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Understanding a word in context relies on a cascade of perceptual and conceptual processes,
starting with modality-specific input decoding, and leading to the unification of the word’s
meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into
a meaningful linguistic sign, is the access of a semantic representation from memory. Little is
known about the changes that activating a word’s meaning brings about in cortical dynamics.
We recorded the electroencephalogram (EEG) while participants read sentences that could
contain a contextually unexpected word, such as ‘cold’ in ‘In July it is very cold outside’.
We reconstructed trajectories in phase space from single-trial EEG time series, and we applied
three nonlinear measures of predictability and complexity to each side of the semantic access
boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative
to controls, unexpected words were associated with larger prediction errors preceding the
onset of the N400. Accessing the meaning of such words produced a phase transition to
lower entropy states, in which cortical processing becomes more predictable and more regular.
Our study sheds new light on the dynamics of information flow through interfaces between
sensory and memory systems during language processing,.
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phase transition

1. INTRODUCTION

The high processing speed of the visual system
contributes to form the experience that, in reading,
information intake is almost instantaneous, and that
the meanings of words are given to us as though they
were part of the sensory input. That this is a phenomen-
ological illusion can be seen by trying to approach a text
in a foreign language sharing the same writing system as
ours: although we may still be able to establish word
boundaries, aspects of word-internal structure, and to
some extent syntactic categories based on word-length
cues, we will not be capable of assigning a definite mean-
ing to words. This shows that word reading is rather a
process that unfolds in time and that relies on the integ-
rity of several interacting cognitive brain components
dealing with specific levels of word representation [1].
Electroencephalogram (EEG) data provide detailed
information on the time course of cognitive processing.
A number of electrodes placed at the surface of the head
can be used to record voltage changes while participants
perform a task, such as silent reading. Averaging ampli-
tude values over EEG segments time-locked to the
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onset of a stimulus of interest, such as a written word, pro-
duces subject-specific event-related potentials (ERPs) for
a given experimental condition. Grand-average ERPs are
obtained averaging over subject-specific ERPs. Impor-
tantly, EEG activity that is not time-locked to the
stimulus must be quantified using different methods,
such as frequency analyses of phase-locked responses
and nonlinear measures of signal variability within a
time series. Measures derived from the EEG have poor
spatial resolution, as the transmission of electrical fields
across distant regions of the brain (volume conduction)
makes it impossible to provide unique solutions to the pro-
blem of reconstructing source activity from the observed
scalp patterns.

Research using ERPs has provided increasing sup-
port for the notion that stages of word reading are
mapped onto distinct phases of cortical processing. In
a now classical experiment, Kutas & Hillyard [2]
demonstrated that semantically anomalous sentence
endings (‘He spread his warm bread with socks’) elicit
larger negative-going modulations of the ERP relative
to appropriate sentence-final words. The observed
ERP waves peaked around 400 ms from word onset,
hence the name ‘N400’. In the same experiment, it
was shown that the N400 is not a generic response to

This journal is © 2011 The Royal Society


mailto:gbaggio@sissa.it
http://rsif.royalsocietypublishing.org/

Downloaded from http://rsif.royalsocietypublishing.org/ on June 29, 2016

2 Complex dynamics of semantic memory access

G. Baggio and A. Fonseca

deviant stimuli, and that its amplitude varies with the
strength of the mismatch between the word’s semantics
and the sentence context.

Parallel to developments in ERP research on language
processing, studies using intracranial recordings provided
evidence that, within the ventral visual stream in the
inferior temporal cortex, two anatomically adjacent cir-
cuits exist, carrying out different computations that
contribute to visual word recognition [3—5]. Portions of
the posterior fusiform gyrus respond preferentially to all
types of letter strings but not to other visual stimuli, gen-
erating fast potentials that peak around 200 ms from
stimulus onset. In more anterior regions of the fusiform
gyrus, evoked responses are larger for content words
compared with function words, they are absent for non-
words and other visual stimuli, and they are reduced or
abolished by semantic priming. Such potentials peak
around 400 ms from stimulus onset, suggesting that the
anterior fusiform gyrus is among the neural generators
of the N400.

Written word comprehension, therefore, appears to
rely on two coarsely defined processing stages, with
likely further internal subdivisions and complications:
(i) amodality-specific perceptual phase, indexed by a cas-
cade of evoked responses in inferior temporal cortices
between 100 and 300 ms from word onset and by scalp
ERPs sensitive to word form features [3,6-9]; (ii) a
conceptual phase that results in the activation or con-
struction of word meanings, with evoked responses
peaking at 400ms in distributed perisylvian regions
[10-14], generating the scalp N400. Semantic access
introduces a flexible, context- and task-dependent bound-
ary between (i) and (ii): during phase (i), semantic access
may be initiated based on word envelope, graphemic fam-
iliarity and other pre-lexical cues [15] but only in (ii)
access is completed and its outcome is used in discourse-
level unification [16]. Thus, for the purposes of the present
study, phase (i) may be best described as largely
perceptual, and phase (ii) as largely conceptual.

