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In this paper we explore the feasibility of artificial (formal) grammar recognition (AGR) using spiking neural

networks. A biologically inspired minicolumn architecture is designed as the basic computational unit. A
network topography is defined based on the minicolumn architecture, here referred to as nodes, connected
with excitatory and inhibitory connections. Nodes in the network represent unique internal states of the gram-
mar’s finite state machine (FSM). Future work to improve the performance of the networks is discussed. The
modeling framework developed can be used by neurophysiological research to implement network layouts and
compare simulated performance characteristics to actual subject performance.

1 INTRODUCTION

Cognitive neuroscience approaches the brain as a cog-
nitive system, functionally conceptualized in terms of
information processing. More specifically, a physical
system can be viewed as an information processing
device when (a subclass of) its physical states are rep-
resentational and state transitions can be viewed as a
process operating on these states by implementing op-
erations on the corresponding representational struc-
tures. A common framework for describing cogni-
tive systems in cognitive neuroscience is Marr’s three
descriptive levels of analysis: the computational, the
algorithmic, and the implementational (Marr, 1982).
Cognitive neuroscience typically works with a mod-
ified perspective including simultaneously, perspec-
tives on cognition, learning, and development. How-
ever, the underlying ideas are essentially the same.
Within this framework, the three descriptive levels are
generalized to: 1) the cognitive or computational level
- a formal theory of structured cognitive states and
its transition system; 2) the dynamical system level -
given a formal cognitive theory, a state-space is spec-
ified and operations are formulated in terms of a dy-
namical system that embeds the cognitive level speci-
fication; 3) the implementation level - this level spec-

ifies the physical hardware implementation of the dy-
namical system, for example a neural network speci-
fied in terms of network topology, synaptic and neu-
ronal dynamics. This framework is naturally extended
to developmental learning system (Petersson, 2008).
A developmental learning system can be conceptual-
ized as a system of coupled dynamics: a dynamics for
processing of information in interaction with one (or
several) dynamics for learning, memory, and devel-
opment. We thus arrive at a dynamic conceptualiza-
tion of a cognitive learning system D = < functional
architecture, representational dynamics, learning dy-
namics > in terms of: 1) functional architecture: a
specification of the structural organization of the sys-
tem (e.g., network architecture); 2) representational
dynamics: a specification of a state-space € carry-
ing/representing information, and dynamical princi-
ples, T : MxQ2 x £ — Q x A, governing the active
processing of information (e.g., evolution of mem-
brane potentials and action potential generation); and
3) learning dynamics: a configuration space M, which
includes a specification of learning (adaptive) vari-
ables/parameters for memory formation and informa-
tion storage in a general sense (e.g., synaptic param-
eters), as well as dynamical principles, a “learning
algorithm™, L : MxQ — M, that govern the tempo-



ral evolution of the learning variables in configuration
space (e.g., Hebbian learning). The temporal evolu-
tion of the adaptive parameters depends on the active
processing of information and the learning dynamics
is typically, but not necessarily, conceived of as taking
place on a slower (or longer) characteristic time-scale
than that of the representational dynamics. In this pa-
per we will focus on the feasibility of implementing
a representational dynamics that corresponds to pro-
cessing of structured sequences in a minicolumn spik-
ing network architecture.

A generic and fundamental problem in cognition
is how the processing of structured sequences is or-
ganized. A paradigmatic example is human natu-
ral language. In an approach addressing the prob-
lem of structured sequence processing, we illustrate
how to integrate levels of analysis within a framework
of adaptive dynamical systems. We use grammar or
syntax processing as a concrete example throughout,
although much is still unknown about language pro-
cessing in the human brain (Jackendoff, 2002). In this
paper, we combine computer science and cognitive
neuroscience methods to explore the paradigm of arti-
ficial grammar recognition (AGR). We show that a bi-
ologically inspired spiking neuron architecture can be
built to perform AGR. It can classify strings belong-
ing to a specific regular grammar, here called the Re-
ber grammar (Reber, 1967). The work presented here
extends work by Petersson et al. (2004) on the simple
recurrent network (SRN) architecture which showed
that the capacities of SRNs are sufficient to recognize
strings generated from the Reber grammar at high per-
formance levels (Petersson et al., 2005). In this con-
text, we note that the dynamical systems framework,
in particular spiking neural networks, naturally lends
itself to a description of event-driven asynchronous
information processing devices, which is of central
importance because the brain appears to be an asyn-
chronous processing system (Petersson, 2008).

