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warped and unwarped non-supersymmetric AdSs M-theory backgrounds. We also comment on possible
extensions of the reduction ansatz to the general class of Mg geometries.
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1. Introduction

The lower-dimensional effective theories that result from string
or M-theory compactification provide a very useful arena for phe-
nomenological, cosmological or holographic studies. In this con-
text, the requirement that the lower-dimensional effective theory
be a consistent truncation of the higher-dimensional one, namely,
that all solutions of the lower-dimensional equations of motion
lift to higher-dimensional solutions, has a variety of formal and
practical applications. For example, in the absence of a clear sep-
aration of scales in flux compactifications, consistent truncations
at least provide a well defined mechanism to retain a finite num-
ber of lower-dimensional fields. By their very definition, they prove
valuable tools in the construction of higher-dimensional super-
gravity backgrounds and, in AdS/CFT, have been recently found
useful to embed gravitational toy models into UV-safe string the-
ory.

Consistent truncations on G-structure manifolds are relatively
easy to construct whenever there is some symmetry principle that
selects the set of expansion forms and determines the effective
fields to be kept in the truncation. This is the case of the consis-
tent truncation of M-theory on Sasaki-Einstein seven-folds (SE7)
of [1]. In this case, SE; comes equipped with an SU(3) struc-
ture that contains only constant, SU(3)-singlet torsion classes. The
invariant forms (7, J, £2) that define the SU(3)-structure can be
safely used as expansion forms while the constant, singlet torsion
classes guarantee the consistency of the truncation. Essentially the
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same mechanism was put at work in [2] in the context of (mas-
sive) type IIA truncations on nearly-Kdhler (NKg) six-folds: again,
NKg is endowed, by definition, with an SU(3)-structure with only
a singlet torsion class, W{. Similar truncations are possible for
homogeneous internal spaces Go/Hp enjoying a Gp-invariant G-
structure, see [3-6]. Now, G invariance guarantees consistency in
e.g. the truncations of type IIA on SU(3)-structure cosets of [4],
in spite of the internal spaces being half-flat (and, thus, having a
non-SU(3)-singlet class W in addition to W) at generic points in
moduli space [7].

This situation changes dramatically when no obvious sym-
metry principle can be invoked in order to select the expan-
sion forms. Remarkable examples of consistent truncations on G-
structure manifolds that do not seem to rely on symmetry argu-
ments do nevertheless still exist, the most prominent ones being
the maximally supersymmetric truncations of D = 11 supergravity
on (identity-structure) spheres down to D =4 N = 8 S0(8)-gauged
supergravity [8], or D =7 N =2 SO(5)-gauged supergravity [9].
More generally, consistent truncations on non-trivial G-structure
manifolds down to pure (i.e., with no matter couplings) super-
gravity with reduced supersymmetry have been conjectured (and
shown in some cases) to always exist [10] with, again, no clear
symmetry principles at work. A specific example of this situation
is provided [11] by the consistent truncation of D = 11 supergrav-
ity on Mg down to minimal D =5 gauged supergravity, where Mg
is the class of SU(2)-structure manifolds, discussed by Gauntlett,
Martelli, Sparks and Waldram (GMSW) in [12], whose torsion
classes are defined by the requirement that the warped product
AdSs x Mg be a supersymmetric (N = 2) solution of D =11 su-
pergravity.

The consistent truncation of [11] (as well as those of [10,13])
reveals an intriguing generosity of the class of manifolds Mg of
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[12]: not just that the (only) AdSs vacuum of minimal D =5
gauged supergravity uplifts to D = 11 on such Mg (which was
in fact designed in [12] to do precisely this job), but in fact any
solution of the minimal D =5 theory can be uplifted to D = 11
on the same Mg. This situation prompts the question of whether
Mg allows for the uplift of even more general D =5 configura-
tions, namely, whether it admits consistent truncations including
N =2 (or even N =4, on account of its SU(2)-structure) matter
couplings. In this Letter we will show that this does happen for
a particular subclass of GMSW geometries, even in the absence of
the symmetry principles that allow for this enlargement to occur
[1,14-16] (see also [17]) in e.g. Sasaki-Einstein truncations [18,10].
We will focus on the bosonic sector of supergravity. For recent re-
sults on the fermionic extensions in the Sasaki-Einstein truncation
context, see [19-22].

With no guiding symmetry at hand, we resort to indirect meth-
ods to construct the relevant Kaluza-Klein (KK) ansdtze. In Sec-
tion 3, we present a consistent truncation of D = 11 supergrav-
ity on a particular class of GMSW manifolds down to the same
D =5 N =4 matter-coupled supergravity (briefly reviewed in Sec-
tion 2) that arises from type IIB on a generic Sasaki-Einstein
five-fold SEs [14,15]. We construct the D = 11 reduction via T-
duality from type IIB, and stress that the former, unlike the latter,
no longer follows from symmetry principles. Using this result, in
Section 4 we construct two new classes of non-supersymmetric
AdSs solutions in D = 11. The reduction ansatz of Section 3 does
not easily extend to the most general class of GMSW Mg mani-
folds and, in Section 5, we comment on some of the difficulties to
write down a consistent ansatz involving the defining forms of the
SU(2)-structure on general Mg. Section 6 concludes.