Considerable progress has been made in mapping
semantic memory access in brain space and time. How-
ever, much remains to be found out about the changes
that accessing a word’s meaning brings about in cortical
dynamics. In this paper, we describe an application of
tools borrowed from nonlinear dynamical systems
theory to study fast changes in scalp EEG responses
elicited by written words.

There are reasons, with associated methodological
caveats, to apply nonlinear tools to the study of online
cognitive change. That the brain is a system of coupled
components interacting nonlinearly does not imply that
its observable output is nonlinear too [17]. For instance,
the amplitude of the N400 is an inverse quasi-linear func-
tion of word expectancy [18]. The usage of nonlinear
methods should be justified by the data, rather than by
claims regarding the underlying system’s dynamics.
When nonlinear interactions between neuronal sources
are reflected in the EEG data, however—and this finds
support in surrogate data testing [19—21]—a discerning
combination of linear and nonlinear techniques is rec-
ommended. The argument that perturbations owing to
noise may be mistaken for true nonlinearity does not
apply to studies, such as the present one, using repeated
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experimental trials in which the effects of stochastic pro-
cesses are controlled for by averaging, statistical testing
and robustness analyses over neighbouring regions of a
measure’s parameter space [22].

In our study, subjects read sentences presented one
word at a time on a display. In each trial, a word occurred
that could either make its host sentence true (e.g. ‘In July
it is very warm outside’) or false (‘In July it is very cold
outside’) in a situation model barring unforeseen cir-
cumstances. Critical words were close associates (e.g.
via the antonym relation), but their meanings had differ-
ent consequences at the level of interpretation. This
manipulation was intended to maximize our chances of
eliciting post-access processes that were (i) diverging in
the two experimental conditions, so as to induce a bi-
furcation in the system’s dynamics, and (ii) closer to
ordinary language comprehension, and therefore more
ecologically valid than would be the use of pseudo-
words or words making their host sentence senseless.
Note that we do not commit to the assumption that the
N400 here reflects sentence verification, for this has
been shown to be incorrect [23].

We used ERPs to estimate the temporal locus of the
boundary after which word meanings become available to
be used in sentence-level unification. We tracked power
changes in different frequency bands over time. Further-
more, we applied at each side of the boundary three
nonlinear measures of predictability and complexity of
the system’s trajectory in phase space, reconstructed
from individual EEG trials. The first measure is cross-
prediction error (CPE), introduced by Schreiber [24] as
a test of stationarity for time series, including physiologi-
cal signals [22,25]. CPE is a measure of similarity between
pairs of segments from a time series that are not necess-
arily adjacent in time. The second measure, known as
auto-prediction error (APE), determines how accurately
the upcoming temporally adjacent data point can be fore-
cast based on the preceding section of the time series.
Phase transitions are revealed by pattern changes in the
two-dimensional CPE matrix, whereas non-stationary
behaviour will produce changes in APE. The third
measure—and the only complexity measure proper—is
sample entropy (SampEn) by Richman & Moorman
[26], intended as an improvement over approximate
entropy [27-29]. SampEn quantifies, in a logarithmic
scale and with a match tolerance (more in §2), changes
in the recurrence rate of the system’s states for successive
dimensions of the phase space. Sample entropy is
derived from Kolmogorov—Sinai entropy [30] via the
Eckmann—Ruelle method [31]. Like the original
measures, SampEn captures the irregularity or the rate
of information generated by the system. However,
SampEn is specifically designed to deal with finite
samples of nonlinear processes.

2. METHODS
2.1. Participants

Twenty-four right-handed native speakers of Dutch
(13 female, mean age 22, age range 18—28) gave written
informed consent and took part in the study.
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2.2. Materials

We constructed 80 sentences in Dutch stating ordinary
facts such as ‘In July it is very warm outside’. For each
sentence, a false or implausible version was created by
replacing a single non-final noun or adjective with another
word of the same syntactic category, for instance, an anto-
nym: ‘In July it is very cold outside’. Critical words (e.g.
‘warm’/‘cold’) were matched on average length in charac-
ters, lemma and word form log frequencies per million
words (permutation #tests, all comparisons p > 0.1)
using the CELEX corpus for Dutch [32]. Two lists of
sentences to be used in the EEG session were produced,
each containing 40 items per condition (either the true
or the false version of each sentence) and 160 fillers with
variable syntactic structure, content and length. Critical
sentences and fillers were preceded by a two-sentence
mini-discourse, which was identical in the true and false
conditions. After each trial, subjects could move on to
the next one by pressing a key on a button box.

The present stimuli differ in some respects from the
stimuli used in other N400 studies. First, the critical
words used in the classical paradigm [2] are sentence-
final words. Constraints on expectancy grow as the
sentence unfolds word by word [33], whereas predictive
contexts in the current design are identical across con-
ditions, but vary unconstrained relative to critical words.
Second, the critical words in a classical paradigm are equa-
ted for cloze probability, and anomalous words are random
repairings within stimulus lists, such that the set of critical
words remains the same, and only the context (as apt or
unpredictive) varies across presentation lists. In the cur-
rent study, processing trajectories have to be nearly
identical up to word recognition, at which point they are
expected to diverge. Hence, here the between-participant
comparison of true and false words uses two different
sets of words [34,35], which are nonetheless matched for
length and frequency.