Our work provide new tools for current and future
cross-disciplinary and translational research combin-
ing behavioral (Folia et al., 2008; Forkstam et al.,
2008), neurophysiological (Petersson et al., 2004;
Forkstam et al., 2006; Uddén et al., 2008) and sim-
ulated network experiments (Petersson et al., 2005;
Cavaco et al., 2009) as well as theoretical investiga-
tions (Petersson, 2005; Petersson, 2008). The AGR
task given to the simulated network in this study
is analogous to experimental tasks given to humans
in both behavioral (Uddén et al., 2009) and func-
tional magnetic resonance imaging (FMRI) experi-
ments (Petersson et al., 2004; Forkstam et al., 2006).

Background research motivating modeling deci-
sions made in this work are presented in Section 2.

Section 3 presents the details of the model layers: the
input layer, which transduces input strings to spik-
ing activity; and the basic processing unit, a biolog-
ically inspired minicolumn architecture and the net-
work topology. Results are presented and network
performance is evaluated in Section 4. Finally, future
research is discussed in Section 5.

2 BACKGROUND

Simple recurrent networks (SRNs) with analogue
neurons can identify strings as belonging to a Reber
grammar or not with a high accuracy (Petersson et al.,
2005). Petersson et al. (2004) analyzed the properties
of the Reber grammar mathematically. Then SRNs
were created to recognize strings generated by the fi-
nite state machine (FSM; i.e., recognizer/generator)
corresponding to the Reber grammar, (Fig. 1). Strings
generated with this FSM begin with the symbol #, fol-
lowed by a number of other characters from the set
M, V, X, T, R/, the end symbol #.

Figure 1: The Reber machine used in this paper: an in-
formation processing device formulated within the classical
Church-Turing framework.

In general, generic sequence recognition requires
some form of on-line (short-term) memory that sup-
ports sequence look-back capacity because both ad-
jacent and non-adjacent (long-distance) dependencies
have to be processed in a meaningful way for suc-
cessful and efficient sequence recognition. Peters-
son et al. (2004) found that a 3-symbol sliding look-
back window is “logically” sufficient to achieve opti-
mal performance in predicting the next symbol from
a string generated by the Reber grammar (Petersson,
2005), (Fig. 1). Moreover, retention of two concepts
has been demonstrated in a spiking neuron network
model of short-term memory that focused on proper-
ties of recurrent connectivity to sustain activity within
the network (Macoveanu et al., 2006). The connec-
tivity strength in recurrent networks have an effect on
short-term (working) memory properties and Tegnér
et al. suggested that neurons with recurrent connec-
tions excite each other to retain a memory in the form



of a dynamic attractor (Tegnér et al., 2002). A con-
cept similar to this is used in in this paper.

3 MODEL

The minicolumn architecture developed in this paper
uses the combined activity of all of the excitatory neu-
rons within a given minicolumn to represent a recent
input symbol. This model is designed to retain activ-
ity resulting from presentation of a symbol for the du-
ration of the two subsequent symbols from the gram-
mar, using active storage (Zipser et al., 1993). This
produces a two symbol look-back capability of the
minicolumn architecture. A third look-back symbol is
achieved through activation of sublayers within a net-
work of minicolumn architectures. The activation of
these sublayers indicate that a specific substring has
been observed by the relevant parts of the network.
A similar concept of fading memory has been imple-
mented in other network models (Maass et al., 2007,
Sandberg et al., 2001). In this context, memory de-
cay implies that the influence of any specific segment
of the input stream on later parts of the output stream
becomes negligible when the length of the intervening
time interval is sufficiently large (Maass et al., 2007).

Using biologically inspired spiking neurons, we
designed a network that recognizes strings belonging
to the Reber grammar. The architecture is divided into
an input layer and a recognition layer. The input layer
converts (transduces) input symbols into spiking ac-
tivity. The recognition layer is a network of minicol-
umn architectures designed to retain the rules of the
grammar and match the input activity to the rules. Our
spiking minicolumn architecture was implemented in
the Neural Simulation Tool (NEST) (Gewaltig and
Diesmann, 2007), which provides neuron models as
well as a framework for simulating large neural net-
works, and was used for all modeling and simulation
described in this paper.