2. Background

In this section, we review the GMSW class of solutions, the re-
duction to minimal D =5 N =2 supergravity, and the D =5 N =
4 SEs5 reduction of type IIB supergravity. We also address how the
latter may be tailored to the explicit YP-9 metrics. This will be
useful to construct a reduction to the D =5 N =4 theory from
D =11.

2.1. AdSs x Mg geometries and N = 2 reduction

We begin by summarising the GMSW solutions [12]. The D =
11 geometry is a warped product of AdSs and an internal Rieman-
nian manifold Mg,

ds? = €% [ds (AdSs) + ds> (M) . W

where the warping A depends only on the coordinates on Mg. Su-
persymmetry imposes an SU(2)-structure on Mg, defined by two
real one-forms K!, K2, a real two-form J and a complex two-
form £2. The metric on Mg reads

ds(Mg) = e~ ds>(My) + (K')? + (K?)*, )
where, introducing coordinates y, ¥, one can write K! =e=3* x
seccdy, K? = %cos cdy 4+ p), Mg is a Kahler manifold,
parametrises the R-symmetry direction (with K2 related to the cor-
responding Killing vector), and the function ¢ and the connection
p = pidx depend on the coordinate y and the coordinates on My.
The warp factor A and ¢ are also related to y via 2y = e3*sin¢.
We will not need the expression for the background four-form.
When Mg is complex, we have the following simplifications:
d4¢ =dgr =93y p =0, in which case, p becomes the canonical con-
nection on the Kahler manifold My4. The supersymmetry conditions
may then be integrated leading to a class of geometries which

are topologically S2-bundles, parametrised by (y, ¥), over smooth
Kahler bases M4 which are either four-dimensional Kiahler-Einstein
spaces, M4 = KE4, or products of constant curvature Riemann sur-
faces, My = C1 x Cy. Further details, as well as the explicit SU(2)
torsion conditions and the various expressions for and e5*, cos? ¢
and ] characterising individual solutions may be found in [12].
For future reference, here we would just like to mention that,
for the specific class of solutions with product base, including
M4 = S% x T2, the non-zero modules characterising the SU(2)-
structure of Mg are, in the notation of [23], the singlets S,, S3, S7,
Ss, and the two-forms Tq, T,. Further, the singlets are non-trivial
functions of A and ¢.

D = 11 supergravity admits a consistent truncation on the
GMSW class of geometries to D =5 N =2 minimal gauged su-
pergravity [11], the field content of which comprises the metric
dsg and the graviphoton, A;. The KK ansatz for the metric is ob-
tained from (1), (2) by replacing ds?(AdSs) with ds2, and K? with
b =K%+ %cos ¢ Aq. The reduction ansatz for the four-form reads

3x
~ e
W =c{" + 5 (-sin ]+ K'e®) A F
1
+§e3*cos§K1 A xF3, (3)

where F, = dAq, * is the Hodge dual with respect to ds%, and

684) is the background four-form with again K2 replaced with e5.
Substitution into the D = 11 equations of motion shows the con-
sistency of this ansatz.

2.2. Type lIB SEs5 reduction

Type IIB supergravity on a generic SEs manifold reduces to
D =5 N =4 gauged supergravity coupled to two vector multiplets
[14,15]. The KK ansatz for the metric naturally employs the struc-
ture of a U(1) fibration over a Kéhler-Einstein four-dimensional
base (KE4) of SEs. Following the IIB Einstein frame conventions
of [15], it reads

ds?y = e 5AUHY) 452 4 2V 452 (KEy) + 2V (n + Ar)2. 4)

Here ds% is an arbitrary (Einstein frame) metric on five-dimensional
space-time, 71 is the dual one-form of the Reeb vector of SEs,
U and V are scalar fields and A; is a one-form defined on the
external five-dimensional space.