2.3. Recording

The EEG/EOG (electrooculography) was recorded using
32 sintered Ag/AgCl electrodes, amplified by a multi-
channel BrainAmp DC system with a 500 Hz sampling
rate, a low pass filter at 125 Hz, and a 10 s time constant.
The EEG was sampled from 28 scalp sites, arranged
according to the conventions of the American Electro-
physiological Society: Fpl, Fp2, F7, F3, Fz, F4, F§,
FC5, FC1, FCz, FC2, FC6, T7, C3, Cz, C4, T8, CP5,
CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, O2. Two
additional electrodes were placed on the left and right
mastoids, the former serving as reference during the
measurement. All channels were re-referenced off-line to
a linked mastoid.

2.4. Event-related potentials

Segments were extracted from the EEG at each channel
starting 200 ms before and ending 600 ms after the
onset of each critical word, and were baseline-corrected
using the 200 ms pre-stimulus interval. Artefact rejec-
tion was done in two steps: (i) trials containing
activity exceeding a + 100wV threshold were detected;
(ii) segments containing eye movements were identified
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by means of thresholding the ztransformed values of the
1-15 Hz band-pass filtered EOG. Trials selected in steps
(i) and (ii) were discarded. ERPs were obtained by aver-
aging over trials in each condition for each participant
separately. Grand-averages over participants were only
used to produce figure 1. The onset of amplitude differences
between conditions was estimated using the following ran-
domization procedure [36,37]. ERP averages for each
participant from both conditions were collected in a
single set, which was randomly partitioned into two
equally sized subsets. A dependent-samples #test was
used to compare the means of the resulting subsets. The
procedure was repeated 10000 times, and p-values were
estimated as the proportion of random partitions that
resulted in a larger t-statistics than the observed one. The
first point in the time series showing a significant difference
(at p < a=0.05) between conditions in a cluster of two
neighbouring centro-parietal electrodes was chosen as the
onset of the ERP effect. Conversely, the last point in the
ERP series with that property was selected as its offset.

2.5. Time—frequency analysis

EEG time series from all channels was convolved with
complex Morlet wavelets with a seven cycle width for
frequencies ranging from 1 to 125Hz in 2 Hz steps
[38]. The resulting time—frequency representations
(TFRs) were averaged over trials in each condition,
for each subject separately. Mean power was expressed
as a percentage change relative to baseline (—200 to
O ms prior to critical word onset). Based on a visual
inspection of grand-averaged TFRs, four bands contain-
ing qualitatively distinct patterns of oscillatory activity
were identified: 2—8, 814, 14—44 and 44—-80 Hz. The
non-parametric randomization tests used for the stat-
istical analysis of ERP data were applied to TFRs
too. However, non-time-resolved average t-values in
each of the two intervals (56-328 and 328-600 ms)
and each of the frequency bands mentioned above
were computed instead. The same procedure was
repeated for the electrode Pz only, and the resulting ¢
values were used to calculate the per cent contribution
of activity at Pz to overall phase-locked EEG activity.

2.6. Phase-space reconstruction

For each artefact-free EEG time series X = {1, ..., z,}
(n = 400 time points), we reconstructed its phase space:

X = {-Tz = (xi; Tjgry ey xiJr(mfl)T)}a (21)

with i=1,..., n— (m — 1)7. Two parameters occur in
this expression: the time delay 7 and the embedding
dimension m [39,40]. One way of estimating the optimal
7 is to use the minimum mutual information [41] between
the sets {z;} and {z; .}, for i=1,..., n— 7. Once the
delay is set, one chooses a range of values for embedding
dimension and, for each m, one looks for close vectors in
X(m,7) that are no longer close in X(m + 1,7). Those vec-
tors are called ‘false neighbours’, and the optimal m is the
one providing the minimum amount of them [42]. Instead
of that procedure to estimate the embedding parame-
ters 7 and m, which does not take into account their
correlation, we followed the Gautama—Mandic—Hulle
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Figure 1. (@) Grand-average ERP waveforms (N = 24) in the two experimental conditions from four electrode sites on the mid-
line. The onset of critical words (‘In July it is very warm/cold outside’) is at 0 ms. The critical word that makes its host sentence
false (‘cold’) evokes a larger N400 when compared with the true condition (‘warm’). (b) N400 effect in ERPs evoked by the criti-
cal word in the false minus the true condition (left) and #values from time-resolved randomization statistics (right) for each
midline electrode. The first data point at which the N400 effect is statistically significant over two neighbouring centro-parietal
sites is at 328 ms and the last one is at 546 ms. (¢) Topographic maps showing the mean difference between ERPs evoked by
critical words in the false minus the true condition before (0—328 ms) and during (328546 ms) the N400 effect, which is largest
over electrode Pz. Dark circles represent the electrodes over which the effect is statistically significant. (d) Grand-average
(N = 24) wavelet-based time-frequency representations (TFRs) from Pz showing a power increase in the false condition relative
to the true condition and to baseline in the §— 6 (2—-8 Hz) range, and a a (814 Hz) power decrease in the true condition rela-
tive to the false condition and to baseline. Both effects occurred after 328 ms. No other effects were found at higher frequency
bands up to 125 Hz. (e) Raw power changes relative to baseline (left) and #values from randomization statistics (right) at
four selected frequency bands from Pz. (@) Black line, true; red line, false. (b) Red line, Pz; blue line, Cz; black thick line,
FCz; black thin line, Fz. (€) Red line, 2—8 Hz; blue line, 8—14 Hz; black thick line, 14—44 Hz; black thin line, 44—-80 Hz.

