k = 3. Only %(N — 2)(N — 3) of these equa-
tions (3.12) are independent, leaving N — 3 variables u; ; out of the set of %N (N — 3) variables
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free. The set of N — 3 independent variables u; ; can be associated to the inner lines of one of
the Cy_3 sliced N-polygon. In particular, as a canonical choice we may define

uijr1=xj, j=1,...,N-3 (3.13)

as a set of N — 3 independent variables corresponding to Fig. 1. Hence, each of the internal
lines of the polygon corresponds to an independent variable x; in the integral (3.5). Choosing
the inner lines of an other sliced N-polygon results in a different integral representation (3.5). As
a consequence of (3.12) and (3.13) we have’:

l—xj= [] w4154, j=1L....N=3,

0<r<j
J<s<N-2

J
I-[Twe= JT  wpsrgn. 1<i<j<N-3. (3.15)
J ISpsi
JHISgEN=-2

With (3.15) and the Jacobian [[r«; - ;< y—1 uij,;i_l, the integral (3.5) translates into an integral
over all %N (N — 3) variables up related to the partitions P given in (3.11)

Bylnl= [] /du,-,jui‘f”"f I1 5<u7>/—1+1_[u73>, (3.16)
erd | 5

with the assignments:

nij+1=~nj, nj41,jy2=njj, j=1,...,N—=3,
-2

nij=j—i—1+ Z ng, l<i<j<N. (3.17)
i—1<k<]

In (3.16) the integration is constrained by the duality conditions (3.12) resulting in a product
of %(N — 2)(N — 3) independent §-functions. In this form (3.16) many properties of the inte-
grals (3.5) like the pole structure or cyclicity become manifest. Later this will be elucidated with
examples.

We can introduce a fundamental set of Cy_» integrals By

1
{ I1 /duu u; (H%n) I1 5<”P’—1+1_["75>}’ (3.18)
(i1,jneP P

(. )EP Prel.))

7 The inverse solution to the duality constraint (3.12) may be found as (p =2,3,...,N —2;¢=3,4,...,N — 1 and
P<q:

(1- HZ; p ul,m)(l_l_[z:p,1 uin)

, q#FN—1,
a- l_[r p 1“1,r)(1*l_[?:pu1‘s)
Up,g= (3.14)
(l_l_grri=lpul.m) ) q:N—l_
(1*]_[,:,,_1 uy )
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with (i, j;) running over all Cy_» allowed channels.® The o’ -expansion of each of the elements
(3.18) assumes the form (3.10) with ]_[ -3 S 1. as its lowest order term. Any other integral (3.5)
with N — 3 simultaneous poles can be expressed as R-linear combination of the basis (3.18)
modulo less singular terms. In case of a sum of N — 3 simultaneous poles this is achieved by
partial fraction decomposition of the polynomials according to their leading singular term and
associating the latter with the basis (3.18).

A special role is played by the integral:

1
Byln=—-11= [] fdu,, T 8(u73/—1+1_[u75). (3.19)
P

i,)HEP Y Pred, )

By construction it is manifestly invariant under cyclic transformations S; ; — S;41,j+1, with
i=i+ N, j=j+ N.Furthermore, it furnishes all Cy_; sets of allowed channels at the lowest
order, i.e.

By[n=—1]

> ;er, (3.20)

-3
(i,jneP l_[ Sit. i

with the sum running over all Cy_; allowed channels. In terms of (3.5), Eq. (3.19) takes the
form:

_ N-3 1 N-3
By |:”i = :| — < fdxi> xf12-~j+171(1 — xj)s_i+|._i+2—1
njj = — : el
0

i=1 j=1
N-3 1 Sj+1,142

< [1 (l—l_[xk) ) (3.21)
I=j+1 k=)

Obviously, (3.19) can be expanded in terms of the basis (3.18).

3.3.1. N=4

In the case of N =4 we have the two planar channels (1, 2) and (2, 3) = (1, 4) related to the
two variables u 2 and u» 3, respectively. After choosing the independent variable u; » = x1 ;= x
and following the steps (3.15) the integral (3.5)

1
Baln] =/dxxm+"l(1 — x)$Btnn (3.22)
0
takes the form (3.16)
1 1
Ba[n] = / du, Z/dm 32U S o+ ua s — 1), (3.23)
0 0
with (3.17),1.e. n12 =n; and np 3 =nyj.

8 As pointed out before, these integrals appear as constituents of some of the functions F?. The poles in their By
combinations are canceled by the corresponding s;; factors in the numerator of the F such that they are rendered local.
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The fundamental objects (3.18) correspond to the two rational functions
1 1
R R (3 .24)
ui2 u2,3
which furnish the C; = 2 poles sl_z1 and s2_31 as single poles, respectively. The cyclically invariant
integral (3.19) is given by
1

=— ! 1 1
By| _ ! =/.dxx‘”271(1 — )3 = B(sia, 53) = — + — + - (3.25)
nip=—1 s12 823

and exhibits both poles in its power series expansion.

33.2. N=5

In this case we have the five planar channels (1, 2), (2, 3), (3,4), (1,3) = (4,5) and (2,4) =
(5, 1) related to the five variables u1 2, u23, 43,4, us 5 = u1,3 and us | = uy 4, respectively. The
five-point integral (3.5) becomes

1 1
Bs[n]=/dx1/dx2xf'+”1x;4+”2(1 — X)L = x) B2 (1 — xx0) M2 (3.26)
0 0

with s; = o' (kj + ki1 )2, i=1,...,5, subject to the cyclic identification i + 5 =i. To transform
(3.26) into the form (3.16) according to (3.13) we choose the two independent variables 11 2 = x|
and u1 3 = x2. Then, with (3.15) the integral (3.26) takes the form

1 1 1 1 1
Sitni2 s2+n23 s3+n3 4 s4+ny3
Bs[n] =/du12/du23/du34fdu45/du15u Uys Tz, Uy s
0 0 0 0 0

§5+n2.4
ups " 8(ua3Furouza —1)8(uoa+urpuss —1)8u3 s +uz3ugs — 1),

(3.27)

with the assignment (3.17).
In what follows it is convenient to introduce

Is(x,y) =x*y" (1 =) (1 = y) (1 —xy)™ (3.28)

arising from (3.26) with the identifications x1 := y and x, := x. Furthermore, we use the follow-
ing shorter notation for the dual variables u; ;:

X,'=u,<,,~+1, i=1,...,5 i+5=i, (3.29)

and define:

5

Js(X) = (HX;.”) X2+ X1 X3 —1D6(X3+XoXa —1)6(Xs+ X1X4—1). (3.30)
i=1

Let us now discuss a few examples. The pole structure of the integral

1 1

Is(x,y)
d d 3.31
O/XO/ Y A= —xy) 63D
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can be easily deduced after transforming it into the form (3.27)

<1_[/dX >J5(X)X2X5 EJF"" (3.32)

tlo

Hence, the only simultaneous pole is at X», X5 — 0 with the product of §-functions yielding
the constraints for the three variables X1, X3, X4 — 1. In the sequel we list a few non-trivial
examples:

rational function rational function  rational function i d .
in Eq. 3.0 in Eq. (3.26) in Eq. 327)  owest order poles
215 1 Xs 1
212213214225235245 Xy X1X4 S154°
1 1 1 1
212213224235245 xy(l—xy) X1X4 s184”
| 1 1 1 (3.33)
213214223225245 x(1-y) X2 Xy 52547
1 S L + L
214215223225234 (I=x)(1-y) X2X3Xs 255 53585
1 1 1 L + L.
212215224234235 (I=x)y(I1—xy) X1X3Xs5 s183 8385 °
The fundamental objects (3.18) correspond to the five rational functions
1 1 1 1 1
e > , , , (3.34)
X1X3 X2 X4 X3X5 X1X4 X2 X5
which furnish the C3 =5 poles
1 1 1 1 1
—, —, —, —, —, (3.35)
5183 5284 5385 5184 5285
as single poles, respectively. In the basis (3.26) the rational functions become
1 1 1 1 1
(I=x)y’ x(1=y)’ (I=x)1—xy)’ xy(1—xy)’ (I=yd—xy)’
(3.36)

respectively. The cyclically invariant integral (3.19) is given by

1 1
Is(x,y)
Bs |:n” ——1] /dx/dyx(l—x)y(l—y)
0 0
1

1 1
——+—+—+—+—+--~, (3.37)
S183  $254  S385  S1S4 8285
and exhibits all five poles (3.35) in its power series expansion.
Finally, as we shall see in the next subsection there is one rational function without poles and
its series expansion starts at ¢ (2):

rational function  rational function monomial I d
in Eq. G.D in Eq. 326)  in Eq. (3.27) ‘owest order
: ; 1 o (3.38)
213214224225235 (I—xy) ¢(2).

The function (3.38) together with (3.33) furnishes the six-dimensional partial fraction basis of
N =5 integrals. It may be added to (3.34) to give rise to another fundamental set
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X2 X3 X4 X5 X1
Xi1X3’ X>X4’ X3X5’ X1X4’ X>Xs’

subject to the constraints (3.30) and with the same poles (3.35), respectively. In the basis (3.5)
the latter rational functions correspond to

(3.39)

1—y 1—x X 1
(I=x)y(1—xy)’ x(1=y) A =xy)’ (1 =01 —xy)’ xy’
SR — (3.40)
(I =y)(d—xy)
respectively. Since we have

X3 1 1—-x 225234
Xi1Xq  xy(l—xy)? ™ 212213234235 245

Xo 1 1=y 714223
X1Xa — xy (1—xy)? " z1pz3423,235245
X3Xs 1 1—x 215234

X1Xa  xy (1—=xy)  212213214224235245
XoXs 1 11—y 215223
X1Xy  xy (1=xy) " z12z33204205235245

. . 1 X5 eyl . 1
the two rational functions 5 and X, x; are the only possibilities to realize the poles w5

without double poles in the denominator of (3.1). Due to cyclicity these arguments take over
to the other four poles (3.35) and their rational functions (3.34) and (3.39). Generally, rational

functions other than the latter give rise to double powers in the denominator of (3.1), e.g.:

I 1 N 1
X1y =xy)  zipz14204235
Xi_ v m

X2 1-y  z13z},20323
Similarly, as we shall see in the next subsection monomials in the variables X; other than the
trivial case (3.38) yield to double powers in the denominator of (3.1), e.g.:

xy 212245
1—xy  z132}4224235235
212

X~ Y~ 5 R

L—xy 273214224255
l—x 215234

X1 X4

X3 X5~ ~ ,
I —xy Z13Z%4Z24125Z§5
A-x)A-y) 223234
X2 X3~ T =53 5
(1= xy) 213224835

333 N=6

In this case we have the nine planar channels (1,2), (1, 3),(1,4) = (5,6),(2,3),(2,4),
(2,5)=(6,1),3,4),(3,5) and (4, 5) related to the nine variables uj 2, u; 3, u1.4 = Us,6, U23,
Uz 4,U25 = Ue,1, U3.4, U35 and uy s, respectively. The six-point integral (3.5) becomes
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1 1 1
Be[n] Z/dxl/dx2/dx3xYl+nl n+ny 35+n3(1 xl)32+n11(1_x2)s3+n22
0 0 0

X (1= x3)" 33 (1 = x1200) M2 (1 = xx3) T3 (1 — xyx023)" 573, (3.41)

with s; = o/ (kj + kiy1)>, i=1,...,6, subject to the cyclic identification i + 6 =i and t; =
o (kj+ ki1 +kjp2) j=1,....3.

