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Abstract

The contribution of nutrients from animal pollinated world crops has not previously been evaluated as a biophysical
measure for the value of pollination services. This study evaluates the nutritional composition of animal-pollinated world
crops. We calculated pollinator dependent and independent proportions of different nutrients of world crops, employing
FAO data for crop production, USDA data for nutritional composition, and pollinator dependency data according to Klein
et al. (2007). Crop plants that depend fully or partially on animal pollinators contain more than 90% of vitamin C, the whole
quantity of Lycopene and almost the full quantity of the antioxidants b-cryptoxanthin and b-tocopherol, the majority of the
lipid, vitamin A and related carotenoids, calcium and fluoride, and a large portion of folic acid. Ongoing pollinator decline
may thus exacerbate current difficulties of providing a nutritionally adequate diet for the global human population.
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Introduction

Crop pollination mediated by wild and domesticated animals is

a crucial and endangered ecosystem service [1,2]. Recently, the

global economic value of pollination from domesticated and wild

animals has been estimated at J153 billion, while the consumer

surplus loss associated with a total loss of animal pollination service

was estimated between J190 and J310 billion [3].

The decline of pollinators has become a major problem at a

time when the global demand for crop pollinators is increasing [4].

Several studies have been conducted to evaluate monetary values

of pollination services on crop pollination [3][5][6]. However, it is

difficult to assign monetary values to ecosystem services because

they are frequently not traded on the marketplace [7] and values

differ widely depending on methods, value systems, and scales of

analysis [8][9][10]. Furthermore, the value of money changes

constantly with shifting markets, particularly in the face of the

current global financial crisis. In contrast, biophysical measures

such as the nutritional composition of animal-pollinated plants and

nutrient requirements to prevent deficiency in humans are

relatively stable and may be measured objectively. Here we take

this biophysical approach to evaluate the global nutritional value

of pollinator-dependent crops.

Staple crop production (e.g. cassava, corn, potato, rice, wheat,

yam) has doubled in the past 50 years due to new crop strains,

increased use of agrochemicals, irrigation and new agricultural

techniques [11]. These grains and starchy vegetables are mostly

wind-pollinated, self-pollinated, or vegetatively propagated crops

[11]. While they provide the majority of calories in the human diet

[12][13][14], they are poor sources of most micronutrients [15].

What little micronutrients are present in these sources are mostly

lost in processing or preservation [16]. Dependence on these staple

crops due to food system failures and declines in diet diversity are

responsible for micronutrient deficiency (‘Hidden Hunger’) in over

two billion people worldwide, especially in underprivileged areas

[17]. This underscores the importance of diet diversity and the

need for animal-pollinated plants to prevent micronutrient

deficiency. However the contribution of these plants to worldwide

micronutrient availability has not been quantified. Therefore, the

potential impact of pollinator decline on global health and

nutrition is difficult to estimate. Any impact is likely to be more

dramatic in developing countries, which are already vulnerable to

food and nutrient shortages related to demographic and climate

change [18].

Materials and Methods

We selected FAO data on the worldwide production of more

than 150 leading global crops from 1997 to 2007 [19] to calculate

the respective annual mean production for each crop. Nutrient

content data on these raw crops and percentage of refuse were

obtained from the USDA database [20]. Total energy (in joules),
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macronutrients (carbohydrate, protein and fat) and micronutrients

were analyzed. Micronutrient analysis included minerals (calcium,

iron, magnesium, phosphorus, potassium, sodium, zinc, copper,

manganese, selenium, and fluoride), water-soluble vitamins

(vitamin C, thiamine, riboflavin, niacin, vitamin B5, vitamin B6,

folic acid), and fat-soluble vitamins [E (including b-, d-, and c-

tocopherol), K, A and related carotenoids (including a- and b-

carotene, b- cryptoxanthin, lycopene, lutein, and zeaxanthin)].