(GMH) method based on the mnon-parametric
Kozachenko—Leonenko (KL) estimator [43]
1
H(X(m, 7)) = N; In(Ndj) +In(2) + E,  (2.2)

where X(m,T) is the phase space of reconstructed vectors,
N=n— (m— 1)7 is the number of reconstructed vec-
tors, d; is the distance between the vector z; and its
nearest neighbour, and F is Euler’s constant. GMH
defines the ratio:

_ H(X(m, 7))
(H(Sk(m, 7))

where S, are surrogates of X (see §2.10) preserving
both its power spectrum and probability distribution
[19]. The second additive term introduces a penalty for
higher embedding dimensions. Thus, equation (2.3) is a
standardization of the KL estimator that makes use of
average estimate values over the reconstructed phase
space for surrogates. The optimal m and 7 are obtained
as the minimum of R(m,t), computed for each EEG time
series, in each interval (56—328 and 328600 ms) for the
value ranges m=[1, 10] and 7=[1, 10]. The largest
value of embedding dimension obtained across intervals,

In(N)
N )

R(m, ) (2.3)
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trials and participants was m = 3, and the most frequent
time lag was 7= 1. The robustness of the nonlinear
measures employed here was tested on other values of 7
and m as well.

2.7. Time-serties normalization

Each EEG time series was normalized by subtracting its
running mean and then dividing the result by the time
series’ running standard deviation [24-25]. This stan-
dard procedure is applied to ensure that nonlinear
measures are comparable across intervals in which the
original time series exhibits different linear properties
such as range of amplitude values, mean and variance.

2.8. Cross-prediction and auto-prediction errors
Given a time series X, we construct i equal-length
windows W with size [ in time points:

i=0,...,——1.

I
(2.4)

Wi ={w = @y1, .., w = 3}

In a 1-step-ahead forecasting problem, one is inter-
ested in estimating wy,; given the subset Wy = {wy,
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., wyt, for k=1,..., I— 1. In CPE, however, W,
is not used as a prediction basin. Instead, the set W,
i # j is used to calculate prediction errors. Given a
pair of Ftwindows (W;, W)), ¢ # j, such that

Wi=A={a,...,q} and W;=B={b,...,0}

(2.5)

and given the reconstructed vector subsets (see
equation (2.1))

Wik:Ak:{a17...7ak} and ijZBk

={by,..., by}

an estimate for a1 € A (k=1,...,1—2) is defined

as the mean ay,1 = (b,,1), over the index set n, such

that ||a; — b,|| < . Estimates are computed on all By

vectors that are neighbours of a; by a tolerance e.

The calculation fails when a;; has no e-neighbours in
B;. In that case, we set a1 = (B). CPE is defined as

(2.6)

Wi, W) = @ = @) (27)

In general, y(W,, W;) and y(W;, W,) are evaluated
in different vector subsets in phase space, hence y(W;
W)) # y(W;, W;). However, if i=j, y(W; W) is called
diagonal prediction error or APE. APE fluctuations
reveal non-stationarity in the time series [22,24]. We
computed CPE and APE in each interval (56—-328 and
328600 ms), each subject and each condition, using 34
windows of length =4 time points. Average CPE and
APE for each participant were compared between con-
ditions using permutation paired-samples t-tests.

2.9. Sample entropy

Based on the vector subsets as reconstructed by
equation (2.1), for each state z;, we define its e-recurrence
set
Ri={g;: -] <s}, i#]
where the tolerance is set to e = 0.25 for the normalized
time series. The probability distribution of z; is given by

#Ri

= (m—D)r

(2.8)

P; = (2.9)
where # is the cardinality operator. The mean recurrence
probability of a state in embedding dimension m is, there-
fore, P,, = (P;). Performing the same computation for
(m + 1)-embedding, we define sample entropy as

SampEn(m, 7,&) = —In <P_m+1>. (2.10)

m

Average sample entropy over trials for each inter-
val (56328 and 328-600 ms) was compared between
conditions using permutation paired-samples t-tests.