To bring (3.41) into the form (3.16) according to (3.13), we choose the three independent
variables u1 2 = x1, u1 3 = x2 and u1 4 = x3. Then, with (3.15) the integral (3.41) takes the

form
1 1 1 1 1 1 1 1 1
B6[n]=/du1 2/du1,3/dul4/du2,3/du24/du2,5/du3,4/du3,5/du4,5
0 0 0 0 0 0 0 0 0

s1+ni2 52+n23 §3+n3 4 s4+n45 s5+n14 s6+n25 t1+ny3 th+ny4 13+n3s
XUpy “Uyz Uy “Uys U4 Uys Upz Uy, Uz

X 8(uz,3 +uypusquszs —1)8(uz 4 +uipuy zus sugs — 1)
X 8(uzs +urpurzur g —1) 834 +ui3uz3ugs —1)
X §(u3,5 +uyzuy auz3uz4 —1)8(ugs +uyquz quz g — 1), (3.42)

with the assignment (3.17).
Similarly as in the five-point case, it is convenient to introduce

Io(x, y,2) = x5y 2 (1 =)™ (1 = )™ (1 = 22 (1 = x9)™5 (1 = y2)" (1 — xy2)*>
(3.43)

which arises from (3.41) with the identifications x| := z, x := y and x3 := x. Furthermore, we
define

Xi=ujj+1, i=1,...,6,i+6=i, Yi=ujji2, j=1,...,3, (3.44)

and

6 3
Jo(X,Y)= (HX) (1"[ Y}f') 8(X2+ X1X3Y3 — D (Ya + X1 Xa¥1Y3 — 1)

X 8(Xe+ X1X5Y1 —1)8(X3 + XoXaY) — 1)
X 8(Y3+ XoXsY1Yo —1)6(Xg+ X3X5Y, —1). (3.45)

Let us now discuss a few examples. The pole structure of the integral

1 1 1
Is(x,y,2)
4
Ofdxofdyofdz(1—x><1—xy><1—xyz> (3:40)

can be easily deduced after transforming it into the form (3.42)

1 1
ﬁ/dxi l_[/d Jo(X,Y) L ! 4ol (3.47)
ey =17 X4X6Y3 545613

Jj=1
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Hence, the only simultaneous pole is at X4, X¢, Y3 — 0 with the product of 5-functions yielding
the constraints for the six variables X1, X», X3, X5, Y1, Y — 1. Note, that by construction a
set of three poles in (3.42) does not necessarily yield a compatible set of channels, e.g. the
integral

1 1 1
Is(x,y,2)
O/dxfdyfdza—x)(l—y)

0 0
1 30 Jo(X,Y)
6 ,

= dX; dY, | ——

(l_[/ l l_[ 7] X3X4Y3

i=1 Jj=1y

1 1 1 1 s s S S
:_+_+_+___1__1__6__6+... (3.48)

313 s413 s3 S4 313 S413 §313 s413
does not give rise to a triple pole as (3, 4), (4, 5) and (3, 5) are not compatible channels. Simi-
larly, for

1 1 1
/dx/dy/dz folx.y.2)
J z(1=2)(1 —xy)(1 —xy2)

0 0
1 3 Jo(X.Y)
6
(11 o) (11
; X1X2X6
=1y J=19
1 1 t 2
LI S - S ACON (3.49)
$28¢  S2 S¢  S256 s2s6 S1
the channels (1, 2), (2,3) and (6, 1) are not compatible. In the following table we list a few
non-trivial examples:

rational function rational function rational function
in Eq. (3.1) in Eq. (3.41) in Eq. (3:42) lowest order poles
2 1 XZnaY; 1
212213214215226236246256 xyz X1Xs5Y, s15581°
216 1 X6Y3 1
212213215226236245246 (I-x)yz X1X411 s18411°
- r N S _1 1
213215223226245246 (I=x)y(1—z) X2Xa4Y) $28481°
1 1 1 1
712214225234236256 x(1=y)z(1—xyz) X1X3Xs 515385
213245 yd—=x) Xa¥ 1
2121%4125234135136156 x(I=y)z(1=xy)(1—xyz) X1X3Xs 515385
1 1 1 1 1
214215223226234256 x(1=y)(1-2) X2 X3X5Y> sossty ' s3s500°
1 1 1 1 1
212215226234236245 z(1=x)(1-y) X1X3X4Y3 s1s313 ' sysaf3”
1 y Yy 1 1
215216224226234235 (I=y)(I=xy)(1—yz) X3XeY2Y3 sasety ' 8386137
1 1 1 I S N |
215216223226234245 (I=x)(1=y)(1-2) X2 X3X4X6Y2Y3 $28456  SaSely  S3Sel2

1
538613 S45613 "

(3.50)
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The fundamental objects (3.18) correspond to the 14 rational functions

1 1 1 1 1 1
X1X3X5’ X2X4Xe’ X1 X4Y1’ X2XsYs' X3X6Y3’ X>XsY,’
1 1 1 1 1 1
X3XeYo' X1X4Y3' X2 X4Y1’ X3XsYs' X4X6Y3’ X1 X5y’
! ) ! ) (3.51)
X2X6Y2 X1X3Y3
which furnish the C4 = 14 poles
1 1 1 1 1 1 1
515355 ’ $25456 ’ S15411 ’ $285512 ’ 535613 ’ $28511 ’ $35612 ’
1 1 1 1 1 1 1
S15413 ’ $285411 ’ §35512 ’ S45613 ’ S15571 ’ $25612 ’ 15313 ’
(3.52)

as single poles in the denominator of (3.1), respectively. The cyclically invariant integral (3.19)
is given by

1 1 1
n=—1 Is(x, y,2)
B6[n,-,-=— ] /dx/dy/dzx(l—x)y(l—y)z(l—z)
0 0 0

1 1 1 1 1 1
S1S3S5 $25456 S15411 $285512 535613 $28511 §35612
1 1 1 1 1 1
+
S$15413 $285411 35512 S45613 S15571 $285612
+-- (3.53)
$18313

and exhibits all fourteen poles (3.52) in its power series expansion. After triple poles, for a
(transcendental) N = 6 integral the next leading order to start with are single poles. They always
come with a ¢(2). In analogy to (3.51) for the latter we may introduce a fundamental set of

rational functions’ furnishing the six single poles > ;(2) ,i=1,...,6:
rational function rational function ratlonal function lowest order poles
in Eq. (3.1) in Eq. (3.41) in Eq. (3.42) -
1 1 1 [4¢))
212215224235236246 (I=xy)z(1—yz) X1 sy’
1 1 1 @
214215223226235246 (I=z)(1—xy) X2 527
1 1 1 2
213215225226234246 T=»({T=xy2) X3 %)’ (3.54)
1 1 1 {2
213215224226236245 (I-x)(1-yz) X4 sq
1 1 1 @
713714224226235256 x(1=xy)(1—-yz2) Xs ss 7
1 1 1 @
213216224225235246  (1—xy)(1—yz)(1—xyz) X6 56

9 Note, that the rational functions YL giving rise to the single poles ~ #;~
1

some z;;.

! have double poles in (3.1), i.e. i1;; = —2 for
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All (transcendental) integrals with single poles can be decomposed w.r.t. the basis (3.54) modulo
finite pieces to be discussed in a moment. Subject to (3.12) we have e.g.:

1 Xer2 1 y 1

~ =— -7, ~—=——Xe1aV3,
zZ(1 —xy) X1 X1 (I-yd-xyz) X3 X3
X5Y 1 1 XgY- 1
* ~ D32y, i L L (3.55)
1 —=x)(1—=xyz) X4 X4 x(1—yz) X5 X5

After single poles, for an N = 6 integral the next leading order to start with are constants. They
always come with a £(2) or £(3), e.g.:

rational function rational function monomial . 4
in Eq. (3.1) in Eq. (3.41) in Eq. (3.42) owest order
1 y
214215224226235236 (I—xy)(1—yz) Y 2¢(3),
1 1
213214225226235%46 (I—=xy)(1—xyz) g) 2((3),
1 1 (3.56)
Z13215224225236246 (I—yz)(I—xyz) Y3 2¢(3),
216 1
713214215225226 236246 T—xyz XeY2Y3 £(3),

256 Xy
214215225226235236246  (1—xy)(1—xyz)

XsY1 1 ¢(3).

Again, we may add the functions (3.56) to (3.51) to obtain other fundamental sets subject to the
constraints (3.45) and with the same poles (3.52), cf. the next subsection for more details.

334. N=17

In this case we have the 14 planar channels (1, 2), (1, 3), (1,4) = (5,7), (1,5) =(6,7), (2,3),
2,4),12,5,2,6)=(7,1),3,4),3,5),(3,6),(4,5), (4,6) and (5, 6) related to the 14 vari-
ables w1, u13,u14 = us7,U15 = U6 7, U23, U2 4, U2 5 = U6 1,U26 = U7 1, U3 4,U35,U36 =
u72,u45,u46 and us g, respectively. The seven-point integral (3.5) becomes

1 1 1 1
B7[n] =[dx1/dxzfdxg/dx4xi'+"'x£‘+"2x§5+”3x26+"4(1 — xp)%2 T
0 0 0 0

x (1 — x2)33+nzz(1 — x3)S4+"33(1 — X4)55+”44(1 — x]x2)~vz4+n12(1 — x2x3)s35+”23
X (1 = x3204) 67134 (1 — oy 20023) "3 (1 — wpx304) 367124
X (1 — x1x0x3x4)%26T7114 (3.57)

with s; = o' (ki + ki1)?, tj=ao'(kj+kj1+ kj+2)2, i, j=1,...,7 subject to the cyclic identi-
fications i 47 =i and j 4+ 7 = j, respectively.