The ansatz for the form field strengths is given by

Fis) = 4¢3 AUHITZ ol B) Lo=3U+V) ey 1
+KiAJAJ+2e7 A JA M+ A1)
—[2e7 5Ky =Ko A J]A (0 + A1)
+[e—§<U+V)*L2/\Q+L2A.QA(77+A1)+C.C.],
Fay=G3+G2 A+ A1)+ G A
+[N1A2+Nos2 A(n+AD +ec],
Hzy=H3+HyA(m+A)+H{AJ
+[M1 A2+ Mo2 A(n+ Ay)+c.c.],
P=9. (5)

Now, (], £2, ) characterise the SU(2) structure on SEs. Further de-
tails and expressions for the above space-time forms Kj, Li, Gij,
H;, N; and M; in terms of potentials may be found in [15]. Here
we only note that the D =5 degrees of freedom include, be-
sides the metric, eleven scalars (seven real, U, V, ¢, a, h, b, c,

Co=a,
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and two complex, &, x) parametrising the N =4 moduli space
SO(1,1) x %; two real two-forms B, C,; one complex
two-form Ly; and four real vectors Aj, By, Ci, Ei. The latter
are gauge fields of U(1) x Hs, where U(1) corresponds to the
R-symmetry, and Hs is the three-dimensional Heisenberg group.
Note that K appears with superscripts for GMSW vectors and also
with subscripts where it corresponds to a field in the reduction.

We now particularise the reduction ansatz (4), (5) to SEs5 =
YP9. We find it convenient to use global coordinates (9, ¢, y, &, V)
(see [24]), rather than the local ones suitable to display the Reeb
fibration of YP9. In global coordinates, the SU(2)-structure forms
on YP:9 read

n= %[(1 —¢y)o® —6yda],

J= é[—dy/\ (o +6da) + (1 —cy)o' Ao?],

I R A R _.wq = 3
Q_,6wq (o 10)/\|:dy 16(6da+ca )} (6)

where o, i =1,2,3, are SU(2) left-invariant forms (not directly
related to the SU(2)-structure). In these coordinates, o2 — io! =
eV (do + isin@dg), 63 =dy — cosfdyp. In addition, w and q are
functions of y

6 2@—y» , d-3y2+28y3
e s

w=e’ = = q=cos°¢ =
1-cy

. D

where a and ¢ are constants. It may be easily verified that these
forms satisfy the SEs5, SU(2)-singlet torsion conditions, namely
dn=2] and d2 =3in A £2.

In these coordinates, the ansatz (4) for SE5 = YP-9 is

~ 2
2 —2@U+V) 4.2 wl=Cy 50 wdy
dsjp=e"3 dsig, +e —& ds*(S%) +e wa
2042V
e wq . 3\2 ~
+T(a3) + Alda + Apy1%, (8)

where ds2(52) = (612 + (62)2 = d6? + sin? 6 dg?, 63 =03 +3A4,
we have defined

A =e?Vwq +4y%e?’ (9)
(note that A =eb* for U=V =0) and

- ¢ 1 - -~ 1A
Agy = —§A1 + a[ezucwq —e?ay(1-¢y))6? (10)

fibers the S! with coordinate o both over space-time and over the
squashed S3 parametrised by o. Note that A in (3) is 3 times A;
;A3
ino°.

Finally, the KK ansatz for the IIB form field strengths is given by
(5) with (6). In particular, the H 3y field strength may be integrated

to give the B-field
1 - A

By =By — 6Db A1 —Ey)63 —6yDa]+ (62 +ccl,  (11)
where Db=db — 2B and Do =do — %AL
3. D =5 N =4 gauged supergravity from D =11

The YP-9 manifolds were originally discovered from the GMSW
geometry corresponding to complex Mg, with M4 = S% x T2 in (2),
by reducing and T-dualising along T2 [12]. We will now reverse

this process, in order to uplift the KK ansatz (8), (5) to D = 11.
Since this process maps solutions to solutions, the consistency of

the ansatz thus obtained for the reduction of D =11 supergravity
to the full D =5 N =4 gauged supergravity of [14,15] is guaran-
teed. Below we will argue, however, that the reduction becomes
non-trivial from a D = 11 point of view.

We will first deal with the NS sector. After T-dualising on the
o-direction (using consistent conventions e.g. [25]), the (Einstein
frame) metric becomes

, 1-¢
ds2, =e& A3 [e‘%(‘““rv) ds? + eV —5 Y as? (s?)

dy2  eUHVyg L,
wady™ e WG 3
ey 5]
+e 8 AT [do + By P (12)
where now
- i =
B(1y=yDb — (%5 wq(1 —¢y)(o? —io') + c.c.) (13)

still fibers S! over space-time and over the squashed $3, but now
the ﬁbrsation is over the S% base of the latter. The IIA dilaton is
e?? =e29A~1 and the transformed B-field is

2w
w
Tppac?