2.10. Surrogate time series

Surrogates of the EEG time series X in the intervals
56-328 and 328-600ms were constructed preserving
the power spectrum and probability distribution of X
[19], via the following iterative procedure. Given the
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time series’ segment X={z,..., z,} (n=136
points), we calculated its sorted values Xg and its dis-
crete Fourier transform amplitudes:

n
Ak' — E CCZ'GZWM/”.
=1

We obtained X by performing a permutation of X
without replacement and then we iterated the followin
steps: (i) we calculated the Fourier transform of X
and replaced its amplitudes with the original ampli-
tudes A;; the resulting time series is denoted as X(1>;
(ii) we computed a probability distribution correction
by applying to X M the rank ordering of X; the out-
come is called X®. The first step, resulting in X(l),
changes the probability distribution of the states;
the second step, producing X®, changes the signal’s
power spectrum. Both steps are repeated until the error

n (2) _ 32

S (X0)?
is less than o = 0.05. For surrogates, CPE and APE were
computed for m =2 and 7= 1, and sample entropy was
calculated for m =3 and 7= 1. Nonlinear measures for
the surrogates were compared with CPE, APE and
sample entropy in the original EEG data using paired-
samples permutation t-tests. The procedure was applied
to XV and X@ surrogates separately.

(2.11)

2.11. Cross-measure correlations

Average values for each participant in each interval
(56—328 and 328—600 ms) and each experimental con-
dition were compared across the following measures:
amplitude (wV), power (wWV?) in four frequency bands
(2-8, 8-14, 14-44 and 44-80 Hz), CPE, APE and
SampEn. Four cross-correlation matrices were con-
structed, one for each combination of interval and
experimental condition. Eight vectors (measures) with
24 elements each (participants) were fed intoa multiple
rank-correlation test algorithm computing Spearman’s
p coefficient for all 8% pairs of measures. The resulting
p-values were Bonferroni-corrected.

2.12. Further multi-electrode and
moving-window analyses

Additional analyses with APE, CPE and SampEn were
carried out using the methods described above on an
extended set of electrodes—F7 (left frontal), Fz (mid-
line frontal), F8 (right frontal), T7 (left temporal),
Cz (midline central), T8 (right temporal), P7 (left par-
ietal), Pz (midline parietal) and P8 (right parietal)—to
determine the approximate topographic characteristics
of nonlinear effects observed at Pz and associated
with the largest N400 amplitudes, and to establish
whether such effects are unique to the selected midline
parietal site or whether instead they are consistent with
a broader scalp pattern.

A moving-window approach was used to study the
temporal evolution of nonlinear measures: starting from
the pre-access interval (56—328 ms, see §3), a 272ms
window was moved forward in time in 10ms (5 data
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points) increments, computing APE, CPE and SampEn
for m=3 and 7=1 at each increment, to reach the
post-access interval as a final window (328600 ms).

3. RESULTS

A larger N400 is evoked by critical words in false (‘In
July it is very cold outside’) when compared with true
sentences (‘In July it is very warm outside’; figure 1a).
The effect shows a central—parietal topographic distri-
bution, similar to what has been amply documented
in the literature [2,34,35] (figure 1b,c¢). The earliest clus-
ter of two neighbouring electrodes at which waveforms
reliably diverge is at 328 ms (figure 1), and the latest
cluster is at 546 ms (¢= —5211.9, p < 0.001). In the
328-546 ms window, the N400 effect has a symmetrical
topographic distribution, with the largest difference
over electrode Pz (figure lc¢). Two aspects of ERP
data were retained for subsequent analyses: (i) the esti-
mated onset time of the N400 effect (328 ms), which
will here be considered as a proxy of the time course
of semantic memory access: by 328 ms, representations
of the meaning of critical words have become available
for further processing stages; (ii) the electrode at which
the N400 effect is largest (Pz).

Two temporal intervals of equal size were defined at
each side of the semantic memory access boundary: the
first interval starts at 56 ms and ends at 328 ms; the
second interval starts at 328 ms and ends at 600 ms;
both intervals are 272 ms (i.e. 136 time points) long.
These two windows correspond to a pre-access phase
(56—328 ms), in which semantic memory access may
be initiated, though processing will be primarily con-
cerned with the visual, orthographic and phonologic
aspects of word recognition, and a post-access phase
(328600 ms), during which word meanings are largely
activated and participate in associative and combina-
tory semantic processes. In each interval, in addition
to mean ERP amplitudes, we quantified modulations
of the power spectrum over time, and we measured
the signal’s predictability and complexity using non-
linear methods. Our aim was to characterize the
changes in cortical dynamics associated with semantic
access, by comparing each measure’s behaviour at
each side of the 328 ms boundary.