Spices, condiments, stimulant crops, sugars (from cane and beet),

and processed and animal-derived products were excluded from

our analysis. Food crop production was considered pollinator-

independent for our calculations for crops in which animal

pollination increased seed production (e.g. in onion and

asparagus), but did not directly result in an increase of edible

plant material.

Proportion of crop production depending on animal pollination

was derived according to estimates by Klein et al. (2007). Based on

the obtained data, the proportion of pollinator-independent

nutritional values was calculated, applying the following equation,

summed over each crop type:

NVi~
X

NV � Pri � 1{ %Rfi=100ð Þð Þ

The proportion of nutritional values derived from pollinator-

dependent crops was calculated, applying the following equation:

NVp~
X

NV � Pr p � 1{ %Rfp=100ð Þð Þ

Since there is a spectrum of pollinator-dependence categories

among pollinator-dependent crops, ranging from no = 0%,

little = 5%, modest = 25%, great = 65%, to an essential .65%

impact of pollinators to production [2], this proportion was further

divided into the actual increase due to animal pollinators

(pollinator-dependent component) versus the remaining pollina-

tor-independent component, subject to the plant’s degree of

animal pollination dependency:

NVap~
X

NVp � %Pd=100ð Þ

NVsw~
X

NVp � 1{%Pdð Þ=100ð Þ

NVi = Nutrients derived from completely pollinator-indepen-

dent crop production (all autonomous self or wind pollination)

NVp = Nutrients derived from pollinator-dependent crop pro-

duction (including proportions attributed to animal pollination

and to autonomous self and wind pollination)

NVap = Nutrients derived from crop production attributed to

animal pollination alone

NVsw = Nutrients derived from crop production for partially

animal-dependent crops attributed to autonomous self- or wind

pollination

NV = Amount of nutritional component in crop production (in

metric tons)

Pr = Average production 1997–2007 of crop production (in

metric tons)

Rf = Percent refuse, e.g. pits, stems, or shells.

Pd = Proportion of crop production in pollinator dependence

categories according to Klein et al. (2007), no impact = 0%,

little = 5%, modest = 25%, great = 65%, essential = 95%.

Results and Discussion

We examined the nutrient availability in more than 150 of the

world’s leading crops and found that the majority of the lipid and

several micronutrients required for human health are present in

plants that are animal pollinated.

According to our estimates, around 74% of all globally

produced lipids are present in oils from plants that are promoted

by animal pollination (Table 1); these plants also serve as primary

sources of the fat-soluble vitamins. Of the water-soluble vitamins,

98% of the available vitamin C comes from animal-pollinated

plants, primary citrus and other fruits and vegetables (Fig. 1, Table

S1). While scurvy due to vitamin C deficiency is now uncommon,

the antioxidant role of vitamin C, along with vitamin E and b-

carotene, is well recognized [21]. The water-soluble B vitamins are

abundant in starchy staple crops that propagate independently of

pollinator deficiency (Table S1). However, the majority of these

nutrients are lost when whole grains are processed into the refined

starches that are preferred globally (e.g. white rice and white flour).

While the U.S. has rectified this loss by heavily fortifying refined

wheat flours, 2/3 of the population globally does not have access

to fortified grains [22]. This underscores the importance of plant

sources of the B vitamins, particularly folic acid. The requirement

for folic acid is increased during pregnancy to prevent neural tube

defects in the infant [16]. We found that globally 55% of available

folate is present in crop plants that are animal pollinated, including

beans and dark green leafy vegetables (Table S1), with a 7.3%

direct yield increase due to animal pollination. More than 70% of

vitamin A and 98% of each of the carotenoids cryptoxanthin

(provitamin A) and lycopene are found in crops that are animal-

pollinated (Table 1, Fig. 2). It is not known to what extent these

plants, including red, orange and yellow vegetables and fruits may

propagate without animal pollination, but the direct yield increase

due to pollination has been estimated at 43%. Vitamin A is one of

the most prevalent deficiencies worldwide and is responsible for up

to 500,000 annual cases of irreversible blindness in children

worldwide [15]. Diets high in carotenoids are protective against

cancer; lycopene has shown a suppression of tumour incidence in

in vivo studies [23]. A large portion of the dietary vitamin E is

present in plants that require pollination. The primary role of

vitamin E is as an antioxidant; higher intakes are associated with

lower cardiovascular disease (CVD) risk. Current human nutrient

requirements are given in a-tocopherol units because it is the most

absorbable form, but c-tocopherol is the most common dietary

form (mostly in the form of plant oils). We showed that more than

35% of the a- and 66% of the c-tocopherol are present in

pollinator-dependent plants, with an estimated yield increase of

14–27% (Fig. 2).