- ¢ e
B(z) =B — §A1 Ado —

1 - -~ 1A
+ a[ezucwq —e?4y(1-¢y)]6> nda

+ |:$ 1_Ey(01 —iol)

6wq
2wqye?V

Ady—i———o c.c.|. 14
(ar -2 + (14)
To find the D = 11 metric, we need to identify the RR one-form

potential. This can be calculated to be

Cay =ada — y(Dc — aDb)
+ (L(X —ag)y/wq(1 —¢y)(o? —iot) —I—c.c.) (15)
NG

where Dc = dc — 2Cy. Uplifting now this type IIA solution, we
eventually find the following D = 11 metric:

ds?, :A%[e*%(‘w*v)ds%—}-ezul —6Cy ds*(s?)

udy? €UtV wg L
e — 4+ ————(67)

wq 9A

, - -
+A—§(e—¢(da+3(1))2+e¢’(dﬂ+C(1))2). (16)

For the four-form we find, after some calculation,

+

2 . . 1 .
W = —§ez(1 —Cy)dyé3clo? — §K2 dyé3
1 -
+5Y(1=y)kao'o” + e~ 3WUHY) (4Ky) dy

1 -
+ 5(1 —ty)Kidyolo? —4ye 8V (xKy)

—
+‘/W?’(L2(oz _ iol)<2ydy - i%ﬁ)

+ e—%(U+V)(*L2)iwq(02 —io') + c.c.)

+dB)dB + Ca1y)
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2UWq

- e .3 -
+G3(dOl+B(1))+ Goro (dOl+B(1))

zyeZV
3A

dy63G1(doz + B(]))

1 " -
+Ea—4ymﬂa%ama+3“p

zyeZV . 1 —5}’ 1 . 2\ ~3 ~
— Nqiiwq, | — (o ic“)o°(do + B
3A M q,/ 6wq (o' +io?)6° (da + B(1y)

1-¢y, 2 . 1 7
Ny, [ —— — dy (d B
+ Ny 6wy (0% —ic')dy (da + Bg))
e2Uwq [1-¢ ) . _
+Np Y (02 —io")dy63da + By, (17)

3A \ 6wg

where we have omitted wedge products and Kj, L;, Gj, N; refer to
the fields in the original notation of [15].

Several remarks about the consistent embedding (16), (17) are
now in order. At generic points in the N =4 moduli space, the
metric on the internal Mg receives deformations from A that nev-
ertheless preserve the cohomogeneity-one foliation by y of the
undeformed background metric. The SU(2) x U(1)? symmetry of
the background is, however, generically broken by B, C(1y to
SU(2) x U(1). As in the reduction to minimal supergravity of [11],
the U(1) symmetry associated to o3 is gauged by the N =2
graviphoton Ap. The present metric additionally contains the vec-
tors Bi, C1, which enter (16) in an unconventional way, as they
do not gauge any isometry of Mg (they are involved in the gaug-
ing of a Heisenberg symmetry coming from the four-form). B,
C1 become massive after gauge-fixing the shift symmetries corre-
sponding to the axions b, c¢ (see [14-16]). That a metric produces
massive vectors is not surprising as, in fact, an infinite tower of
those arise upon compactification of the metric. What seems re-
markable is that a finite number of massive vector metric modes
can be retained in a full non-linear embedding like (16). We are
not aware of a similar case having been previously discussed in
the literature.

From a purely D =11 perspective, the consistency of the trun-
cation is quite non-trivial. While the singlet and constant SU(2)
torsion classes of SEs guarantee the consistency of the type IIB
truncation, one of the effects of the T-duality is to generate non-
trivial modules in the SU(2)-structure of the D = 11 background
(see Section 2.1), thus preventing the D = 11 truncation to follow
from any obvious symmetry principle. This is reflected by the non-
obvious manner in which the D =5 fields enter the D =11 ones.
As a cross-check, we have partially verified that the D = 11 field
equations, evaluated on (16), (17) reproduce, as they should, the
D =5 equations of motion (collected e.g. in Appendix B of [15]).
But, had not we obtained the full non-linear D = 11 ansatz by
T-dualising the simpler SE5 ansatz (4), (5), it would have been ex-
tremely difficult to figure out what the D = 11 KK ansatz would
have been, or whether an ansatz from D =11 would exist at all.

Finally, recall that the D =5 N =4 theory admits a truncation
to minimal D =5 N = 2 supergravity (see again, e.g., [15] for the
details). The reduction ansatz (16), (17) then reduces to the one
of [11], reviewed in Section 2.1 above, particularised to the case of
$2 x T? base in Mg. The reduction of [11] is, however, general for
all the GMSW geometries Mg of [12] so a natural question is to
ask whether the D =5 N =4 theory, or any subtruncation thereof,
can be obtained from more general geometries within the GMSW
class. Apart from the (singular) H2 x T? case, for which the trunca-
tion may be adapted to produce an N =4 supergravity, inspection
of (16) reveals that no supersymmetric subtruncation of the N =4

theory of [14,15], other than the minimal N =2 one, can be ob-
tained from a generic GMSW geometry Mg. To see this, recall that
the N =4 theory can be truncated to N =2 supergravity coupled
to a universal hypermultiplet (¢, a, &, £*). This is the minimal su-
persymmetric extension of D =5 minimal supergravity, that still is
a subtruncation of the N =4 theory. From (16), the effect of the
scalars (¢, a, £, £*) can be seen to deform the My = S% x T2 base
of Mg. Assuming that a truncation on generic Mg should preserve
the geometry of My, we reach the conclusion above.