The recognition layer is designed to accept se-
quences generated by the Reber grammar defined in
(Fig. 1). The network attempts to minimize the num-
ber of nodes (minicolumn architectures), in the net-
work, needed to track a string’s position in the FSM
corresponding to the grammar, shown in Section 3.3.
This network connects minicolumns in a tree struc-
ture designed to recognize subparts of sequences. The
function of this part of the network is that activity in
nodes located in lower positions in the tree signals the
presence of substrings in the input sequences of in-
creasing length. The first level of the tree is connected
to the input layer (Fig. 2).

3.1 Input Layer

The strategy for translating character strings into
spiking activity was inspired by sensory transduc-
tion mechanisms in neural systems. The 5 sym-
bols in Reber strings plus the end of string symbol
{#M,T,R,X,V} are treated as separate inputs. Each
symbol causes excitatory activity from a different in-
put node (Fig. 2). The input string is presented to
the network one symbol at a time, only the input
node of the current symbol is active, which thus cor-
responds to a lexical detector/retriever in the human
brain (Jackendoff, 2002). These input nodes are in
turn connected to minicolumns which are sensitive to,
and "listen” for, specific input patterns and begin spik-
ing once an input is present. In the simulation, input is
considered a representation of a particular sound pat-
tern as in, for example a word. Input could also be
considered as visual or somatosensory input without
loss of generality.

The input layer is implemented as 6 direct current
(DC) generators in NEST. Each is mapped to a spe-
cific input symbol {#,M,X,T,V,R}. When a symbol is
presented to the network the corresponding DC gen-
erator is set to a positive amplitude. Only one gen-
erator is active at a given point in time and all other
generators have their amplitude set to zero. DC gen-
erators are in turn connected to input nodes in the
recognition layer. In the case where the input layer
is presented with the first character from the string
#MTVT# (Fig. 2). The DC generator representing #
is activated and all other generators are silent. The re-
sulting current excites the connected minicolumn sen-
sitive to the symbol #. Activity will then propagate to
all nodes connected to this minicolumn.

Current Symbol Input String

DC Generator N\ /Z@
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Figure 2: The input layer receiving the string “#MTVT#".
When the symbol # is presented the corresponding DC gen-
erator, the highlighted square indicated by #, is activated
by setting its output rate. This causes the connected mini-
column to become active and inject activity the rest of the
network

3.2 Minicolumn Model

Biologically inspired minicolumn models are the
main processing units of the network. Each minicol-



umn is designed with 100 integrate and fire neurons,
80% excitatory and 20% inhibitory. These propor-
tions are based on neurophysiological data (Buxho-
eveden and Casanova, 2002; Ciirliklii and Lansner,
2003; Ciirtiklii and Lansner, 2002; Ciiriikli and
Lansner, 2001; Ciiriikli and Lansner, 2005). The
models studied in this paper use local connections
within the minicolumn to create recurrent activity to
represent the presence of input. The model neurons
were implemented as neurophysiologically inspired
leaky integrate and fire models. Generally we used
plausible parameters in the network model so that
the performance of the model can be related to real
neurophysiologial investigations, for example electro-
encephalogram (EEG) or functional magnetic reso-
nance imaging (FMRI) experiments. Moreover, the
model used in this paper uses networks to represent
the hierarchical connectivity distribution observed in
the primate brain (Felleman and Van Essen, 1991), in
which concepts are learned and stored and combina-
tions of these concepts can be reused, for example, to
identify more abstract entities.

The first goal of this research was to achieve de-
grading persistent spiking within the minicolumns.
In other words, following presentation of input, the
minicolumn should continue spiking from internal re-
current activity of excitatory neurons for a period of
two symbol presentations, specified to be 1000 ms in
the model (each symbol is presented for 500ms). At
that time, local inhibition overcomes the excitatory
activity and the neurons return to their unexcited ac-
tivity rates. This effectively provides a 2 symbol look-
back sliding window memory mechanism. This time
scale was chosen to be biologically plausible based on
behavioral and neurophysological experiments with
humans. For example, symbol sequences from the
Reber grammar have been presented for 300ms each
with a 300ms inter-symbol-interval (Forkstam et al.,
2006), and audiotory stimuli has been presented to
human subject for S00ms with Sms rise/fall time and
(Alain et al., 2001).