To bring (3.57) into the form (3.16) according to (3.13) we choose the four independent vari-
ables u12 =x1, u13 =x2,u1,4 =x3 and u; 5 = x4. Then, with (3.15) the integral (3.57) assumes
the form (3.16)

1

_ o Si+ni12 sa2+n2 3 s3+n3a satngs Sss+nse Setnis s1t+nae t1+ni3
B7[”]—/d”l,1”1,2 Up3 H34 Ugs Use Uys  Upe U3

0

tnya 13+n3s tatnge ts+ni4 te+nas t7+n3e
XlUpy Uzs Uy Uy HUys Uzg

X 8(up 3 +uypuz quzsus e — 1) 8(up 4 +uy2u1,3u3 5u3 614 5146 — 1)
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X 8(ua,s + uypuy3uy au3 cia cis 6 — 1) 8(ua e + uiouizuiquys — 1)
X §(u3,4 +uy3uzzugsua e —1)3(us s +uy 3uy 4uz 3uz aug eus e — 1)
X 8(u3,6+ uy3uyauy sup3up auz s — 1) 8(uas +uj qup aus quse — 1)
X 8(ug,6+uyauy suz 4u su3z auzs — 1) 8(us ¢ + uy suz suz sugs — 1), (3.58)

with the assignment (3.17).
Using the identifications xj := w, xp :=z, x3 := y and x4 := x in (3.57), it is convenient to
introduce

I,y z,w) =x0y5zw (1= x)" (1= y)™(1 = 2% (1 — w)?(1 —xy)™e
X (I = wz)™ (1 = yz2)™5 (1 — xy2) (1 — yzw)*™> (1 — xyzw)™*  (3.59)
and use the following notation for the dual variables u; ;
Xi=ujit1, Yi=uj i, ih,j=1,....7, i+7=i,i,j=1,...,7. (3.60)

Furthermore, we define:

7 7
J1(X,Y)= (]‘[xf) (]‘[ Y]’.f)a(xz + X1 X3Y3Y7 — D8(Ya + X1 XaY 1 Y3YaYs — 1)
i=1 j=1

x 8(Ye + X1 Xs5Y1Ya4Y5Y7 — 1)6(X7 + X1 XeY1Y5 — 1)
X 8(X3+ XoX4Y1Yy —1)8(Xg + X3Xs5Y2Y5 — 1)
X 8(Y4 + X3X6Y2Y3Y5Ys — 1)8(Xs5 + X4XeYV3Ys — 1)
x 8(Y3 4+ XoX5Y1Y2YaYs — 1)8(Y7 + X2 XeY1Y2Y5Ys — 1). (3.61)
Let us now discuss a few examples. The pole structure of the integral
1

1 1 1
/dx/dy/dz/dw f(x y. 2, w) (3.62)
J . J x(1=y)(I —wz)(1 —yz2)

0

can be easily deduced after transforming it into the form (3.42)

7 1 7 1
J1(X, Y) 1
dX; dY; = e 3.63
<H/ > (1_[[ /) X4X6Y3Ys  s4Sel3ts * (3:63)

i=1}) j=1}

Hence, the only simultaneous pole is at X4, X¢, Y3, Y6 — 0 with the product of §-functions yield-
ing the constraints for the ten variables X1, X», X3, Xs, X7, Y1, Y2, Y4, Y5, Y7 — 1. Note, that by
construction a set of four poles in (3.58) does not necessarily yield a compatible set of channels,
e.g. the integral

1 1 1 1
/dx/dy/dz/dw hx y,z,w)
, w(l —x)(1-2)1 —wyz)(1 —wxyz)

0 0 0
: 7o (X, Y) 1
7(X,
- dX; dy; = 3.64
(1_[[ l)(“/ />X1X3X5X7 S1S3S5+ (.69
0 0
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does not give rise to a quadruple pole as (1,2), (3,4), (5, 6) and (7, 1) are not compatible chan-
nels. Subsequently, in the sequel we list a few non-trivial examples:

rational function rational function rational function
in Eq. G.1) in Eq. (3.57) in Eq. (3.58) lowest order poles
23, ] X3V, V3 Y4 Y2Y3 1
Z12213214215216227237247257267 xyzw X1X6Y1Ys s186t11s’
22 1 X2Y4YeY7 1
212214215216227234237257267 xy(l-z)w X1X3X6Ys 51538615
2 1 X21,13Y2Y 1
212213214216227237247256257 (I=x)yzw X1X5Y1Ys 518511157
217267 X X6X7Y2Y3Y62 1
212213216227237246247256257 wz(I1—x)(I—xy) X1Xs5Y1Ys s185t114°
217 1 X7Ye 1
212214216227234237256257 yw(l=x)(1-2) X1X3X5Ys $1538515°
217 1 )(7)3 YG 1 1
212213216227237245247256 zw(l=x)(1-y) X1X4XsY 1Yy S1Safits  s185118°
217 1 X7Y4Y7 1 1
214215216223227234257267 xy(I=z2)(1-w) X2X3X6Y2Ys5 s2st2ts | s3S6lats’
267 Xy XeY2Ys5Ye 1 1
212216227236237245247256 w(l=x)(1-y)(1—xyz) X1X4Xs5YsY7 S184lat7 1851417’
1 1 1 1 1
212216227234237245256 w(l=x)(1-y)(1-2z) X1X3X4Xs5Y3YaY7 51538517 s1831317
+ 1 1
8518541317 51541417
1
S1851487 °

(3.65)

After quadruple poles, for an N = 7 integral the next leading order to start with are double poles.
They always come with a £(2), e.g.:

rational function
in Eq. (3.1)

1

212215224235237246267
214

212213216224235246247257
1

215216226227234237245

rational function rational function
in Eq. (3.57) in Eq. (3.58)

1 1
wx(1—xy)(1—wz)(1—yz) X1 Xg

1 1
w(l—xy)z(I—wz)(1—yz) X111

vz Y Ys

(1=y)(1-z2)(1—wxyz) X3X4Y3

lowest order poles

(3.66)

(2 4 @

sat3 "

After double poles, for an N = 7 integral the next leading order to start with are single poles.
They are always accompanied by ¢ (2) or ¢ (3) factors:

rational function rational function rational function . d .
M M 7’”&1& owest order poles
- r 1 1 20(2)
212216224235237246257 w(l—xy)(1-wz)(1-yz) Xi 510
215 1 pe) 2¢(2)
212214216225235237246257 w(l—xy)(1—yz)(1—-wyz) X, >
- r 1 Yy 2:(3)
212216724235236247257 w(l—wz)(1—yz)(1—xyz) X 510
L y Ys 2%(3)
212215216224235237246247 w(l—xy)(1—wz)(1-yz) X T
215223 1—w X2Y, 2¢(2)
212213216224225235237246257  w(l—xy)(1—wz)(1—yz)(1-wyz) X 5
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After single poles, for an N = 7 integral the next leading order to start with are the zeta constants
£(2),¢(3) or ¢(4). First, we display examples without poles and whose series expansion starts at

¢(2) or £(3):

rational function rational function 'mon()mial lowest order
in Eq. (3.1) in Eq. (3.57) in Eq. (3.58) e e
ZI4ZI6224Z2Z74Z735137Z46ZS7 (1—XY)(1—ZyZ)(1—wZ) ¥y 2¢(2) +2£03),
1132152162123135136137 (l—yz)(l—ﬁ)z)(l—xyz) YqYs %E(Z) + %CG),
z13z141161221;2273;35z36z47z57 (1—yz)(1—xlyz)(l—wyz) Y, %“4) +4¢(3) —2¢3),
1131141251;7136146257 (l—xy)(l—liyz)(l—xyz) Y2 ¥3¥e 3¢(3),
(3.68)
Finally, we give examples without poles and whose series expansion starts at £ (4):
ratt:onal function ra{ional function .monomial lowest order
in Eq. (3.1) in Eq. (3.57) in Eq. (3.58) ————-
113216124217235246257 (l—xy)(l—lyZ)(l—WZ) 1 %CM)’
Zl42162242l7235236257 (1—)72)(1—5112)(1—”2) Ny %é‘ S (3.69)
ZI3Z14226222732735136247257 (l—yZ)(l—X)l’Z)(l—waz) Y Y4Ye 3¢,
2131141251i6137l46157 (1*Xy)(1*w1y2)(1*wxy1) Ya¥sYeYs %§(4)’
Z13114115122611627136246257 a *Xy)(lfxi‘Z)(l —wxyz) Y62Y2Y3 3.

Again, we may add the functions (3.69) to the 42 fundamental quadruple poles to obtain other
fundamental sets subject to the constraints (3.61), cf. the next subsection for more details.

335 N=8

In this case we have the 20 planar channels (1,2),(1,3) = (4,8),(1,4) = (5,8),(1,5) =
(6,8),(1,6)=(7,8),(2,3),(2,4),(2,5),(2,6), 2, )=(8,1),(3,4),(3,5),(3,6), 3,7, 4,5),
(4,6),(4,7),(5,6),(5,7) and (6, 7) related to the 20 variables u 2, u2 3, u3 4, us 5, Us,6, Ue.7,

U6 = u78,u27,U13,U24,U35,Us6,U57,U15 = U8, U26 = U7 1, U377 = U2, U 4 = U58,
uzs, U3 e, 1,3 = U4 g, respectively. The eight-point integral (3.5) becomes

1 1 1 1 1
Bg[n]=/dx1fde/dx3/dx4/dx5xS'+"' ”“L"zxglﬂ3 ff+n4 §7+n5
0 0 0 0 0

x (1 _x1)52+"11(1 _ xz)s3+"22(1 _x3)S4+n33(1 _ x4)55+"44(1 _x5)56+n55
X (1 _ x1xz)s24+n‘2(1 _ x2x3)S35+n23(1 _ x3x4)S46+n34(1 _ x4x5)357+n45

X (1= x1200x3) 3 M3 (1 — x0x3.04) 3077124 (1 — x3004x5) 477735

x (1 = x1x2x3x4) 2714 (1 — x2x03004x5) "7 7125 (1 — xy200x32x04%5)* 7715 (3.70)

with s; = o' (k; +ki+1)?, tj =o' (kj +kjp1 +kj32)%, i, j =1, ..., 8, subject to the cyclic identi-
ficationsi +8 =i, j +8 = j, respectively and u; = o' (k; +kj 1 + k10 +k1+3)2, fori=1,...,4.
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To bring (3.70) into the form (3.16) according to (3.13) we choose the five independent vari-
ables Uy = X1, U13 =X, Ul 4 = X3,U|5= X4 and Ui = Xs. Then, with (3.15) the integral
(3.70) assumes the form (3.16)

1
sitny2  s>+n23  S3+Nn3 4 Satngs sstnse  Setne 7 S1+nie

BS[”]=/d”i,j”1,2 Upz U3y Uys Usg Ugy Upg

0

Sx+n2,7ut1+n1,3utz+n2.4 B3+n3s t4+n4e ts+n5.7ulﬁ+ﬂ1,5ul7+n2,o

Upq 1,3 24 HU3zs Uge  Usy 1,5 2,6
tg+n37 ujtny4 urtnys uszt+nie ustngy
XUzg Uy Uys TUze o Uyg

x 8(uz,3 +uy 2u3 4u3 suz euz 7 — 1)
X 8(ug,4 + uypuy 3u3 s5u3 6U3,7U4 U4 6U4 7 — 1)
X 8(ua,s5 + uypuy 3un 4u3 6u3,7U4 6U4 TUS 6US 7 — 1)
X 8(ug,7 +uypuyzuaugsure— 1)
X 8(ua,6 + uypuy 3ug auy su3 us 7us 7ue7 — 1)
X 8(u3 4+ uy3uz3uqsuq a7 — 1)
X 8(u3s + uy 3uy 4un 3un ag cUg 7Us 6Us 7 — 1)
X 8(ue,7 + uy 6u2,6u3 6u4 656 — 1)
X 8(u37 + uy3uyauy suy cu2 3u2 4u2 suz6 — 1)
X 8(uq,5 + uy qun au3 qus sy — 1)
X 8(ug,6+ U1 auy suz aun su3 4u3 sus 67 — 1)
X 8(us,6+ui suz su3 sua sue7 — 1)
X 8(uq7 +uyauy sug eU2 4U2 5U2 6U3 4U3 5U3 6 — 1)
X 8(us7 + uisu16U2 5U2 643 5U3 6U4 5146 — 1)
X 8(u3,6+ u13ul 4y su 3u2 U sua 7us U6 7 — 1), (3.71)
with the assignment (3.17).
In what follows it is convenient to introduce
I3(x,y,z,w,v) =x7y*oz w v (1 — x)* (1 — y)* (1 = 2)* (1 — w)* (1 —v)*

X (I =xy)®7(1 = y2)™ (1 —wz)™F (1 —vw)™* (1 — xyz)*™¥

x (1 —wyz)® (1 —vwz)™? (1 — wxyz)™ (1 — vwyz)**

x (I —vwxyz)™ (3.72)
arising from (3.70) with the identifications x| := v, xp := w, x3 := 2, x4 = y and x5 := x. Sim-
ilarly as in the previous subsections, the following shorter notation for the dual variables u;_ ; is
used