Pre-access phase-locked responses produced no signifi-
cant differences in power between true and false critical
words' in any of the frequency bands (2-8, 8-14,
14-44 and 44-80 Hz) identified based on a visual
inspection of TFRs at Pz (figure 1d; non-parametric
t-tests, P> 0.1). Oscillatory activity is modulated by
semantic access in the 2—8 Hz frequency range: power
increases for false words (328—600 ms; t=3795.6, p=
0.036) with a 5 per cent contribution of Pz to the overall
EEG response pattern (t=192, p> 0.1; figure ld,e).
Post-access power differences between true and false
words were also observed in the 8-14Hz band(t=
5752.5, p = 0.012), with a power decrease relative to base-
line in true sentences (figure 1d), and a minor contribution
from Pz (0.05%, t = 3.02, p > 0.1). Changes in EEG time-

"We use ‘true (or false) word’ as a shorthand for ‘word making its
host sentence true (or false)’.
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locked and phase-locked responses following semantic
access, therefore, amount to an N400 amplitude increase
and a 6 — 0 (2—8 Hz) power increase for false relative to
true words [34,35], and an « (8-14 Hz) power decrease
for true words relative to baseline and to false words.

We carried out further data analyses to determine
whether these effects are the product of a linear Gaussian
process—such as the gradual increase of activation levels
in a brain network—or whether, instead, the underlying
cortical dynamics displays complex nonlinear behaviour.
For that purpose, the object of quantitative analysis is
no longer the recorded EEG time series, but the trajectory
of the system in phase space, reconstructed based on the
observed data [39,40]. This requires the setting of two par-
ameters: m (embedding dimension), i.e. the number of
dimensions of the target space, equal to the length of the
vectors whose elements (representing coordinate values
in phase space) are drawn from the original time sequence;
and 7 (time delay), the distance in time points between
each value in the original time series used as a vector
element. We estimated the optimal m and 7 (see §2.6) to
be 3 and 1, respectively, we reconstructed the phase
space for every individual EEG trial, and we computed
mean prediction errors and sample entropies.

The results are reported in table 1 for neighbouring
values of the reconstruction parameters, and shown in
figure 2 for the optimal 7= 1 and m = 3. CPE increases
from pre-access to post-access, but the change is significant
only in the false condition. As can be seen in figure 2b,
showing the reconstructed phase space for a pair of trials
from both conditions exhibiting a prototypical N400
response, the system’s trajectories in the false condition
exhibit different attracting sets: pre-access and post-
access processes occupy different regions in phase space.
Such topological segregation of attractors is not seen in
the true condition, and this is reflected in average CPE
values (figure 2a and table 1). APE, represented by the
diagonal array in CPE matrices (figure 2b), has a different
pattern of effects: APE increases, though not significantly,
for true words from pre-access to post-access, whereas it
decreases post-access relative to pre-access in false words
(figure 2a and table 1). Besides, a pre-access difference in
APE between conditions was found (table 1). Sample
entropy (SampEn, figure 2a) is similarly reduced following
semantic access in false words (table 1). These results are
robust across different values of the embedding parameters
(table 1).

To show that the measures employed here are sensi-
tive to nonlinear dynamics, we constructed surrogate
time series [19,20] preserving both the power spectrum
and probability distribution of the original EEG time
series (X(z) surrogates in table 2; see §2) or only its
power spectrum (X 1) surrogates). CPE, APE and
SampEn were computed for both surrogate types for
7=1 and m = 3. Differences between surrogates and
the original EEG data were found in most comparisons
(table 2), and were especially strong for SampEn. Com-
paring pre-access and post-access intervals yields both
qualitatively and quantitatively different effects than
those seen in the original data (table 2). For instance,
APE effects are reversed for both types of surrogates,
and SampEn effects are reduced for X® surrogates
and disappear altogether for X @) surrogates. These
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Table 1. Summary of permutation statistics for CPE, APE and SampEn across different values of the reconstruction
parameters time delay (7) and embedding dimension (m). Numbers in cells are #values. Statistical significance codes:

*p < 0.05, ¥*p < 0.01, ¥**p <0.001.

m=1 m=2 m=3
CPE T=1 True: 56—328 ms versus 328—-600 ms —1.3543 —1.5142 —1.478
False: 56—328 ms versus 328600 ms —3.2905%* —2.57* —2.3326%*
56—328 ms: True versus False 0.5302 1.0531 1.3844
328600 ms: True versus False 2.8991%* 2.7086* 2.9771*
APE T=1 True: 56—328 ms versus 328—-600 ms 0.4425 —1.9503 —1.5131
False: 56328 ms versus 328600 ms 2.8389* 3.3606** 2.8185**
56—328 ms: True versus False 0.5743 3.2087+* 3.2221%*
328-600 ms: True versus False —1.3058 —0.9148 —1.6906
SampEn =1 True: 56328 ms versus 328 -600 —0.0968 0.3758 0.3409
False: 56328 ms versus 328600 3.7623** 3.4942%* 4.8056%**
56—328 ms: True versus False 1.2987 0.6903 1.0651
328600 ms: True versus False —1.8001 —1.9114 —2.2903*
SampEn T=2 True: 56328 ms versus 328600 —0.2457 0.5878
False: 56—328 ms versus 328—600 4.1907%** 4.264%**
56—328 ms: True versus False 1.516 1.7875
328-600 ms: True versus False —2.2594* —0.8286
SampEn T=3 True: 56328 ms versus 328600 —0.1012 0.825
False: 56—328 ms versus 328600 4.1582%** 4.7972%%*
56—328 ms: True versus False 1.7137 1.3771
328—-600 ms: True versus False —2.1626* —1.4607

statistically significant differences entail a rejection of
the null hypothesis of a Gaussian linear process
measured by a monotonous function. This is a sufficient
basis for claiming that the application of nonlinear
measures was justified [20-21].