Leaky integrate and fire neurons approximate the
behavior of biological neurons using the mathemati-
cal model of Rotter and Diesmann (Rotter and Dies-
mann, 1999). This is a standard approximation which
is computationally efficient and allows simulation of
large networks (Lobb et al., 2005). The leaky in-
tegrate and fire neurons have a rest/reset membrane
potential of -75mV and a firing threshold at -55mV.
An absolute refractory period (T_Ref) of 5ms is used.
This is necessary to achieve activity rates at a biolog-
ically plausible level (~ 35H7).

Each excitatory neuron is connected to ~ 40% of
other excitatory neurons, and ~ 25% of inhibitory

Figure 3: A simplified model of connections within the
minicolumn. Numbers indicate base delay, in ms, along
the connection representing spacial locality of the neurons.
These values are later offset by a random amount to sim-
ulate lateral position of neurons and indirect axon paths.
Filled circles represent excitatory connections, empty cir-
cles inhibitory. Each connection type is shown from only
one neuron.

neurons. Each inhibitory neuron is connected to
~ 15% of excitatory neurons. A simplified view
of local minicolumn connections (Fig. 3). Each
type of connection (excitatory-excitatory, excitatory-
inhibitory, inhibitory-excitatory) from one neuron is
shown. When connections are made, each neuron is
connected to a set of neurons randomly selected from
the available population within the minicolumn.

Given an excitatory neuron x from the collection
of all excitatory neurons Excite, the set of excita-
tory neurons x will connect to is obtained by ran-
domly selecting 40% of remaining excitatory neu-
rons. For excitatory-inhibitory connections, 25% of
the inhibitory neurons are selected. The randomized
connectivity procedure ensures that the connections
in each minicolumn are not identical.

Spatial locality is built into the model. Neurons
are laid out as in (Fig. 3), with the inhibitory neurons
placed in the middle of the excitatory neurons. For
two neurons, x and y, the distance between them, dist,
is calculated with the neurons position in an array. A
circular neuron layout where angles between neurons
introduce variation in the connection delay, has previ-
ously been used (Compte et al., 2000). For two excita-
tory neurons, x and y, in the array Excite, the distance
between them, dist, is calculated as in (Eq. 1). For an
excitatory neuron, x, and a inhibitory, i, in the array
Inhib the distance between the neurons, dist, is calcu-
lated as in (Eq. 2). INHIB_ORIGIN is the position on
the excitatory array where the first inhibitory neuron



lies. For example, in (Fig. 3) INHIB_ORIGIN = 3.

dist = abs(Excite.index(y) — Excite.index(x)) (1)

dist = abs(Excite.index(x) — (2)
(INHIB_ORIGIN + Inhib.index(i)))

A random delay, offset, in the range of +2.5ms
is applied to each connection to simulate lateral loca-
tion of the neuron and non-direct axon paths, offset is
calculated by (Eq. 3). Total connection delay, del, is
calculated by (Eq. 4).

offset =2 x 2.5 x rand() — 2.5 3)
del = dist + offset 4)
del; = del x DELAY FACTOR (5)

The final calculated delay is scaled by a
DELAY _FACTOR. This is used to scale the size of
each unit of delay. In the brain action potentials prop-
agate a distance of ~ 10cm within 10-12ms (Aboitiz
et al., 1992). The final delay, del; for a connection is
calculated as indicated in 5.

Background noise is added by simulated Poisson
distributed spikes at 10Hz activity from 200 neurons.
This causes the membrane potential to remain around
-65mV when no other input is present. Each neuron
receives a separate Poisson spike train.

Connection weights are scaled experimentally to
achieve activity characteristics comparable to typi-
cal neurobiological findings. Excitatory weights are
scaled so that between 1 to 4 spikes arriving within a
4ms time window are required to cause a spike. Con-
nection weights are set as follows: excitatory 30, in-
hibitory -44, input 18, noise 21. These settings pro-
duce excited activity of ~ 50Hz and recurrent activ-
ity for ~ 1000ms after external stimulus is removed.
Each minicolumn is configured to be excited by a sin-
gle input symbol or two other minicolums with ap-
proximately S50Hz spiking activity.

Recurrent activity of approximately S0Hz within
each minicolumn indicates that the symbol or subse-
quence the minicolumn is sensitive to was present in
the input sequence. This level of retention provides
a short symbol look-back. Temporal information of
the character order is gradually lost when two mini-
columns are active at the same time. To retain infor-
mation about sequence order a hierarchical network
of minicolumns is utilized. Increasingly deep layers
are activated by increasingly long substrings gener-
ated by the FSM.