Xi=ujit1, Yi=ujji2, i,j=1,...,8,i+8=i, j+8=],
Zi=upi+3, k=1,...,4, (3.73)

and we also define
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8 8 4
J3(X,Y,Z) = (ijf> (]_[ Y/t.j) (]_[ Z,‘;k> 8§(X2+ X1X3Y3YsZ3 — 1)
i=1 j=1

k=1
X 8(Yo + X1 X4 Y1Y3YsYsZ3Z4 — 1)5(Zy + X1 Xs5Y1Y4YsYsZ1Z32Z4 — 1)
x 8(Y7+ X1 XeY1Ys5YeYsZ1Z4 —1)8(Xg + X1 X7Y1Y6Z1 — 1)

X 8(X3+ XoXaY1Y4Zs —1)5(Y3 + XoXsY1 Y2 YaY5Z1Z4— 1)

X 8(Z3 + XoXeY1Y2YsY6Z1Z2Z4 — 1) 6(Ys + X2 X7Y1 Y2 Y6 Y7 21722 — 1)
x 8(Xa+ X3XsY2YsZ1 — 1) 6(Ys + X3 XcY2Y3YsY6Z1Z7 — 1)

X 6(Zy + X3 X7Y2Y3YY7Z1Z27Z3 — 1) 6(Xs + XuXgY3YsZr — 1)

X 6(Ys + XuX7Y3Y4YeY7227Z53 — 1)6(Xe + X5 X7Y4Y7Z53 — 1). (3.74)

Let us now discuss a few examples. The pole structure of the integral

1 1 1 1 1
/dx/dy/dz/dw/dv ls(x.y. 2, w, v) (3.75)
w(l —v)(1I —2)(I —xy)(1 —yz)
0 0 0 0 0

can be easily deduced after transforming it into the form (3.71)

3 1 8 1 4 1

- . 17 _ 3.76
(/ l)(“/ ])<H/ k>X2X4Y1Y4Z4 5254f1t4”4+ 0
i=1}) j=ly k=179

Hence, the only simultaneous pole is at X», X4, Y1, Y4, Z4 — 0 with the product of §-functions
yielding the constraints for the 15 variables X1, X3, X5, X¢, X7, X3, Y2, Y3, Y5, Ye, Y7, Y3, Z1,
Z>, Z3 — 1. Subsequently, in the sequel we list a few non-trivial examples:

rational function rational function
in Eq. (3.1) in Eq. (3.70)
4
218 1
Z12213214215216217228 238248258 268278 xXyzwv
3
218 1
212213214216217228238245258268278 xy(1—=2)wv
1
Z17218223224235246257268 (I=v)(I=xy)(1—wz)(1-yz)(1—vw)
1 y
212217228234236247256258 v(1=y)(1-w)(1—-xyz)(1-wyz)
1 w z
Z17218224226235237245268 (I=z)(1—vw)(1-wz)(1-vwyz) (1-wxyz)
2
218 1
212215216217228234238245263278 xyv(l=z)(1-w)
1 1
212217224234238256257268 vz(1=y)(1—w)(I1—xy)(1-vw)
1 1

213217223225245246268278 xyw(1—z)(1—v)(1—yz)(1—vwz)
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rational function . t ord .
in Eq. (3.71) owest order poles
4 3yv3727272
XV Y3YaYsY5Yg 252575 1
X1X7Y1YeZ, S1570 g’
X1X4X7Y1Ye S1sasiite’
1 1
X2XgY2Y72Z> So8gtat7uUn °
YeZ> 1
X1X3Xs5Y32Z3 $153550gu3 (377)
Y1YsZ1Z4 1
X4XgY3Y7Z5 S485813t7U2 °
X2YsY7YsZ4 1 N |
X1X3X4X7Y3Ys 5153571316 S184871316°
1 1 + 1
X1X3X5Y2Y57, S18355050] S3550a0s1]
YsYg 1 1 1 1 1
X3 Xy X7Y1YaYeY7Z> 2854871114 + 52854571116 + $285487t417 + $285487t6UD + $285487t7U2 °

3.4. Polynomial relations and Grobner basis reduction

For n; ; > 0 the representation (3.16) in the dual variables u; ; gives rise to a polynomial ring
R[up] describing polynomials in u; j, (i, j) € P with coefficients in R. This ring is suited to
perform a Grobner basis analysis to find a minimal basis for the polynomials in the integrand.
The set of integrals (3.16) with n; j > 0 describe all integrals without poles in their o’-expansion.
Due to the constraints (3.12), which give rise to the §-functions in (3.16), many polynomials in
the variables u; ; referring to different choices of the integers n; ; yield to the same integral
By . The constraints (3.12) define a monomial ideal [ in the polynomial ring R[u#p]. Hence, we
consider the quotient space R[up]/I and the Grobner basis method is well appropriate to choose
a basis in the ideal I and generate independent sets of polynomials in the quotient ring R[up]/1.
We are interested in simple representatives of equivalence classes for congruence modulo /. The
properties of an ideal are reflected in the form of the elements of the Grobner basis [36,37].

Given a monomial ordering'® in the ring a Grobner basis G = {g, ..., g4} comprises a finite
subset of the ideal I such that the leading term'! of any element of the ideal I is divisible by

10" As monomial ordering we may choose lexicographic order or graded lexicographic order. Then, a monomial ordering
of two polynomials f =3, dox% and g =3 g bgxP can be defined as follows:
(i) lexicographic order: o >,y B, if in the vector difference « — B € Z" the leftmost nonzero entry is positive (x* >,

xPif a >0 B),
(ii) graded lexicographic order: o > gyex B, if o] = Z’lzl a; > |B| and & > B (X% > grlex xBifa > griex B)-

11 The leading term LT (f) of a polynomial f is defined as follows [36]: For f =", axx® a nonzero polynomial in
R[xy,...,x,] and > a specific monomial order
(i) the multidegree of f is multideg(f) := Max{«o € Z">0 | aq # 0},
(ii) the leading coefficient of f is: LC(f) := Amultideg(f) € R,
(iii) the leading monomial of f is LM(f) = x™!tideg(f) ith coefficient 1, and
(iv) the leading term of f is

LT(f) = LC(HILM([).

As an example we consider f = xyz + 2xy212 +3z23 — 7x5y +3x2z2 with > the lexicographic order. Then we have:
multideg(f) = (5,1,0), LC(f) = =7, LM(f) =x>y and LT(f) = =7x°y.
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a leading term LT (g;) of an element of the subset. Alternatively, a finite subset G of an ideal
I in a polynomial ring represents a Grobner basis, if (LT(g1),...,LT(gq)) = (LT(1)) [36,37].
Buchberger’s algorithm generates the unique reduced Grobner basis G, in which no monomial
in a polynomial p € G of this basis is divisible by a leading term of the other polynomials in the
basis and LC(p) = 1.

The main idea is, that after dividing a polynomial p € R[xy,...,x,] by a Grobner basis
G ={g1,...,gq} for the ideal I C R[xq,...,x,] the remainder ﬁG is uniquely fixed by the
polynomial p, cf. Chapter 5, §3 of [36]. More precisely according to Proposition 1 therein we
have: For a given monomial ordering on R[xy, ..., x,] and an ideal I C R[xq, ..., x,],

(1) Every f € R[xy,...,x,] is congruent modulo / to a unique polynomial r, which is a R-
linear combination of the monomials in the complement of (LT (1)).

(ii) The elements {x* | x* ¢ (LT (1))} are linearly independent modulo I, i.e. if ), cox® =
0 mod 1, where the x¢ are all in the complement of (LT (1)), then ¢, = 0 for all @. As a
consequence, for any given f € R[xy, ..., x,] the remainder f© is a R-linear combination
of the monomials contained in the complement of LT (1), i.e. FY e Span(x® | x¥ ¢ (LT(I))):

d
f=x E)Cill coexpn = Zcigi + Z rax®. (3.78)
i=1 X g(LT(1))

In the following with the Grobner basis method we want to construct a basis for those
polynomials, which are independent on the constraints (3.12). This basis is determined by the
complement of (L7 (1)) w.r.t. a Grobner basis G. Note, that the representation of this basis (and
also of (LT (I)) and the remainders) may depend on the chosen monomial ordering. At any rate,
there is always the same number of monomials in the complement of (LT (I)). In addition, on the
degree of the basis monomials we impose a condition to ensure, that in the denominator of the
integrands of (3.1) the z;; only appear with powers of at most one, i.e. 71;; > —1. This restriction
is useful to take into account the relations stemming from partial integrations (3.8). We illustrate
the method with the following examples.

34.1. N=4
We work with the two coordinates X| = u1 2 and X2 = u» 3 and consider the polynomial ring
R[X, X;]. From (3.23) we can read off the constraints (3.12) giving rise to the monomial ideal:

I=(X1+ X, —1) CR[X}, Xz]. (3.79)
W.r.t. lexicographic order we find for the Grobner basis of (3.79):

G={g1}={X1+X2—1}. (3.80)
Hence w.r.t. lexicographic order the leading term of this monomial gives rise to:

LT() = X;. (3.81)

Therefore, the set of possible remainders modulo 7 is the set of all R-linear combinations of the
following monomials:

{1.X2,X3.%3,...}. (3.82)

For some examples let us determine their remainders on dividing them by the Grobner ba-
sis (3.80):
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Xi=g1+1-X=1- X5,

X>=0g1 + X2 = X>,

X1X2= X281+ X2 — X3 = X — X3,

XI=(+X1—X2)g +1-2Xo+X5>1-2X,+ X3,

X1Xo = Xo(1 + X1 — X2)g1 + X2 —2X3 + X3 =~ Xo — 2X5 + X3. (3.83)
Indeed, the remainders (displayed after the ~~ sign) are generated by the basis (3.82).

In (3.23) the monomials X;“, nip =0,1,..., of (3.82) give rise to the following inte-
grals (3.22):

1
Ba[n] =/dxxm(1 — x)SBr (3.84)
0

The integrals (3.22) without poles in their field-theory expansions are given by the integers
ni,ni; =0,1.... According to our construction all these integrals (3.22) can be generated by
R-linear combinations of the basis (3.84). However according to (3.7) we have

niy ni

ni o~ _ %14 %23
(l—x) 1 _m, (385)

213 24

i.e. all finite integrals (3.84) in (3.1) imply some powers 71;; with 77;; < —1. As a consequence
the set of integrals (3.84) cannot serve as a basis and (3.24) are the only elements of the partial
fraction basis. Note, that this basis is two-dimensional, i.e. (N —2)! =2 for N = 4.