Multiple-correlation analyses (figure 2¢) show that the
different measures used here to detect and characterize
change around the semantic access boundary (ERP
amplitude, power changes, CPE, APE and SampEn) are
statistically independent. The only correlation that
passed Bonferroni correction was between CPE and
APE post-access in false sentences (p = 0.681, S= 774,
p = 0.0004). Prior to corrections for multiple compari-
sons, correlations between linear (amplitude and power)
and nonlinear (CPE, APE and SampEn) measures were
seen only in the pre-access interval. In particular,
SampEn correlates with a linear measure in just one
case: with 6 — 6 (2-8 Hz) power changes in the pre-
access interval for true sentences (p= —0.419, S=
3263.128, p=0.042 uncorrected). The effect persists
using Kendall’s rank correlation coefficient (7= —0.302,
z= —2.061, p=0.039 uncorrected) but not using Pear-
son’s correlation test (r=-0.108, ¢t=1.3711, p=
0.1842 uncorrected). Given the higher sensitivity to
monotonic nonlinear relations between variables of p
and 7 over r, this effect shows the inverse correlation
between 6 — 0 power and SampEn in the pre-access
interval in the true condition is nonlinear in nature.

Multi-electrode analyses (figure 3a) show that, for
CPE, the same effect observed at Pz—a larger CPE
increase in the false than in the true condition—can
be found at five other recording sites: the effect is lar-
gest at the electrode T7, over one known cortical
source of the N400. As for APE, the only statistically
significant difference between pre- and post-access in
the false condition was found at Pz. A significant
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difference in the true condition can be seen at a left
frontal site (F7), with a pattern that is identical to
that observed at site Pz (figure 3a), albeit stronger:
APE increases from pre-access to post-access. The
same pattern of SampEn effects observed at Pz can be
seen at two out of the three other recording sites at
which significant effects were found. Taken together,
these further analyses indicate that, where a broader
topographic pattern is present, the nonlinear effects
observed at Pz are consistent with it. We conclude
that time series from Pz, selected based on N400 ampli-
tude maxima in order to avoid the multiple
comparisons problem that would arise from searching
the entire electrode space, represent the most salient
effects that can be observed in the analysed data.

A similar conclusion can be drawn in the time domain
from the moving-window analysis. In figure 3b, the initial
(56328 ms) and final (328—-600 ms) values of the data
series are those shown also in figure 2a. Crucially, the
direction of the effects remains stable throughout large
portions of the original time series. This suggests that
the effects reported above and in figure 2 are not an
artefact of the chosen time intervals for pre- and post-
access phases. Furthermore, CPE in the false condition
peaks in a time window which is two-steps (20 ms) earlier
than the one centred on the 328 ms boundary (196468
ms), and APE peaks two-steps later than the intermedi-
ate window (196 —468 ms). This indicates that 328 ms,
given the present experimental conditions and statistical
sensitivity, is a reasonable approximation of the time at
which the relevant phase transition may occur.

4. DISCUSSION

Biological time series such as EEG signals typically fail to
fulfil the requirements of low noise and long length,
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Figure 2. (a) Mean (N = 24) cross-prediction error (CPE), auto-prediction error (APE) and sample entropy (SampEn) calculated
for the optimal values 7= 1 and m = 3 in the two experimental conditions in two time intervals of equal size separated by the
onset of the N400 effect at 328 ms. Whiskers represent standard errors of the mean. CPE increases significantly after 328 ms in
false sentences. APE is largest before 328 ms in false relative to true sentences, and decreases in the second interval. SampEn is
also reduced after 328 ms in the false condition only. These effects were significantly altered or eliminated in surrogate data pre-
serving only the linear properties of the original signal. (b) Single EEG trials showing characteristic N400 responses from the two
experimental conditions (left); reconstructed trajectories in phase space in the two intervals (blue 56328 ms; red 328—600 ms)
for 7=1 and m = 3 (centre); greyscale matrices showing prediction errors normalized to [0 1] (right). (¢) Cross-measure corre-
lation matrices for Spearman’s p. Dots indicate significant effects for uncorrected p-values. A positive correlation between APE
and CPE after 328 ms in the false sentence passed Bonferroni correction (asterisk).

necessary in order to classify the system’s dynamics via
fractal dimension, Kolmogorov—Sinai entropy, or Lyapu-
nov spectrum [21,22]. Nonlinear analyses of experimental
data do not support inferences about chaos or the exist-
ence of strange attractors. Nonetheless, measures like
CPE, APE and SampEn can be applied to short EEG
time series to characterize transient changes in cortical
responses associated with changes in linear measures
such as ERPs. Given the vast parameter space within
which nonlinear effects could be found, linear measures

J. R. Soc. Interface

provide the necessary constraints to avoid a multiple
comparisons problem, such as spatial and temporal infor-
mation guiding the application of nonlinear measures.
Conversely, it is also important to demonstrate that con-
straints from linear analyses do not bias inferences
drawn from nonlinear measures, and that the latter do
not just recapitulate the former. Here, we presented
several further analyses addressing such potential pitfalls.