Inter-columnar connectivity is defined in the net-
work architecture in the following manner. Inter-
excitatory connections connect each excitatory neu-
ron in the source minicolumn to 10% of the ex-
citatory neurons in the target minicolumn. Inter-
inhibitory connections connect each excitatory neu-
ron to 20% of inhibitory neurons in the target. This
is consistent with connection densities in biological
models (Ciiriiklii and Lansner, 2003; Ciiriiklii and
Lansner, 2002; Ciiriiklii and Lansner, 2001; Ciirtiklii
and Lansner, 2005). A larger minimum delay of 3ms
is applied to all long-distance interconnections be-
tween columns to represent the increased distance be-
tween minicolumns.

3.3 Network

The objective of the network was to use a small num-
ber of nodes to recognize substrings by limiting lower
level nodes, shown in (Fig. 4), which uses only 20 net-
work nodes.

AL '
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Figure 4: A network with a minimized set of minicolumns
still able to recognize strings in the grammar.

Nodes are selected by traversing the FSM and
adding nodes which uniquely identify states. For ex-
ample MV, VT, VX indicate the edge into and out of
states of the FSM. It was found that most trigrams
were not necessary. The trigrams which do have
nodes in the network cover those parts of the FSM
where two edges can be taken to produce the same
symbol, namely X, that is the non-deterministic parts
of the FSM.

The output node OUT receives input from all
nodes which represent substrings occurring at the end
of a string, namely the nodes representing #, RM, VT,
XM, VXR, VXM, MV. This introduces a great deal of
activation of the output node but is compensated with
inhibition.

Inter-inhibition connectivity is made between all
nodes of the same level. This forces only one mini-
column, at each level, to remain fully active. Only
the minicolumn currently receiving input from higher
levels should be fully active. However, this does
not remove the extra excitation from OUT. Inter-
inhibition connectivity is made from nodes which



cannot be the end of a string to OUT, including MT,
VX, VXT, XT. For example, MT can never occur
at the end of a grammatical string so the node rep-
resenting this bigram has inter-inhibition connectiv-
ity to OUT. This network results in a continuous low
level of activity in OUT during string presentation.

4 RESULTS

Simulations were performed to determine the feasibil-
ity of the network design for artificial grammar recog-
nition (AGR). Grammatical, non-grammatical, and
random sequences of 100 symbols, are presented to
the network. The grammatical and non-grammatical
and random sequences all contain 17 strings. Non-
grammatical strings were manually created by alter-
ing individual symbols in the corresponding gram-
matical string. This is consistent with how strings are
constructed in behavioral and neurophysiological ex-
periments (Folia et al., 2008; Forkstam et al., 2006;
Petersson et al., 2004; Uddén et al., 2008). Random
strings such as, MVVRVYV, are generated by select-
ing one symbol from the alphabet {#, M, V, T, R, X},
where each symbol has equal probability of being se-
lected for each position. Strings generated this way
are generally non-grammatical, some empty strings
are also produced, for example ## which does not
contain any symbols. These are removed in post pro-
cessing since double # will cause the output node to
activate. Strings must have at least 2 symbols between
# symbols, since the smallest string generated by the
grammar contain 2 symbols.

Random non-grammatical strings are easily iden-
tified as non-grammatical by the network when no
valid substrings exist. A string such as, #MTRTH#,
is more difficult to identify as non-grammatical since
only one symbol is incorrect. The network can falsely
recognize these strings if the last substrings are gram-
matical. The network being able to recognize these
types of strings as non-grammatical provide good
support for its use in future computational investiga-
tions.

Network activity was analyzed through spike train
analysis. The spike activity of all neurons in a given
minicolumn is collected throughout the simulation.
Histograms are then plotted to analyze spiking rates,
(Fig. 5). The input sequence used is set as the x-axis
of the histogram plot so that activity can be correlated
to characters being presented. Recognition is defined
as the output node having an average activity of 48Hz
for the 500 ms following the end of string symbol #
(Fig. 5(a)).

The results of the simulations are shown in Ta-

ble 1. The network endorses 16 of 17 grammatical
strings, 10 of 17 non-grammatical strings, and 7 of 17
random non-grammatical strings. These results show
that the network is able to discriminate between gram-
matical and non-grammatical strings. A high num-
ber of false positives exist in the non-grammatical and
random non-grammatical sequences. The strings rec-
ognized in the random sequence contain substrings
similar to valid substrings. The sequence MX appears
in a number of places in the random sequence, this is
the inverse of the correct sequence XM. Presentation
of these inverse substrings, such as MX, cause activa-
tion within the network in the nodes representing the
grammatical substring, such as XM.