342 N=5
We work with the five coordinates (3.29) and consider the polynomial ring R[X1, ..., X5].
From (3.30) we can read off the constraints (3.12) giving rise to the monomial ideal:

I=(X2+X1X3— 1, X3+ X2Xa— 1, X5+ X1 X4 — 1) CR[X1, ..., Xs]. (3.86)

W.r.t. lexicographic order we find for the (reduced) Grobner basis of (3.86) the three elements:

G={g1,8,8}={X1+XoXs -1, X5+ X2X4— 1, X4+ X3X5 — 1}. (3.87)

Hence w.r.t. lexicographic order the leading terms of these three monomials give rise to:

LT(I) ={X1, X2 X4, X3X5}. (3.88)

Therefore, the set of possible remainders modulo 7 is the set of all R-linear combinations of the
following monomials:

oo
UJ {(x3x5 x5 X2, x3xy, Xy Xz}, (3.89)
m,n=0

For some examples let us determine their remainders on dividing them by the Grobner ba-
sis (3.87):
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Xi=g3+1—X2X5~1— X>Xs,

X1X4=g1— X580+ X4g3+1—-X5>1— X5,

X3Xs=g1+1—Xg>=1— Xy,

X3X? = X581 + X5 — XaX5 > X5 — X4 X5,

X1X2= X283+ Xs — X3X5~ X5 — X5 X5,

X2X3Xs = Xog1 — g2 — 1+ Xo + X3~ —1 + X5 + X3. (3.90)

Indeed, the remainders (displayed after the ~-sign) are generated by the basis (3.89).
We have the following dictionary

monomial rational function  rational function
in Eq. (3.27) in Eq. (3.26) in Eq. (3.1)
1 1 1
T—xy 713214224225235
I—y Z
X ) 23
2 (1-xy)? 233234225235
X 1—x 234
3 (1—xy)? 113114z%4z§5 ’
X X 245
4 (I=xy) 1%4124125;%5 ’
X5 1 — 5 (3.91)
2132%4255235 ’
1-x)(1—y) 223734
— )3 2 .3 20
(1=xy) 213%24%35
l—y 215223
X2Xs I—xy 23,214224235235
13 25
1-x) 234245
X3X o :
304 (1=xy)? 434335
X4Xs X 2Z 15245
32 .20
214%25%35

between monomials in the integral (3.27), the polynomial in (3.26), and the representation (3.1).
According to the list (3.91) from the generators (3.89) of the complement (LT (I)) only the
element 1 does not give rise to higher powers of z;; in the denominator of the integrand (3.1),
i.e. njj > —1. Therefore, we dismiss all other basis elements and the integral

1 1
/dx/dyM=§(2)+--~ (3.92)
I —xy
0 0

is left as the only basis element without poles. The integral (3.92) yields a transcendental
power series in o, cf. Appendix A. Together with the fundamental set (3.34) we obtain a six-
dimensional partial fraction basis, i.e. (N —2)! =6 for N =5.

343 N=6
Using the coordinates (3.44) we consider the polynomial ring R[ X1, ..., Xg, ¥1,..., ¥3].
From (3.45) we can read off the constraints (3.12) giving rise to the monomial ideal:
I=(Xo+X1X3Y3 -1, X3+ XoX4Y1 — 1, X4+ X3X5Y — 1,
Xo+ X1X5Y1 — 1,2+ X1 X4Y1Y3 — 1, Y3+ XoXsY1Y2 — 1). (3.93)
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W.r.t. lexicographic order we find for the (reduced) Grobner basis of (3.93) the 13 elements:

G={1-Y+XeY1 — X¢¥2 — X¢Y3 + X2Y2Y3, —1 + Xs5Y) + XeV3,
1 —X5—Xe+ X5X6Y2, =1+ XaY3+ Xs5Yo, —1 + X4Y1 + X375,
X4 — Xo — Xa¥1 + XaXeY1 + XeY2 — XaXeVa, —1 + Xo¥; + X373,
X3 — X4+ X6 — XzY1 + XaY1 — XeY1 + X3X6Y1 — X3X6Y3 — XeY2 + X4 XcY2,
—X3+ X3X5 — Xo+ X3X6 + X4X6, 1 — Xo — X3Y3 — X6¥3 + X2 X6Y3
+X3Xe6Y3, -1+ Xo+ X5 — Xo¥V3+ X3Y3 — XsY3+ XoXs5Y3+ XeY3
— X3X6Y3 — XoXs5Y2, — X2+ X3+ X2 X4 — X5+ X2 X5 + X6 — X3X6 — X4Xo,
—1+ X1 + X2 X6Y2}. (3.94)

Hence w.r.t. lexicographic order the leading terms of these 13 monomials give rise to:

LT(I) = {X§Y2Y3, XsY1, XsXeY2, X4Y3, XaXeY1, X3Y2, X3X6Y1, X3X5, XoY1,
X2 X6Y3, X2X5Y3, X2 X4, X1} (3.95)

We would like to mention that the Grobner basis consists of 18 elements in the case of degree
lexicographic order.

From the set (3.95) the monomials generating the complement (LT(1)) can be determined.
Most of these monomials yield to higher powers of z;; in the denominator of the integrand (3.1),
i.e. ;; = —2 for some z;;. In fact, only the following five monomials give rise to single powers
in their denominators, i.e. 7;; > —1:

monomial rational function rational function
in Eq. (3.42) in Eq. (3.41) in Eq. (3.1)
1 1 1
(I=xy)(1=yz) 713215224226235246 °
Yl y 1
(I=xy)(1—-yz) 214215224226235236
v 1 I (3.96)
2 (I=xy)(1=xyz) 213214225226235246
Y. 1 1
3 (I=yz2)(I1-xyz) 713215224225236246
1 216
XeYr Y .
6213 (I—xyz) 213214215225226236246

Therefore, we dismiss all other basis elements of (LT (I)). All (finite) integrals (3.1) with only
single powers of z;; in their denominators, i.e. 1;; > —1, are spanned by the following five
integrals'?:

1 1 1
Io(x. y.2)
Go= [ ax [dy [ dz—8%2D 5oy 4...
0 /x/ y/ A (—yg @+
0 0 0
1 1 1 I( )
Yie(X, Yy, 2
- _ ey,
G O/.dxb/dyofdz(l_xy)(l_yz) B+,

12 Note, that although for degree lexicographic order the Grobner basis consists of more elements than (3.94) the result-
ing list (3.96) of monomials is the same for any monomial ordering rule.



C.R. Mafra et al. / Nuclear Physics B 873 (2013) 461-513 497

16(X,y,Z) _
B U —xyn - XD+

1 1 1
[o]o]
1 1 1 I( )
6X,y,2
- -9
@ /dx/dy/dza—yz)(l—xyz) @)+,
0 0 0
1 1 1
[o]]

Is(x,y,2)

={B)+---. (3.97)
1 —xyz

I b 9
dz vz lg(x, y,2) —Gs— G,
(I =y2)(1 —xyz)

y(l _Z) Iﬁ(x’ y’Z)

/1 /1

0 0

1 1
d d d =G| —G3+ Gy,
x/ y/ CU—n(I—yp(I—xyg 73T

0 0

/1 /1

0 0

1 1

(= ) s(x,y,2)
=—G1+G2+G3—Ga,
(1 —xy)(1 — y2)(1 —xy2) P s

1— I ,
dx/dy/dz (I—=x)y Is(x,y,2) — G| —Gy+ G,
, , (I=xy)(A —y2)(1 —xyz)

—_

xyle(x,y,2)

1
dx / dy | dz =Gy—Gy (3.98)
J yo (1 —xy)(1—xy2)

0
as result from the identities between their corresponding monomials on dividing them by the
Grobner basis (3.94):

X1Y1Y3=Y3 — Xe)213,

XoY1Yo =Y — Y3+ XeYa Y3,

XshYs=-Y1+Y2+7Y;— XcYaVs,

Xa1Y3=Y) = Y2+ XcY> Y3,

XsY1Yr, =Y, — XegYa2Y3. (3.99)

To conclude: Any finite integral (3.1) with 72;; 2> —1 can be expressed as R-linear combination
of the basis (3.97) as a result of partial fraction decomposition of their integrands.

Except the first integral G, the other four integrals (3.97) yield a transcendental power series
ina’, cf. Appendix A. Any partial fraction decomposition, which involves G must refer to a non-
transcendental integral (3.1) and only partial fraction expansions involving the basis Gy, ..., G4

comprise into a transcendental integral. In the previous subsection we have found a set of six
transcendental integrals (3.54) with single poles. Together with the fundamental set (3.51) we
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obtain a partial fraction basis (of transcendental integrals (3.1)) with 4 4+ 6 + 14 = 24 elements,
ie. (N —2)! =24 for N =6.

344 N=7
Using the coordinates (3.60) we consider the polynomial ring R[X1, ..., X7, Y1,..., Y7].

From (3.61) we can read off the constraints (3.12) giving rise to the monomial ideal:
I =(X2+X1X3Y3Y7 =1, X3+ XoXqYV1Ys — 1, Xg + X3X5Y2Y5 — 1,
X5+ X4XeY3Ys — 1, Y4 + X3X6Y3Y2Y5Y6 — 1, Yo + X1 X5Y 1 Y4Y5Y7 — 1,
Y7+ XoXeY1Y2Y5Ys — 1, X7+ X1 XeY1Y5 — 1, Yo + X1 X4 Y1Y3Y4Y7 — 1,
Y34+ XoXsY 1Yo YaYs — 1). (3.100)

W.r.t. lexicographic order we find 84 elements in the (reduced) Grobner basis of (3.100). On the
other hand w.r.t. degree lexicographic order we have 184 basis elements. In the following, we de-
termine the monomials generating the complement (LT (1)) w.r.t. to degree lexicographic order
as this ordering directly yields a cyclic invariant basis. Most of the monomials in the complement
(LT (1)) yield to higher powers of z;; in the denominator of the integrand (3.1), i.e. 1;; = —2 for
some z;;. After disregarding those, only the following six monomials and their cyclic transfor-
mations give rise to single powers in their denominators, i.e. 71;; > —1:

monomial rational function rational function
in Eq. (3.58) in Eq. 3.57) in Eq. (3.1)
1 S S - r
(I=xy)(1=yz)(1-wz) 713216224227235246257
z 1
riYy (I=yz)(1=wz)(1-xyz) 214216224227235236257
z 247
REC (I—xy)(I-wz)(1—xyz) 214215224227236237246257 7 (3.10D)
Yz 1
Y1¥2Ys (I=xy)(1=yz)(1-wyz) 214216225227235237246
1 215237
VoY (1=yz2)(1—wyz)(1—-xyz)  213214216225227235236247257
Y| z 247
(I=xy)(I—wz)(1—yz) 714216224227235237246257

Therefore, in total we have a basis of 36 elements and all (finite) integrals (3.1) with only single
powers in their denominators z;;, i.e. i;; > —1, are spanned by the following six integrals

1 1 1 1
I (x,y,z,w) 27
Go= [dx [ ay [dz [ a _ ey 4
0 /x/ y/ Z/ Y=y —ws) 4 P
0 0 0 0

2l (x,y,z,w) 7

(1—-y2)(1 —wz)(1 —xyz) 4 E@+--

27 (x,y,z, w)

1 1 1 1
[o]o )]
1 1 1 1
Gz”zfdxfdy/dzfdw A= —wo(—my oD+
0 0 0 0
[orfor o]
0 0 0 0

vzl (x,y,z, w)
d =3cQ3)+---,
(U —yo(—wys) O
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1 1 1 1
/dxfdy/dz/dw hx,y,z,w)
(1 —-yz)(I —wyz)(1 —xyz)
0 0 0 0
5
5 ) +4:3)—202) +---,
1 1 1 1
/a’x/dy/dz/dw 2hx,y,z,w)
(I —=xy)d —wz)(1 —yz)
0 0 0 0

=20(3)+2¢(2) +- (3.102)

and their cyclic transformations G j4, G jp, Gje, Gjas Gje, Gjr, j=1,...,5. E.g. we have

I(x.y, 2,
dw D1EV2W oo
(I =xy)(1—wxz)

2
vzl (x,y,z, w)
aw ~Go+Gia +Gip + Gia — Goy,
(1—y) (1 —wz) (1 —xyz) o7 FlaT b Hid = &ab