What is conceivable is that consistent truncations to other
matter-coupled theories in D =5 can be obtained from a generic
GMSW geometry, by judiciously constructing a KK ansatz from the
SU(2)-structure forms. Although we have not succeeded in building
new truncations, in Section 5 we comment on possible strategies
to do this.

4. New non-supersymmetric AdSs solutions

The original AdSs background is obviously recovered when all
the D =5 excitations are turned off. In other words, the N =2
AdSs critical point of the N =4 theory uplifts to D = 11 via (16),
(17). Of course, this is guaranteed by the consistency of the trunca-
tion, as is the consistent uplift of any other solution to the D =5
theory. In particular, the D = 5 potential admits a second, non-
supersymmetric AdSs critical locus (first found by Romans [26] in
D =5 N = 8 supergravity), at

x —a& =ie ?¢, (18)

where 0’ is an arbitrary phase. All other scalars of the D =5 the-
ory are set to trivial, and the AdSs radius at these points is 2+/2/3.

Feeding (18) into (16), (17), we find two new classes of D =11
solutions, consisting on non-supersymmetric, warped and direct
products, respectively, of AdSs with a smooth, complex manifold
Mg, equipped, in both cases, with a Hermitian, two-parameter
metric. Both classes are parametrised by (@, ¢). To see this, note
that out of the five parameters (a, ¢, a, ¢,0’) of the solution (18),
(16), (17), 8’ and a can be removed by coordinate transformations.
The two classes are then distinguished by the value of ¢. If ¢ # 0,
it is easy to check that it can be taken to ¢ =1 with no loss of
generality, leading to the two-parameter warped product class. If
¢ =0, the warp factor A reduces to a constant, leading to the di-
rect product class. The non-supersymmetry of the D =5 critical
point (18) carries over to its D = 11 uplift. This lack of supersym-
metry can also be directly seen in D = 11, as the uplifted solutions
do not fit into the generic form of AdSs supersymmetric solutions
in D =11 [12], reviewed in Section 2.1.

The topology of the internal Mg for both classes is the same
as that of the supersymmetric S2 x T2 solutions of [12], namely, a
smooth trivial T2 bundle over a four-dimensional base B4, which is
itself a trivial S2 bundle over $2. Now, unlike the solutions in [12],
the metric on Mg is not a warped product of T2 with B4 = S% x S2,
but the former is (trivially) fibered over the latter by B(]) =
—@e‘”’/z\/(l —¢yywgo! and Cp) = —%ew/z‘/(] —Cy)wgqo2.
The topological triviality and metric regularity of B4 follows from
a similar analysis as that of [12,24], so here we will only show
the triviality of the T2 bundle. To see that T2 does not wind over
B4 = S? x S2, we first follow [24] closely and construct a basis Cq,
C, in homology H»(B4) out of the two copies of the round S?,
with coordinates (9, ¢), located at the poles of the S2 fiber (y, ¥).
These poles are themselves located at the two smaller roots y1, y2
of the numerator of q(y) in (7). It is easy to check that the cur-
vatures dB(y), dC(1y integrate to zero over the cycles Cq, Ca, thus
showing the vanishing of the corresponding Chern numbers.



184 E. O Colgdin, 0. Varela / Physics Letters B 703 (2011) 180-185

For both classes of solutions, the internal Mg is complex. Intro-
ducing the obvious frame e!, i =1,...,6, for the internal metric
in (16), (18), it can be shown that the (3,0)-form £ = (e! +
ie2) A (e3 + ie?) A (e° +ieP) is such that d2 = A A 2 for a suit-
able one-form A, different for each class. As a consequence, the
associated almost complex structure is integrable and Mg, there-
fore, complex. Mg is, however, not Kihler. Neither it is Einstein so,
in particular, our direct product solutions are not in the class of
non-supersymmetric AdSs x KEg solutions [27,28], where KEg is a
Kahler-Einstein six-fold. A D =5 reduction related to this class of
solutions was constructed in [29].

5. Possible extension to general Mg

We now turn to the question of whether truncations beyond
the one to minimal supergravity [11] exist for other GMSW geome-
tries [12]. We start by considering generalisations to the explicit
example My = S2 x S2, before commenting on the R-charged sec-
tor of the general GMSW solutions and the role of the warp factor
in constraining potential reductions. As a general comment, note
that (some combination of) the scalars U, V might still be pro-
moted to a reduction on general GMSW via the combination A:
using 2y = e>*sin¢, Eq. (9) becomes

A =e%(e?V cos? ¢ +e?" sin’¢). (19)
5.1. KK reduction on M4 = S% x §2

Neglecting M4 = H? x T2, where the solutions are singular, the
next most interesting explicit GMSW example is M4 = S x S2, a
product of two-spheres that also serves as an example of KE4 when
the two spheres have equal radii. In order to consider any general-
isation to this class of explicit solutions, a prerequisite is that one
can find a reduction incorporating a single breathing mode.