Animal pollinated plants are also important contributors of

minerals available in the human diet. Fifty-eight percent of

calcium and 62% of fluoride are derived from plants with

marginally yield increase due to animal pollination, such as beans,

but also strongly pollinator dependent plants such as fruits and

nuts (including almond)(Table 1, Fig. 3). The respective proportion

directly derived due to yield increase after pollination is 9% for

calcium and 20% for fluoride. These minerals are crucial for

development of teeth and bones and prevention of age-related

bone loss that contributes to osteoporotic fracture risk [24][25].

Animal sources of calcium (such as dairy) are more bioavailable

than plant sources. However, dairy production is costly and

environmentally inefficient and consumption is not culturally

feasible on a global scale [26]. Similarly, iron from animal sources

(meat) is more bioavailable than plant sources but costly and

inefficient [27]. Iron deficiency is thought to be the most common

Value of Pollination for Nutrients in Human Diet
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micronutrient deficiency, contributing heavily to preventable

cognitive impairment and infection worldwide [17,28,29]. Thus,

plant sources of iron are crucial to human health and we found

that 29% of iron is derived from pollinator-dependent crops, with

6% yield increase due to animal pollination (Table 1, Fig. 3).

We recognize that our findings are limited by the use of nutrient

analysis data generated in the U.S. The USDA Nutrient Data

Laboratory is recognized as an authoritative source of nutrient

analysis data that is used extensively in dietary and health policy

and research in the U.S [20]. However, the foods analyzed are

likely (but not exclusively) grown in U.S. and may not represent

the nutritional content of the same food grown elsewhere. The

FAO has recognized this limitation and has developed a nutrient

database directory that offers preliminary searchable and com-

prehensive data since December 2010 [30]. Fortunately, regional

variation in nutrient content is thought to be more strongly related

to processing than to growing conditions, and we did not include

processed foods in this analysis. Moreover, our study did not

consider spatial heterogeneity of pollinator declines and variation

in production and consumption of pollinator dependent crops

among regions. Several crops are consumed in affluent countries

with known pollinator declines for both managed and unmanaged

Table 1. Amount [in metric tons (mt) and Gigajoules (GJ)] and proportion (%) of nutrients derived from pollinator-independent
crop production (NVi) and from pollinator-dependent crop production, divided into values attributed to wind- or autonomous self-
pollination (NVsw) and values attributed to animal pollination (NVap).