(I—-yz)(1I —wyz)(1 —xyz)

2l (x,y,z, w)
dw =Go—Gip— Gig+ Gap,
(1 —wz)(1 —xyz) 0 b 1d 2

yI7(x,y,z,w)
dw =Go— Gy — Gir + Gay,
(1 —xy)(1 — wyz) rrm

1
0
/1
0

: I

Z X, Y, 2, w
dz/dw yzIix, y ) =Gsp — G3c — G3f + Gap,

0

1
0

1
0

1

ISH

/ yzli(x,y, z, w)
z | dw

(1 —yz)(1 —wxyz)
0

0
=—G1p+Gig — G3qd — G3, —2G3g + G4g + Gag + G5y,
1 1 I 1 ;
/dx/dy/dz/dw ylp(x. y. 2. w)
(I —wyz)(1 —xyz)
o 0 0 0

=2Go—2G1p — G1a — G15 + Goa + G + Gof + G35 + G3p + G3c + G3y
—G4q — G4e — G5 — Gsy, (3.103)

as results from the identities between their corresponding monomials on dividing them by the
Grobner basis of (3.100):

X7Y3YeY7=1-Y Y5,
Y2Y4Ys = —1+ Y1Y4+ Y1Ys + Y3¥s — Y1 Y3Ye,
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Y/ HYaYs=Y3+YoYs — YrY3Ys — Y3Y4Y7,
X7Y1Y3Y4YsY7=1—-YYs — Y3Ys+ Y1 Y3V,
X7YoY3YsYeY7=1—YYs — Y3Y7 + Y3Y5Y7,
X1/ 1oYaYsYeY7=—Y1Ys+ Y+ Y1Ye — YoYsYg+ Y7 — Y1 Y4Y7 + YsY7 — 2Y3Y6Y7,
X7Y1YoY3YaYsYeY7=2—-Y Y3 — Y, — Y4 —2Y Y5 — V3Y5s + Y1 Y3Y5 + Y1 Y25
+ Y1Y4Ys —Y3Ye + Y1 Y3Y6 + YoY3Ys — YaY7 4+ YaYuYy
1 Y3YsY. (3.104)

Only Gy, G, G, out of the six integrals in (3.102) yield a transcendental power series in o/,
cf. Appendix A.

To conclude: Any finite integral (3.1) with 2;; > —1 can be expressed as R-linear combination
of the basis (3.102) as a result of partial fraction decomposition of their integrands.

As a concrete example let us discuss the function F %2 from the set (2.15) of basis functions
for N =7. It is comprised by a sum of four integrals:

N-2
FO2 = 513546 / [14z (H |Zil|s”)

zi<ziqr 4=2 i<l

$15524 $15526 $245835 $26535
x + + +
113215224246 213215226246 213224235246 213226235246

). (3.105)

Their corresponding rational functions in (3.57) and monomials in (3.58) are given in the follow-
ing table:

rational function rational function monomial
in Eq. (3.1) in Eq. (3.57) in Eq. (3.58)
217 1
213215216224227237246257 (T—xy)(T—w2) X7Y3YeY7,
217267 Xy 2
Z13215216226227237246247257 (T—xy)(I—wxyz) XeX71Y2Y3Y5Y Y7, (3.106)
. . 1
213216224227235246257 (I=xy)(1—wz)(1-yz) ’
267 xy
213216226227235246247257 (I=xy)(1—yz)(I—wxyz) Xe¥2Y5Y.

Their polynomial reduction w.r.t. the Grobner basis of (3.100) gives
X7Y3YeY7=1—-Y Y5,
X6X7Y2Y3YsYZY7 =1 — Y Vs + Y6 — Ya¥5Y6 — Ya¥7 + YsY7 — Y3Ye Y7,
XeY2YsYe=1—Y4Y7, (3.107)

respectively. The remaining monomials belong to the set (3.101) and cyclic transformations
thereof. Hence, with the lowest expansion coefficients from (3.102) we compute:

1 1
/dx/dy
0 0

(I —xy)(1 —w2)

o _

1
dz/dw I1(x,y.z, w) _E§(4)+_._’
0
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IS

1
xy17(x, Yy, va) _é

1

I7(x,y,z,w) 27
d =y 4. ..
Yo —wn(l—ys) 4 @t

dw

0
1
xyli(x,y,z,w) 10

— 4+
/ 1o -y —won 4 @

Eventually for (3.105) we obtain:

1
FG2Y — Z§(4)S13S46(10s15S24 + 3515526 + 27524535 + 10826535) + O(O‘/S)' (3.108)

A similar analysis can be done for the other three functions F©32 F3342) and FO342) starting
at £(4), cf. Appendix C.

4. Concluding remarks

In the first part of this work [1] we derived a strikingly short and compact expression for the
N -point superstring amplitude involving any external massless open string state from the SYM
vector multiplet. The final expression is given in (1.1) and gives rise to a beautiful harmony of
the string amplitudes. We have elucidated their implications both from and to field theory in
Section 2. Our result demonstrates how to efficiently compute tree-level superstring amplitudes
with an arbitrary number of external states. The pure spinor cohomology techniques sketched
in [14,12] proved to be crucial to derive (1.1). The methods presented in our work should be
applicable to tackle any tree-level disk amplitude computation in any dimensions.

The availability of the compact expression (1.1) for the superstring N -point amplitude allows
a detailed study of possible recursion relations allowing to construct the N-amplitude from am-
plitudes with fewer external states and some guiding principle. Due to the factorized form of
(1.1), which separates the YM-part from the string part, the basic question is how to combine the
field-theory recursions established in the YM sector [38] (see also [13]) to recursions working
in the module of hypergeometric functions By . For the latter the following recurrence relations
may be useful [39]

k
Bu=Y BuBu - By S m=N+3k—D), (4.1
=1

with some partition {1, ..., n} into k smaller amplitudes B,,. Eq. (4.1) allows to write By in
terms of products of (N — 3) functions By, cf. Fig. 2.

J[-l ***** 7

Fig. 2. Partition into products of four-point amplitudes By.
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The amplitudes (1.1) give rise to higher order corrections in o’ to the Yang-Mills action,
therefore the YM amplitudes .Ayy which appear in (1.1) serve as building blocks to construct
the higher order terms in the effective action with the expansion coefficients encoded in the
functions F°. Moreover, the field-theory amplitudes .Ayy; may be arranged such that only YM
three-vertices contribute [4]. Hence, only the latter enter the full superstring amplitude (1.1).
As a consequence it should be possible to describe the higher order o’-corrections in the effec-
tive action entirely in terms of the fundamental YM three-vertices dressed by the contributions
from F°.

Together with the KLT relations [7], the open string N-point amplitudes (1.1) can be used
to obtain compact expressions for the N-point closed string amplitudes [40]. The latter give
rise to N-graviton scattering amplitudes. Their a’-expansions have been analyzed up to N < 6
through the order o’ in Ref. [34]. These findings proved to be crucial in constraining possible
counterterms in A = 8 supergravity in D = 4 up to seven loops [41]. Counterterms invariant
under N = 8 supergravity have an unique kinematic structure and the tree-level closed string
amplitudes provide candidates for them, which are compatible with SUSY Ward identities and
locality. The absence or restriction on higher order gravitational terms at the order o'’ together
with their symmetries constrain the appearance of possible counterterms available at /-loop. With
the present results it may now be possible to bolster up the results of [34] and to extend the
research performed in [41,42].
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Appendix A. Degree of transcendentality in the «’-expansion
A.1. Euler integrals and their power series expansions in o'

The «’-dependence enters through the kinematic invariants s; j» 8i..; into the integrals (3.1)
or (3.5). Hence, in their (integer) power series expansions in o, which may start at least at the
order a’37N  each power " is accompanied by some rational function or polynomial of degree
n in the kinematic invariants §;;, §; ;. The latter have rational coefficients multiplied by multizeta
values (MZVs) of certain weights. The maximal weight thereof appearing at a given order a'" is
related to the power n.

One important question is, whether the set of MZVs showing up at a given order n in ' is of
a fixed weight. In this case we call the power series expansion transcendental (we may also call
the integral transcendental). The power series (3.10) is of this kind. E.g. for N = 6 we may have
the following integral and its power series expansion in &'
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1 1 1

I
/dx/dy/dz ﬁ(xyz)
0 0 0

1 K S. K
= —;(2)(—3+—4+—2>
15511 155 S1t1 S5t

2 2 2
S3+ 854 —t s+ 83—t s2 + 85311 S5+ S485 85+ 851852
(3 4= Sts3—h 5 LS 45 >
$5 5185 S1h §511
+0(). (A1)

+¢3)

In (A.1) to each power ' in o’ a Riemann zeta constant of fixed weight n + 3 (with n > —1)

appears. Hence, (A.1) represents a transcendental power series expansion. On the other hand, the
following two integrals

1 1
/dx/dy
0 0

Is(x,y,2)

dz ——— (1 —xy2)?

=82 +L2)(s3+ 56 — 12 —13)

o _

— ) (s1+ 52+ 2534854 +55+256+1 — 1t —13)
+ O(a?), (A2)

1 1 1
lo(x,y,2)
O/dxofdyofdz T— (1 —y2) =202 +[262) = 4]t + 12+ 13)

—[262) = ¢(3)](s1 + 52+ 53 + 54 + 55 + 56)
+O(a?) (A.3)

yield examples of non-transcendent power series.

It would be useful to have a criterion at hand, which allows to infer the transcendentality
properties of an integral by inspecting its integrand before power series expanding the whole
integral. In this subsection we present a criterion, which allows to deduce from the structure of
the integrand, whether we should expect a transcendental power series expansion in ’. Although
this is a mathematical question, it will turn out that superstring theory provides a satisfying
answer to this.

Transforming the integrals from the representation (3.5) into the form (3.1) subject to (3.2)
will prove to be useful in the following. Integrals (3.1), whose integrands are rational functions
involving double or higher powers of z;; in their denominators, i.e. 71;; < —1 for some z;;, always
give rise to non-transcendental power series. This can be seen by performing a partial integration
within the integrals, e.g. for a double power we have:

=2 1 —1 1 i1
/ij’ r(a) = —— /V(Zkl)az, e 2] O (zu)- (A.4)
tj tj

. . ii—1
Regardless of the transcendentality structure of the integral [ zfj’ 9,7 (zx) the factor ﬁ =
ij

1+ s + sizj + --- always destroys any transcendentality. This explains, why the integral (A.2)
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with the corresponding rational functions (cf. Eq. (3.7))
1 1

(1 —=xy2)? " 213214235236 246

yields a non-transcendental power series expansion. On the other hand, the non-transcendentality
of the integral (3.5) with the rational function R(x;) = [(1 — x)(1 — y)(1 — 2)(1 — xyz)]~! can
only be seen after transforming it into the representation (3.1), in which a rational function with
a double power in the denominator appears, i.e.:

1 1

(1= =0 =21 =xy2)  z}cz23225234245

Let us now discuss the integrals (A.1) and (A.3) and elaborate their differences. W.r.t. to the two
representations (3.5) and (3.1) we have the following correspondences

1 z2 1
2~ 16 N ’
XyzZ 2127133147215%263236246%56 2122132147215
1 1 1
— (A.5)

(I —xy)(1 —yz)  213215224226235246 213215224235

respectively. The last correspondence (denoted by the arrow) follows from the choice (3.3), with
26 = Zoo = 00 and taking into account the zgo factor of the c-ghost factor (c(z1)c(z5)c(z6)) =
71 5zgo. We may regard the rational functions (A.5) as originating from a CFT computation of a
six-gluon amplitude. This fact will be exploited in the next subsection to infer the transcenden-
tality properties of an integral (3.5) from the z;;-representation of its integrand (3.1).