Although the KK ansatz for M4 = S? x T2 may be consistently
truncated to a gravity scalar theory through setting all fields to
zero and U =V (see [30,31]), we have checked that such a reduc-
tion may not be generalised to M4 = S x S2. The failure of this
simple reduction suggests that one must introduce an additional
flux term in tandem with the breathing mode. Observe that for
all the explicit solutions where Mg is complex, the four-form flux
may be expressed schematically as G = Svoly +d[f(y)] A Dy,
thus immediately satisfying the Bianchi identity. The bracket under
d is a natural place to introduce a scalar into the four-form flux,
in a compatible way with the Bianchi. Indeed, we are aware of
similar construction [13] of the reduction ansatz of D = 11 super-
gravity on the Lin-Lunin-Maldacena (LLM) geometries [32] down
to D=5 SU(2) x U(1) gauged supergravity [33].

Despite the obvious difference in supersymmetry of the original
backgrounds, one striking similarity is that both the LLM geome-
tries and M4 = S2 x T2 GMSW class involve U(1) fibrations over
a single Riemann surface. When both the Riemann surfaces, or al-
ternatively KE4 is fibred, it is clear that the ansatz provided by
studying S? x T2 will not be appropriate. The identification of
a good candidate for the reduced gauged supergravity would be
helpful, as it is easier to find the correct ansatz when one has a
target reduced theory in mind.

In the absence of a breathing mode, another candidate field
that may be retained is Kp, the existence of which ensures K3
and F, are not directly related. In fact, it is easy to retain K; so
that the Bianchi holds by essentially reversing a sign appearing in
the reduction of [11]. However, one finds that such an ansatz fails
for Mg = S% x S2. This is not completely unexpected, as we have
dropped the breathing modes that play an important role in con-
sistency when My = §2 x T2,

5.2. R-charged fields

In the reduction of Section 3, D =5 R-charged modes descend-
ing from both the D = 11 metric and the four-form were produced
from deformations of the one-form o2 — io! on S? which, to-
gether with its complex conjugate, transforms as a doublet of the
U(1) R-symmetry generated by o3. For general GMSW geometries,
where there is a U(1) fibration over the entire base, the natural R-
charged object to be considered is the complex two-form £2 (see
Section 2.1).

A natural addition to the four-form reduction ansatz (3) is thus
given by the combination

Ly Ae®* 2 cos¢ + My A3e®*2 A (—K'sin¢ +ie®), (20)

together with its complex conjugate. With the help of the Mg tor-
sion condition [12]

e % d(e® 2 cos¢) =32 A (—K'sin¢ +iK?), (21)

the combination (20) can be shown to be closed, and therefore
compatible with the D = 11 Bianchi identity, provided the complex
space-time forms Ly, My, satisfy

DLy —iM1 AFy =0, DMq{+ Ly =0, (22)

with DLy =dLy —iA1 A Ly, and similarly for DM;. Recall also that
Fp =dAy. Eq. (22) shows that L, and M; are, respectively, field
strengths for a U(1) R-symmetry doublet of vectors and scalars.

If one imposes the restrictions M1 A M7 =0, Ly A LY =0,
M1 A Ly = My ALY =0 (which already signal that D =5 degrees of
freedom are being neglected in (20)), the equation of motion for
the four-form (3), (20) is also satisfied provided

1
D*Lz—lS*M]+§F2/\L2—iM1/\>l<F2:0,
D M; =0. (23)

These equations of motion show that, in the AdSs vacuum, the M
scalars are Stiickelberged away, giving a mass m? = 15 (in units of
the inverse AdSs radius) to the vectors with field strength L. Un-
fortunately, even with the restrictions mentioned above, the ansatz
(3), (20) proves inconsistent at the level of the D = 11 Einstein
equation.

This is primarily due to the fact that all the deformations of the
original GMSW flux, namely (3) and (17), appear in orthonormal
frame with the factor e~*. This requirement comes from the Ein-
stein equations where the overall metric warp factor e?* appears
inverted, forcing the G2 terms in orthonormal frame to appear
with e=%* factors. Neglecting the generalised calibration (see [11])
which allows ] in (3) to appear with the correct factor, this ex-
plains the absence of other terms involving J and £2. One can add
other terms to the four-form, like (20) wedged with e3* cos¢ K1,
but similar inconsistencies end up arising.