Nutritional component Pollinator independent Pollinator dependent

NVi
GJ, mt

NVi
%

NVsw
GJ, mt

NVsw
%

NVap
GJ, mt

NVap
%

ENERGY 3.06E+10 78.83 7.217E+9 18.59 1.001E+9 2.58

MACRO-NUTRIENTS

Protein 2.238E+8 83.43 3.641E+7 13.57 8.060E+6 3.00

Fat 7.363E+7 26.02 1.896E+8 66.98 1.982E+7 7.00

VITAMINS

Vitamin A 8.549E+5 28.71 9.009E+5 30.26 1.222E+6 41.03

Carotenoids b - carotene 1.476E+6 27.44 1.839E+6 34.19 2.064E+6 38.37

a - carotene 4.960E+5 32.25 4.587E+5 29.83 5.832E+5 37.92

b - cryptoxanthin 3.579E+3 0.77 2.637E+5 56.99 1.954E+5 42.24

Lycopene 0 0 2.941E+6 56.67 2.248E+6 43.33

Lutein, zeaxanthin 1.367E+7 94.05 5.696E+5 3.92 2.96 E+5 2.03

Vitamin E a-tocopherol 1.72 E+7 63.73 7.811E+6 28.94 1.978E+6 7.33

b-tocopherol 1.229E+3 0.63 1.415E+5 72.50 5.245E+4 26.87

c-tocopherol 5.361E+5 32.92 8.574E+5 52.66 2.349E+5 14.42

d-tocopherol 1.209E+4 14.87 5.081E+4 62.50 1.84 E+4 22.63

Vitamin K 8.96 E+4 71.55 2.414E+4 19.28 1.148E+4 9.17

Vitamin C 1.211E+4 6.99 1.272E+8 73.37 3.406E+7 19.64

Vitamin B Thiamin (B1) 4.450E+7 95.29 1.866E+6 4.00 3.327E+5 0.71

Riboflavin (B2) 3.942E+7 97.66 7.754E+5 1.92 1.702E+5 0.42

Niacin (B3) 1.240E+8 89.46 1.238E+7 8.93 2.231E+6 1.61

Pantothenic acid (B5) 1.723E+7 87.57 1.839E+6 9.34 6.077E+5 3.09

Vitamin B6 4.784E+7 97.93 7.701E+5 1.58 2.383E+5 0.49

Folate, total (B9) 7.114E+5 55.49 4.767E+5 37.19 9.389E+4 7.32

MINERALS

Calcium 5.245E+5 42.40 5.998E+5 48.49 1.127E+5 9.11

Iron 6.537E+4 70.66 2.141E+4 23.14 5.741E+3 6.20

Magnesium 2.7 E+6 88.50 2.765E+5 9.06 7.433E+4 2.44

Phosphorus 6.589E+6 89.06 6.448E+5 8.72 1.644E+5 2.22

Potassium 7.327E+6 72.74 2.109E+6 20.93 6.372E+5 6.33

Sodium 4.703E+5 87.18 4.654E+4 8.63 2.259E+4 4.19

Zinc 6.658E+4 91.80 4.745E+3 6.54 1.201E+3 1.66

Copper 8.048E+3 80.92 1.512E+3 15.21 3.851E+2 3.87

Mangan 5.048E+4 93.87 2.655E+3 4.94 6.387E+2 1.19

Selenium 7.86 E+5 97.46 1.590E+4 1.97 4.548E+3 0.57

Fluoride 4.962E+3 45.57 3.768E+3 34.60 2.16 E+3 19.83

doi:10.1371/journal.pone.0021363.t001
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pollinators (e.g. the U.S. and many European countries) [19], but

are largely produced in other countries, for example watermelon

(75% of global production in China), apples (50% of global

production in China) and mangoes (42% of global production in

India). Conversely, 75% of the global production of almonds is in

one region of the United States (California) m of which 80% is

exported [31]. Unfortunately, to date only a few regional studies

have been conducted on pollinator declines [32,33] and thus it is

not currently possible to determine how variation in pollinator

declines among regions of the world may affect the production of

specific commodities (particularly those largely produced within a

particular region), as well as their consumption in other parts of

the world.

We conclude based on this analysis that animal-pollinated crops

contain the majority of the available dietary lipid, vitamin A, C

and E, and a large portion of the minerals calcium, fluoride, and

iron worldwide. The yield increase attributable to animal-

dependent pollination of these crops is significant and could have

a potentially drastic effect on human nutrition if jeopardized.

Micronutrient deficiencies resulting from potential declines in

animal-pollinated crops are likely to be worse in developing

nations. Supplementation and fortification are not adequate

substitutes for the loss or reduction of these nutrients from food

sources. Mandatory fortification has been successful in some

countries, such as the U.S. and China, but it depends on an

organized and regulated food industry. Supplementation is not

globally feasible for several reasons. First, it depends on the

affluence and educational level of the consumer. Whereas the

majority of adult US citizens are currently consuming vitamins,

herbal drugs, and other dietary supplements [34], people in less

developed countries have limited access to such components.