Three activity graphs show the activity in the out-
put minicolum from the network from the first 30
symbols of the grammatical, non-grammatical, and
random input sequences (Fig. 5). The output node
is active when the input string contains grammatical
substrings which can end a string.

Table 1: The results of presenting the input sequences to the
network.

Network
Strings Percentage
Recognized | of strings
recognized as
grammatical
Grammatical 16 of 17 94.12%
Non-Grammatical | 10 of 17 58.82%
Random 7 of 17 41.18%

S DISCUSSION

Cognitive neuroscience approaches the brain as an
information processing device and we have outlined
some relevant aspects of this concept as applied to
the problem of structured sequence processing in a
minicolumn network architecture. Generally, cogni-
tive brain functions can be understood as the out-
come of a developmental learning system D = < func-
tional architecture, representational dynamics, learn-
ing dynamics >. In this paper we focused on creating
a functional architecture with a representational dy-
namics and we have implicitly indicated how it is pos-
sible to integrate Marr’s levels of analysis within the
framework of dynamical systems. General dynamical
system theory is obviously too rich as a framework for
formulating explicit models of cognitive brain func-
tions. For example, it turns out that for any given
state-space one can find a universal dynamical sys-
tem whose traces will generate any dynamics on the



OUT 5

# V X R #2 MV T # M T V # M T V R X R M # V X M # V X V # V

(a) Grammatical sequence

# V X T # M R T # X T V # M R V R X R M # V T M # V X T # V

(b) Non-grammatical sequence

M XV V R M # T R V T X # R T X # M M T M # R R T # R T # M

(c) Random sequence

Figure 5: Activity from the output node for the first 30 symbols of the three input sequences a) grammatical, b) non-

grammatical, ¢) random.

state-space (Lasota and Mackey, 1994). Thus, what is
needed is a specification of cognitively relevant con-
straints as well as processing principles relevant for
the neurobiological networks subserving information
processing in the brain. Our spiking network architec-
ture is an example of the dynamical systems approach
in cognitive neuroscience that offers a descriptive
framework for analyzing asynchronous event-driven
devices, which is essential in understanding real neu-
ral systems. Finally, it is clear that our work so far on
artificial grammar recognition is in its infancy with
respect to a more profound understanding of sequen-
tially organized, structured processing in the brain.

We have demonstrated that artificial grammar
recognition is feasible in spiking neural networks. It
is also evident that this paper only touches on this
complex topic. The original inspiration for the work
presented here was to create models based on spe-
cific neurophysiological knowledge and neocortical
theories. The ability to meet these goals was limited
mainly by two factors. Firstly, the technical hurdles
faced are vast. Secondly, the lack of a unified theory
of neural structure based on neuroimaging and neuro-
physiological experiments is currently not available.
Future directions of the current work are to explore
flexibility/adaptability and learning in spiking mini-
column network architectures.

In this paper, the network is created with an in-
herent preference for the Reber grammar. A natural

next step would be to begin with a more generic form
of the network with a different number of nodes (i.e.,
minicolumns) than in the current network. For ex-
ample, the nodes could be completely connected to
one another and made dynamic/adaptive. The charac-
teristics of various self-organizing learning schemes,
implemented as synaptic adaptation and pruning (e.g.,
removing a connection when the synaptic weight be-
comes negligibly small), can then profitably be inves-
tigated in order to study if and how functional net-
works emerge as a result of exposure to an acquisi-
tion set of training items and then test the network on
a disjoint classification set and compare with human
performance as well as relevant neurophysiological
measures. Another strategy would be to use genetic
programming to evaluate an optimal network layout
and parameter settings for the network.

Fundamental issues to address in future work also
include determining what might be a relevant state-
space, with associated dynamics, in order to gain a
theoretical (or mathematical) understanding of active
information processing in general spiking network ar-
chitectures. Moreover, issues related to what might
serve as relevant prior constraints as well as the char-
acteristics of the adaptive machinery that allows all
normal human individuals to acquire a native lan-
guage robustly and in a relatively short period of time
need to be addressed. These are essentially questions
about the nature of the neural code, the dynamical



variables that serve as information carriers, and its
adaptive characteristics.
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