Interestingly, vectors with m? = 15 also appear in the reduction
of type IIB supergravity on S> [34]. It is tempting to speculate that
these are related to ours, as S°, like the YP9 metrics discussed
above, can be recovered from Mg by reduction and T-duality in
the case of $? x T? base.

6. Discussion

The truncation we presented in Section 3 is one of the few
examples of a consistent truncation on a non-trivial G-structure
manifold to matter-coupled supergravity, that is not apparently
driven by symmetry principles. Another example we are aware of
in this class is the truncation of D = 11 supergravity on a cer-
tain SU(2)-structure seven-fold [35] down to D =4 N =2 gauged
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supergravity coupled to a vector multiplet and two hypermulti-
plets [36].

In both these two cases, the reduction ansatz was proposed by
indirect methods. Here, from T-duality of a type IIB ansatz whose
consistency, before T-dualisation, does stem from symmetry prin-
ciples. In [36], by first reducing to D =7 SO(5)-gauged supergrav-
ity [9], and then further reducing on three dimensions whilst keep-
ing SO(3) singlets in the decomposition SO(5) — SO(3) x SO(2).
From the D = 11 perspective, however, both are matter-coupled
truncations on non-trivial G-structure manifolds, that do not fol-
low from any obvious symmetry principle. Here, non-trivial torsion
classes in the internal geometry are generated by T-duality; in [36],
the D =11 — D =7 step does not follow from symmetry, and this
accordingly translates into the straight D =11 — D =4 reduction.
For other examples of consistent KK reductions obtained from T-
duality, see [37].

This note has also made apparent how difficult it is to con-
struct reductions when there are no guiding symmetry principles
to write a KK ansatz out of the internal G-structure, or when the
target lower-dimensional theory is unknown. In Section 5, we have
commented on this kind of difficulties for reductions on generic
GMSW geometries [11]. Inconsistencies typically arise when the
warp factor A does not drop from the D =5 equations. It would
be interesting to determine if the inclusion of a moduli-dependent
warp factor, such as (19), introduced into the KK ansatz using the
hints in Section 5.1, would restore consistency.

Using the embedding of Section 3, we have constructed two
new classes of smooth, non-supersymmetric M-theory back-
grounds containing, respectively, warped and direct products of
AdSs with a compact space Mg. We have built these solutions via
D =11 uplift of the non-supersymmetric critical point [26] of the
D =5 N =4 theory of [14,15]. The type IIB uplift of this point can
be expected to be unstable [38], so it would be interesting to de-
termine if instabilities also arise for our D = 11 solutions. Observe,
however, that the non-supersymmetric solution AdSs x CP? [27,28]
is known to be stable [39].

Similar supersymmetric AdS; x Mg solutions to GMSW exist
[40] where Mg is an S2-bundle over Mg = KEs or products of
Kahler-Einstein spaces. In accordance with the conjecture of [10],
one expects a consistent truncation retaining an R-symmetry vec-
tor. Moreover, our findings here suggest that when Mg has a T?
factor, a more general reduction to D = 3 supergravity, such as that
in [41], may be found.

More generally, it would be very interesting to determine the
conditions that allow for consistent matter couplings in KK reduc-
tions on non-trivial G-structure manifolds.

Acknowledgements
We have enjoyed conversations with Changhyun Ahn, Jerome

Gauntlett, Nakwoo Kim, Tetsuji Kimura, Tristan McLoughlin and
Hossein Yavartanoo. OV wishes to thank KIAS for kind hospital-

ity during the early stages of this work. OV is partially supported
by the Spanish Government research grant FIS2008-01980.