Synthetically fabricated healthcare products are only available to

25% of the world population, while the other 75% relies on

ethnobotanical remedies [35]. Second, it is likely that the plants

Figure 1. Proportion of water-soluble vitamins (B6 = vitamin B6, B2 = riboflavin, B1 = thiamine, B3 = niacin, B5 = pantothenic acid,
B9 = folate/folic acid, C = vitamin C) in global crop production (%) produced without pollinators (NVi, dark-grey), produced with
pollinators but attributed to autonomous self- or wind pollination (NVsw, light-grey), produced with pollinators and directly
attributed to animal pollination (NVap, hatched).
doi:10.1371/journal.pone.0021363.g001

Figure 2. Proportion of fat-soluble vitamins (lut = lutein, K = vitamin K, E = vitamin E, cToc = c – tocopherol, aCar = a-carotene,
A = vitamin A, bCar = b-carotene, dToc = d – tocopherol, bCry = b - cryptoxanthin, bToc = b – tocopherol, Lyc = lycopene) in global crop
production (%) produced without pollinators (NVi, dark-grey), produced with pollinators but attributed to autonomous self- or
wind pollination (NVsw, light-grey), produced with pollinators and directly attributed to animal pollination (NVap, hatched).
doi:10.1371/journal.pone.0021363.g002
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used to develop supplements and remedies require pollination

services themselves. Ninety percent of flowering tropical plant

species are animal-pollinator dependent [36] and many supple-

ments are derived from the flowering, pollinator-dependent plants.

Thus, the costs of fortification and supplementation would be

further increased by shrinking pollination services. Third,

adequate nutrient substitutes may not exist. Much remains to be

learned regarding the role of other constituent plant components

in human nutrition. As yet unknown beneficial components within

fruits and vegetables may explain why diets high in fruits and

vegetables are associated with lower risk of cardiovascular disease

and certain types of cancer, whereas no beneficial effect of

supplements has been shown [37]. For example, a much

anticipated large-scale trial of folate supplementation and CVD

including data from nearly 17̇000 participants just found no

difference between treatment and control group [38].

Finally, biofortification, the genetic engineering of crops to

include vitamins [15,16], has been plagued by difficulties,

particularly for iron and other rapidly oxidizing micronutrients

[16]. Collectively, these barriers suggest that supplementation and

fortification are unlikely to compensate for a potential decrease in

supply of essential nutrients due to pollinator decline. In

conclusion, the results of this study strengthen earlier reports on

the economic value of pollination services by quantifying the value

to nutrition and highlighting the importance of pollinators to

global health.

Supporting Information

Table S1 Crops containing highest proportion of nutri-
tional components and crops with highest global
production of nutritional components. Aggregated com-
modities: Beans, dry: Black bean, Kidney bean, Navy bean,

Northern bean. Beans, green: Black bean, Kidney bean, Navy

bean, Northern bean. Fruit Fresh nes: Azarole (Azzeruolo),

Babaco, Elderberry, Jujube, Litchi, Loquat (Japanese plum),

Medlar, Pawpaw, Pomegranate, Prickly pear, Rose hips, Do-

groses, Rowanberry, Service-apple, Tamarind. Fruit Tropical

Fresh nes: Breadfruit, Carambola, Cherimoya, Durian, Feijoa,

Guava, Hog-plum (yellow Mombin), Jackfruit, Longan (Lungan),

Mammee, Mangosteen, Naranjillo, Passionfruit, Rambutan,

Sapodilla, Sapote (marmelade plum), Star apple (Cainito). Nuts

nes: Acorn, Beechnut, Butternut, Ginkgo nut, Hickorynut,

Macadamia, Pecan, Pilinut, Pine nut. Pulses nes: Guar bean,

Goa bean, Hyacinth bean, Horse-gram, Lablab, Jack bean, Horse

bean, Sword bean, Velvet bean, Winged bean, Goa bean, Yam

bean. String beans: Green snap bean, Yardlong bean, Yellow

bean.

(DOC)
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