A.2. A transcendentality criterion from gluon amplitude computations

Gluon disk amplitudes in superstring theory provide transcendental power series when ex-
panding them w.r.t. to &’. This fact follows from dimensional grounds and the underlying effec-
tive field-theory action describing the reducible and irreducible contributions of the power series
expansions. As a consequence the individual constituents of a gluon amplitude describing some
kinematical factor must be described by transcendental integrals (3.1). Recall that, in the NSR
formalism with the choice (3.3) the color-ordered N-gluon amplitude A(1, ..., N) is computed
from

Te(T ... T)A(,....N)

N—2 1 N
= <c<zl)c(ZN_1)c(ZN))( I1 f dzz) (Vi@ vV e TT v ). (A.6)
=2, I#i.j
with the i-th and j-th gluon vertex operator put into the (—1)-ghost picture. The remaining N —2

vertex operators are in the zero-ghost picture in order to guarantee a total ghost charge of —2.
The gluon vertex operator are given by

VD = gaT e Pyt
8A

S l0X" + 20 (k) e a7

0) _ ga
Vo' =T
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in the (—1)- and zero-ghost picture, respectively. Above we have the scalar field ¢ bosonizing
the superghost system, the coupling constant g4 and the Chan—Paton factor 7¢. In the following
we always stick to the canonical color ordering (1, ..., N). The assignment of the superghost
charges is yet left unspecified. The interplay between the bosonic fields d X* and the fermionic
parts (ky)yH of the N — 2 zero-ghost vertices Vg(o) will play a crucial role for the following
considerations. '3

In a six-gluon amplitude (A.6) the integral (A.1) describes the space-time contraction
(§186) (§2k1)(&3k1)(Eak1) (§5k1), while the integral (A.3) characterizes the contraction (§2&5) X
(E1k3)(&3ks) (E4k2)(E5k ). The crucial difference between the two encountered contractions is,
that in (A.6) the first contraction can only be realized by contracting'*

1L S S ATy o XA X X XT Y X X XL X,

with the first and sixth gluon vertex operator in the (—1)-ghost picture. Therefore, the integral
(A.1) gives rise to a non-vanishing piece in the full amplitude. Since the full amplitude is only
comprised by transcendental functions multiplying kinematical factors the contribution (A.1)
must be a transcendental function. On the other hand, in (A.6) the second contraction can be
obtained from:

68 BBk RS [ g X X XS XN o X X5 (X X,

with the second and sixth gluon vertex operator in the (—1)-ghost picture. Furthermore, we may
also obtain the second contraction from the contraction involving fermionic correlators:

E L L E K RIS (W Ryl g WA s )a X G X2k ).

In fact, after taking into account the anti-commutation symmetry of fermions the two contractions
sum up to zero in the full amplitude (A.6):

(0X1X3)(9X3X5) (X5 X1) — (Y1) (Y3¥s) (Ysyn) = 0.

Otherwise, > the latter would give rise to non-transcendental contributions to the full ampli-
tude (A.6).

To summarize: in order to investigate the transcendentality properties of an Euler integral (3.5)
we transform it into the form (3.1) subject to (3.2). If the rational function R of this integrand
involves powers higher than one in the denominator the corresponding integral yields a non-
transcendental power series. Otherwise, the rational function (more precisely its limit zy — oo
with taking into account the c-ghost factor with the choice (3.3)) is mapped to a gluon contrac-
tion of the form'® (&.&x) (&ik i)+ (&1ky,) arising from an N -gluon superstring computation (A.6)

13 1n the sequel, neither the normalization factors g4 of the gluon vertex operators nor the number of space—time
dimensions play any role.

14 According to Wicks rule the correlator in (A.6) decomposes into products of two-point correlators, given by:
(OXH ()X (22)) = = 21 (H ey () = L

15 Alternatively, we could also consider the kinematics (£2&g)(§1k5)(E3k1)(E4k2)(é5k3). Similar arguments as before
would yield: (38X X5)(dX5X3)(dX3X1) — (V1¥5)(¥s593)(¥391) =0.

16 With no more than one (££) scalar product. Otherwise in (3.5) there may be double poles, of which not all disappear
by the choice (3.3).
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with the r-th and N-th gluon vertex operator in the (—1)-ghost picture. If the contraction under
consideration can only be realized by the correlator (Y, ¥n)(0X;X;)---(0X;X,,) the corre-
sponding integral is transcendental. If on the other hand, the contraction under consideration
can also be realized by correlators involving more fermionic contractions, the underlying in-
tegral is non-transcendental and the two contributions add up to zero. Hence, in the N-gluon
amplitude computation (A.6) non-transcendental contributions referring to a given kinematics
(6:&n)(ikj) - - - (§1kp,) are always accompanied by contributions involving a circle of fermionic
contractions such, that all contributions add up to zero. Stated differently, integrals describing
a kinematics!” (&-&x)(&ik i) .. (&ky), which can be realized by several field contractions, de-
scribe non-transcendental functions.

In fact, this criterion rules out the double poles (A.4) to join into a transcendental in-
tegral. The latter can be realized by both bosonic and fermionic contractions. E.g. the
power 1 /zizj describes the kinematical factor (&;k;)(§;k;), which may stem from either
ELEM KT (XX ) (X X]) or from &1E1 KK (pl ) (! yl). Both contribu-
tions add up to zero:

(0X; Xj)(0X;Xi) — (Vi) (¥vi) =0.

Note, that kinematics involving the product (§;;) are realized by both Sl.“ ’E;L'" (0X IM 9X ;Lj ) and
gl gj‘.‘j (yl w;.”)k;"i k]k.j (wi)“' w;j) giving rise to (1 — 2a’kikj)(5i$j)zi;2 in the end. According
to (A.4) the non-transcendentality of the double pole integral is then compensated by the 1 — s;;
factor in the numerator. Therefore, kinematics involving more than two pairs of (§;&;) scalar
products always involve double powers in the denominator. This is why kinematics with more
than two pairs of (§;£) scalar products cannot provide information on the transcendentality prop-
erty of the underlying integral. On the other hand, when mapping an integral to the kinematics
(6-&En)(&ikj) - - - (51ky) in (A.6) we put the r-th and N-th gluon vertex operator in the (—1)-ghost
picture such that the double pole from the contraction (§,£y) drops.

Let us mention, that the two integrals (3.48) and (3.49) have non-transcendent power se-
ries. Indeed our criterion confirms this: In the representation (3.1) the integral (3.48) gives rise

to the rational function + involving a double pole. As a consequence of the latter
213215874234245

the o’-expansion in (3.48) is not transcendental. On the other hand, the integral (3.49) leads to

the rational function 213226 — 213 = 1 + 1 . Accord-
212214216223225235236246 212214223225235 212214225235 214223225235

ing to the previous statements the last two fractions correspond to the six-gluon kinematics
(6186) (62k1) (E3ks) (Eak1)(§sk2) and (§186) (Eaky) (§2k3) (E3ks) (Eska), respectively. The underlined
part of the last kinematics may also be realized by contracting fermions along a circle. Hence the
power series in (3.49) is non-transcendental.

A.3. Transcendentality criterion at work

Let us now apply our criterion for some N = 7 integral examples. The following integrals can
be associated to only one kinematical factor. Therefore, they represent integrals with transcen-
dental power series expansions:

17 Note, that this statement assumes the r-th and N-th gluon vertex operator in the (—1)-ghost picture to get rid of the
double pole from the correlator (e*¢(Z’)e*¢(ZN))(wr ).
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e e kinemasic vy
o059 e G186k Gk (Eake) (6sk3) (Gsk)  yes,
w0y (=57 11411“;4135236 (§167) (62k4) (63ke) (64k1) (§5k3) (S6k1) yes,
=== 21311“;5235146 (6157) (§2ks) (§3k1) (Eake) (55k3) (§6k1) yes,
=y (T—xyD) (I—wxyz) z,3zl4ziﬁz3sz36 (8167) (§2ke) (§3k1) (§ak1) (§5k3) (E6k3) yes,
im0 smam G1E)Eka) (ko) Gk (Esko) (Eki)  yes,  (A8)
S s @18 (Gke) (Esks) (Eaki) Esk) (Eek1)  yes,
)59 mzlsz}ﬁmz% (6187) (52ks) (§3ke) (§ak1) (Esk1) (§6k1) yes,
(B gy lezmz;mus (6387) (51ks)(62ke) (§4k3) (Esk4) (§ek1) yes,
ST T9059  mnaae (6380 Eike) (G2ki) (Eaka) (55ks) (Eka)  yes,
TSS90 59 mmamm | €160 &k Eke) (Gak2) (Gsks) (Gek)  es.

Sometimes, before analyzing the integrands a partial fraction decomposition may be useful. E.g.
according to (3.7) we have:

1 216
(1 —xy)(1 = xy2)(1 —wz)(1 —wxyz)  213214215226227236246257

216
<13214215226236246

—

The partial fraction expansion yields:

216 1 1

= + .
213214215226236246 213214215226246 214215226236246

The two rational functions on the r.h.s. correspond to the two kinematical factors (§1&7) (&2ke) X
(&3k1) (E4k1)(Esk1) (E6ks) and (£187) (E2ke) (E3ke)(§4k1)(E5k1)(Esks), respectively. Both of them
do not allow for additional fermionic contractions. Hence, the integral under consideration yields
a transcendental series.

Furthermore, let us discuss some integrals with non-transcendental power series expansions.
The rational functions of the following integrals describe kinematics, which can be realized in
two ways. The second possibility involves contractions of several pairs of fermions. The latter
are contracted along a circle and give rise to the underlined subset of the kinematics:

ety REGD kinematics ower sertes.
T e GG D LG S N
s e (€157 (Gake) (Geka) Eako) B3k sk o,

T sy s (€28 Eike) Eoka) (Eak) (ake) (Eska)  no.

Sometimes, before analyzing the integrands a partial fraction decomposition may be useful.
E.g. according to (3.7) we have:
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Z(l — xyz) N 226347
1=xy)(1 —wz)(1 —wyz)(1 — xyz) 214216224225227236237246257
226
—_— .
214216224225236246

The partial fraction expansion yields:

226 1 1

214216224225236246  214216224225236 * 214216225236246
The second term on the r.h.s. corresponds to one of the rational functions discussed in (A.9).
Hence, the integral under consideration does not give rise to a transcendental series. An other
example is:

1 215237 715
—

(1 —y2)(A —wyz)(1 —xyz)  213214216225227235236247257  Z13214216225235236
The partial fraction expansion yields:

z 1 1
15 "

Z13214216225235236  213214216225236  214216225235236
The two rational functions on the r.h.s. correspond to the two kinematical factors (£,&7) x

(1ke) (53k1) (Eck3) (64k1) (5sk2) and (§267)(§1ke) (§3ks) (5ak1) (sk2) (§6k3), respectively. The first
kinematics can also be realized by a fermionic contraction along a circle, which is underlined.