References

[1] J.P. Gauntlett, S. Kim, O. Varela, D. Waldram, JHEP 0904 (2009) 102, arXiv:
0901.0676 [hep-th].
[2] AK. Kashani-Poor, JHEP 0711 (2007) 026, arXiv:0709.4482 [hep-th].
[3] A. Micu, E. Palti, PM. Saffin, JHEP 0605 (2006) 048, arXiv:hep-th/0602163.
[4] D. Cassani, A.K. Kashani-Poor, Nucl. Phys. B 817 (2009) 25, arXiv:0901.4251.
[5] D. Cassani, A.F. Faedo, Nucl. Phys. B 843 (2011) 455, arXiv:1008.0883 [hep-th].
[6] I. Bena, G. Giecold, M. Grana, N. Halmagyi, F. Orsi, JHEP 1104 (2011) 021,
arXiv:1008.0983 [hep-th].
[7] P. Koerber, D. Lust, D. Tsimpis, JHEP 0807 (2008) 017, arXiv:0804.0614.
[8] B. de Wit, H. Nicolai, Nucl. Phys. B 281 (1987) 211.
[9] H. Nastase, D. Vaman, P. van Nieuwenhuizen, Phys. Lett. B 469 (1999) 96,
arXiv:hep-th/9905075.
[10] J.P. Gauntlett, O. Varela, Phys. Rev. D 76 (2007) 126007, arXiv:0707.2315.
[11] J.P. Gauntlett, E. O Colgain, O. Varela, JHEP 0702 (2007) 049, arXiv:hep-th/
0611219.
[12] J.P. Gauntlett, D. Martelli, ]J. Sparks, et al., Class. Quant. Grav. 21 (2004) 4335,
arXiv:hep-th/0402153.
[13] J.P. Gauntlett, O. Varela, JHEP 0802 (2008) 083, arXiv:0712.3560.
[14] D. Cassani, G. Dall’Agata, A.F. Faedo, JHEP 1005 (2010) 094, arXiv:1003.4283.
[15] J.P. Gauntlett, O. Varela, JHEP 1006 (2010) 081, arXiv:1003.5642 [hep-th].
[16] J.T. Liu, P. Szepietowski, Z. Zhao, Phys. Rev. D 81 (2010) 124028, arXiv:
1003.5374 [hep-th].
[17] K. Skenderis, M. Taylor, D. Tsimpis, JHEP 1006 (2010) 025.
[18] A. Buchel, J.T. Liu, Nucl. Phys. B 771 (2007) 93.
[19] L. Bah, A. Faraggi, ].I. Jottar, R.G. Leigh, L.A. Pando Zayas, JHEP 1102 (2011) 068,
arXiv:1008.1423 [hep-th].
[20] 1. Bah, A. Faraggi, ].I. Jottar, R.G. Leigh, JHEP 1101 (2011) 100, arXiv:1009.1615
[hep-th].
[21] J.T. Liu, P. Szepietowski, Z. Zhao, Phys. Rev. D 82 (2010) 124022, arXiv:
1009.4210 [hep-th].
[22] J.T. Liu, P. Szepietowski, arXiv:1103.0029 [hep-th].
[23] G. Dall’Agata, N. Prezas, Phys. Rev. D 69 (2004) 066004, arXiv:hep-th/0311146.
[24] J.P. Gauntlett, D. Martelli, J. Sparks, D. Waldram, Adv. Theor. Math. Phys. 8
(2004) 711, arXiv:hep-th/0403002.
[25] S.F. Hassan, Nucl. Phys. B 568 (2000) 145, arXiv:hep-th/9907152.
[26] LJ. Romans, Phys. Lett. B 153 (1985) 392.
[27] B. Dolan, Phys. Lett. B 140 (1984) 304.
[28] C.N. Pope, P. van Nieuwenhuizen, Commun. Math. Phys. 122 (1989) 281.
[29] E. O Colgain, O. Varela, H. Yavartanoo, JHEP 0907 (2009) 081, arXiv:0906.0261
[hep-th].
[30] M.S. Bremer, M.J. Duff, H. Lu, C.N. Pope, K.S. Stelle, Nucl. Phys. B 543 (1999)
321, arXiv:hep-th/9807051.
[31] J.T. Liu, H. Sati, Nucl. Phys. B 605 (2001) 116, arXiv:hep-th/0009184.
[32] H. Lin, O. Lunin, J.M. Maldacena, JHEP 0410 (2004) 025, arXiv:hep-th/0409174.
[33] LJ. Romans, Nucl. Phys. B 267 (1986) 433.
[34] H.J. Kim, LJ. Romans, P. van Nieuwenhuizen, Phys. Rev. D 32 (1985) 389.
[35] J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos, D. Waldram, JHEP 0611 (2006)
053, arXiv:hep-th/0605146.
[36] A. Donos, J.P. Gauntlett, N. Kim, O. Varela, JHEP 1012 (2010) 003, arXiv:
1009.3805 [hep-th].
[37] M. Cvetic, H. Lu, C.N. Pope, Nucl. Phys. B 597 (2001) 172, arXiv:hep-th/0007109.
[38] N. Bobev, N. Halmagyi, K. Pilch, N.P. Warner, Class. Quant. Grav. 27 (2010)
235013, arXiv:1006.2546 [hep-th].
[39] J.E. Martin, H.S. Reall, JHEP 0903 (2009) 002, arXiv:0810.2707 [hep-th].
[40] ].P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos, D. Waldram, Phys. Rev. D 74
(2006) 106007.
[41] E. O Colgain, H. Samtleben, JHEP 1102 (2011) 031.



	Consistent reductions from D=11 beyond Sasaki-Einstein
	1 Introduction
	2 Background
	2.1 AdS5 xwM6 geometries and N=2 reduction
	2.2 Type IIB SE5 reduction

	3 D=5 N=4 gauged supergravity from D=11
	4 New non-supersymmetric AdS5 solutions
	5 Possible extension to general M6
	5.1 KK reduction on M4= S2 xS2
	5.2 R-charged ﬁelds

	6 Discussion
	Acknowledgements
	References