The nonlinear and linear measures employed here are
statistically independent in our dataset. Moreover,
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Figure 3. (a) Paired-samples t-tests comparing CPE, APE and SampEn values between pre-access and post-access intervals in the
true and false conditions over nine scalp electrodes. Significance values passing Bonferroni correction are marked with an asterisk.
(b) Results of a sliding-window analysis of Pz data using a 272 ms time interval moved forward in 10 ms (five data points) incre-
ments. Mean CPE, APE and SampEn (N = 24) were computed for the optimal values of the reconstruction parameters m = 3
and 7= 1 at each increment. The window centred on the 328 ms boundary is shown in green. (b) Grey line, true; black line, false.

Table 2. Summary of permutation statistics for CPE, APE and SampEn for 7=1 and m = 3, comparing the original time
series X with surrogates preserving only the power spectrum (X(l)) or both the power spectrum and the probability
distribution (X(2>) of X. Numbers in cells are t-values. Statistical significance codes: *p < 0.05, **p < 0.01, ***p < 0.001.

Cross-prediction error

Auto-prediction error Sample entropy

56328 ms: X versus XV 2.5079*
56-328 ms: X versus X% 3.4628%*
328-600 ms: X versus XV 2.4796*
328-600 ms: X versus X 1.5396

X: 56-328 ms versus 328600 ms —2.332*
X®. 56-328 ms versus 328600 ms —5.3173%**
XM: 56-328 ms versus 328—600 ms —3.7062%*

—1.2955 —19.1824%**
—5.6917%** — 26.5761%**
—5.9648%** —20.3898%***
—15.0138*** —17.0309%**
2.8185%* 4.8062***
—4.9702%** 3.6474%*
—1.2848 0.8949

nonlinear measures are sensitive to changes that are not
reflected in ERPs and power spectrum above statistical
threshold. Pre-access APE is larger for false than for
true words, suggesting that the system starts to process
the violation earlier than is revealed by amplitude or by
power changes. The time course of this effect is consistent
with a timely interaction of contextual expectancy and
word form processing. In contrast with previous studies
that relied on overt tasks to produce rapid lexico-semantic
effects in evoked EEG and magnetoencephalography

J. R. Soc. Interface

(MEG) responses [44-47], our APE data indicate that
similar effects can be found also in the absence of a task.
Higher mean APE values, in particular, suggest that a
signature of word recognition in the pre-access interval
for contextually unexpected words is a less predictable
non-stationary signal [24]. This suggests either that
during the early, largely perceptual phase, conceptual-
semantic processing may occur, or that sensory processing
is responsive to violations of sentence-level meaning. Both
possibilities are consistent with interactive accounts of
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word processing, in which there is immediate and
continuous exchange of information between sensory
and memory systems.

CPE indicates that pre-access and post-access trajec-
tories in phase space are less similar for the false word
than for the true word, suggesting a more marked phase
transition is brought about by accessing the meaning of
acritical word that makes its host sentence false or implau-
sible. Relative to the pre-access time frame, in the false
condition, APE decreases while CPE increases: it is
easier to forecast the next point in time, but more difficult
to predict non-adjacent points. This dissociation of CPE
and APE is not inconsistent with a positive p-coefficient,
which emphasizes a different aspect of the statistical
dependence of the two measures. This pattern of effects
suggests that accessing the meaning of an anomalous
word (e.g. ‘cold’ in ‘In July it is very cold outside’) pro-
duces a transition (increasing CPE) to a phase in which
cortical processing is more predictable (decreasing APE)
and more regular (decreasing SampEn) when compared
with the pre-access phase.

5. CONCLUSION

In this study, we combined and compared linear and non-
linear measures to detect and characterize change in
cortical activity following a critical cognitive event such
as semantic memory access. We showed that activating
the meaning of a word that makes its host sentence false
produces a phase transition to lower entropy states, in
which cortical processing is more predictable and more
regular. In the target phase, the system generates informa-
tion at lower rates compared with the stages preceding
semantic access. This finding sheds new light on the
dynamics of information flow through interfaces between
sensory and memory systems in language processing,
and may help constraining computational models of
word comprehension.

Data collection was supported by The Netherlands Organization
for Scientific Research (NWO) under grant 051.04.040. We are
grateful to Alessandro Treves and Tim Shallice for inspiring
discussion, and to two anonymous reviewers for many useful
comments on an earlier version of the paper.
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