Hence, the integral under consideration does not give rise to a transcendental series. Finally, the
third integral with the integrand

M - 214237
(I —wz)(I = yz)(1 —xyz) Z13215216124127Z35Z36242t7

yields a non-transcendental power series due to the double pole.
The results (A.9) can be anticipated by explicitly computing the integrals:

ZI7(.X, ¥,z U))
¢ =2¢(2)+2 e
w(l_x)’)(l—wz)(l—yz) @D +2t3)+--,

17(x9 v, 2, w)
1 =xy)1 —wz)(1 —wxyz)

Il
(O8]
~
~
(O8]
N
+
oY
& |
w~
~~
~
N
I
(O8]
w~
~~
(O8]
N
SN——"
>
NG
+
| &~
~
~
[\®]
N
S
~
©
+
[
=N
+
=
+
S
p—
+

xyz I7(x,y,z,w)

= 20 (2)+4L(3) + -,
(1 —xy)(1 — wyz)(1 — xyz) ¢(2)+4¢03) +

yli(x,y,z, w) 3 3
=56@+3 e A.10

1 1 1 1
[#]#]]
1 1 1 1 I( ) 5
7X,y,2, W

==-t(4)+4 —20(2)+---
far far fac [ aw S = @ @ -k @)+
0 0 0 0
1 1 1 1
[#]]]
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Appendix B. Extended set of multiple hypergeometric functions for N =6

509

For the six-point case we give here the relations (2.10) to the basis (2.15) of all additional
18 functions (2.18). In (2.36) we have displayed the relation (2.10) for one particular basis 7.
Here, we want to present the relations (2.10) for two other choices of basis. For the new
basis # = {(1,2,4,5,3,6),(1,4,2,5,3,6),(1,5,4,2,3,6),(1,4,5,2,3,6),(1,5,2,4,3,6),

(1,2,5,4,3,6)} we have

o _ —1
Kz =53
t — 81 $13 0 0 0 H—s1+53
0 0 53 4+ 513 513 tH —s1+ 53 0
si(3—=sa)diz  (s36—s1)s13di3 —(s3+513)S14525  —S13514525 dgsiasss s1535d13
11455815 1145515 1145515 5145515 11455815 11455815
X 51(8a—13) (51—536)513 (s3+s13)ds s13ds —(s1+524)835 —515835
145 1145 5145 t4s 145 t4s
s154(s1—11) —S154513 S14(s52+535)d3 si3dzdy 5145353 51(54—536)835
1125515 S125515 1125515 125515 1125515 $125515
(t1—=s1)de s13de —514(s2+535) —di1s13 —S514535 dis3s
125 1125 1125 1125 125 125
(B.1)
and the following relation can be checked:
F(2453) F(2345)
F4253) F(3245)
(5423) (4325)
F x| F (B.2)
F(4523) F(3425) .
F(5243) F(4235)
F(2543) F(2435)

On the other hand, for the third basis 7 = {(1,3,4,5,2,6),(1,4,3,5,2,6),(1,5,4,3,2,6),
(1,4,5,3,2,6),(1,5,3,4,2,6),(1,3,5,4,2,6)} we have

o __ —1
Ky =55
S1 ST+ 52 0 S1— 83+ 0 0
0 0 s1—83+0n 0 51+ 524 S
s1(s26—513)d13 —dgsi3di3 di0s14525 s13825d13 —514(51+524)835 —51514535
S145515 5145515 S145515 S145515 5145515 5145515
X 51(s13—526) dysi3 —(s3+513)825 —S13825 —dia(s1+524) —sidi2
145 145 145 s145 S145 145
—S154513 —(s1+52)54513 S14825d 513825 (4—526) s14(s2+525)do s1(s26—514)do
$246515 5246515 $246515 5246515 5246515 5246515
s1di1 di(s1+52) —514525 —(s3+514)825 —s14(52+525) 51(514—526)
$246 $246 $246 $246 $246 $246
(B.3)
and the following relation can be checked:
F(3452) F(2345)
F(4352) F(3245)
(5432) (4325)
F =K* F (B.4)
F@4532) | — F(3425) .
F(5342) F(4235)
F(3542) F(2435)
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Hence, the relations (2.36), (B.2) and (B.4) allow to express the additional set of 18 functions
(2.32), (2.33) and (2.34) in terms of the minimal basis (2.30).

In the above matrices (B.1) and (B.3) we have introduced ds = 51 + $24 — 536, d6 = —S1 + 55+
835, d7 = 51— 85+ 524 — 535, d3 = 56 — 54 + 513 — 524, d10 = 51 — 53 — 54+ 56, d11 = §3+514 — 526,
di12 = s26 — 53 — 513 and d13 = 515 + S45.

Appendix C. Power series expansions in o’ for N > 7

In this appendix we give the «’-expansions (2.17) of the functions F?. While for N =4,5,6
the latter can be found in Subsection 2.5, here the cases N > 7 are dealt. The strategy how to
compute the power series expansion in «’ for any generalized Euler integral is described in [17,
20]. Generically, this task amounts to evaluate generalized Euler—Zagier sums involving many
integer sums, which becomes quite tedious for N > 6. A complementary approach to determine
the o’-expansion for the basis (2.15) can be set up by imposing the factorization properties dis-
cussed in Subsection 2.7.

Specifically, in the following we display the first orders of the 24 basis functions (2.15) spec-
ifying the N =7 amplitude:

F®3%) =1 — ¢(2)(s556 + 5157 — t1ta — 5t5 + tats — s117 + 1117)
+¢(3) (—2s1S3S5 + s52s6 + sssg + 5%57 + s1s% + 2538511 + 2545511 + 251558
+ 2518513 — 2550113 4 2515084 + 2515314 — 28538114 — 13ty — 2510014 — 1117
— 2s485ts — S3t5 -+ 1315 — 512 + 1412 — 2515516 — Sit7 — 2515017 + 117
— 5117 +113) + O(a'?),

FOPY = —£(2)s46(s4 — 6 + 15) + £ (3)546 (25153 + 57 + 5455 — 8556 — 55 — 25311
— 25411 — 281ty — 28113 + 21113 + Sata — Seta + 25415 + Sst5 + tats + t52 + 2s1t6)
+0(a'),

FO%9) = c(2)(s3 4+ 11 — 15)(s3 + 14 — t7) + £ (3) (2515253 + 25153 — 53 + 25755 + 2535455
— 2s32t1 + 2538511 + 25455t — S3t12 — 251831 — 28538583 — 2858113 + 2515214
+ 2515314 — 25514 — 35311ty — 1714 — 2511014 — S35 — 1115 — 2535515 — 2545515
+ 2551315 4 S3t4ts + Lats + 5312 + 1412 — 2515217 — 2518387 + s30117 + 1317
+ 2510217 + 3517 — t2t7 + 5313 + 1143 — t513) + O(a'?),

F%9) = —¢(2)s36(s3 +11 — 15) + £(3)s36(—2s152 — 25183 — 53 — 2853854 — 28411 + 17
+ 251ty + 285313 + 28113 + 534 + 114 + 285315 + 285415 — 2315 — tats — t52 + 5317
+tit7 — tst7) + O(a'?),

F®34 = £(2)s46(s3 + 56 — 13 — t5) + £ (3)s46 (2s1S3 + 2s§ + 5354 — $3855 + 5356 + 5456
— 5586 — sé —251tr — 25113 — 4s3t3 — S413 + S513 — Sgt3 + 2t32 — 85314 — Spls
+ 1314 — 38315 — Sat5 + S5t5 + 31315 + tat5 + t52 + 231t6) + O(a“‘),
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F®) = —r(2)s36(s3 + 56 — 13 — 15) + £ (3)s36(—2s153 — 53 — 5354 — 5456 + 5¢
+ 28112 + 285113 + 25313 + sa13 — t32 + 8314 + Sets — 1314 + 25315 + 5415 — 21315
— tyts — 12 — 28116 + S317 + st — 1317 — t5t7) + O’ ?),

F@%) = _r(Q)s13(s0 — 57+ 17) + CB3)s13(s1s2 + s% + 25385 — 5187 — 82 4 5211 — 8711
— 2551y — 28513 — 28014 — 25314 + 20ats + 25516 + S1t7 + 2507 + 1117 + 1)
+ (9(0{/4),

FOPY = —20(3)s13805546 + O ('),

FG4) — C2)s13(s3+857—1r —t7) + §(3)s13(—51S3 + 5083 + 2s§ + 25355 — 8187 + 5287
+ 5357 — s72 — 53t — S7H + S1tr — sotr — 4s3tr — 255t — s7t) + ti) + 2t22
— 28513 + 25516 + S1t7 — S2t7 — 38317 + 1117 + 302t7 + t72) + O(a'4),

FO82 = £(2)s13506 + £ (3)s13526 (=51 + 52 — 57 — 11 + 213 — 216 — 17) + O(a'?),

1
FO2) = ZC(4)513S46(10S15S24 + 3515526 + 27524535 + 10526535) + O(a’s),

1
FO¥) = Z§(4)513526(_7515524 — 175245835 + 3515546 + 10535546) + (9(0/5),

FU3) = —£2)s14(s3 + 14 — 17)
+2(3)s14 (—2sz33 - s32 — 25385 — 25455 + $31] + 28312 + 25583 — 285084 + 1114
+ 20ty + 17 + S3t5 + tats + 25017 + 25317 — 1117 — 20017 — tst7 — 13) + O (' ?),

FU23) = £(2)s14536 + £ (3)514536(252 + 353 + 254 — 11 — 200 — 213 — 14 — 15 — 17)
+0(a'),

F®2) = _r(Q)s1a(s3+57 —th —17) + C(3)s14(—s283 — sg — 25355 — 5287 + 82 + 5311
+ 5711 + S2ty + 25312 + 255ty — t1ty — 13 + 25513 + 5315 + 5715 — tats — 2sste
+ 5217 + 25317 — 1117 — 20ty — 1517 — 13) + O('?),

F352) = —£(2)s514526 + £ (3)s14526(—52 + 53 + 57 + 11 — 1 — 213 + 15 + 216 + 17)

+0(a'),

F#23) = £(2)s14536 + £ (3)514536(252 + 254 — 11 + 12 + 13 — ta — 15 — 316 — 17)
+0(a'?),

FO3) = —£(2)s514526 + £ (3)s14526(—52 — S4 + 57 + 11 — 1 — 13 + 15 + 286 + 17)
+0(a'),

FOBY = £(2)s15546 + £ (3)515546(54 — 55 — 56 + 212 — 14 — 15 — 216) + (9(0/4),
FOM = _£(2)s515536 + £ (3)s15836 (53 — 54+ 56 — 210 — 13+ ta + 15 + 216 + 17)
+0(a'),

1
FO32 = Z§(4)S15S46(10S13824 + 3513526 — 17524835 — 7526535) + (9(0/5),

1
FO¥) = Z§(4)515526(_7513524 + 3513546 + 10524535 — Ts35546) + O(c'°),
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FO) = —£(2)s15536 + £ (3)s15536 (—52 — S4 + 56 — 2 — 13 + t4 + 15 + 286 + 17)
+0(a'),
FOB = £(2)s15506 + £ (3)s15526(—s6 — 57 + 2 + 13 — 15 — 16 — 17) + O(a'*). (C.1

As anticipated after Eq. (2.17) there is one function starting only at £(3)a’? and a set of four
functions starting not until at ¢ (4)a’ 4,

We also have the expressions for N > 8. However, it is too elaborate to present all expansions
for > 120 basis functions (2.15). At any rate in [40] a detailed survey of the structure of the
a’-expansions (2.17) is undertaken.
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