Response/Evans & Levinson: The myth of language

English:
those are checkers
two checkers yes
play checkers
Italian:
dove sono
dove sono i coniglietti
Hebrew:
מה לא
מה את לא רוצה
את רוצה לספר
Korean: 제일 이뻐 누가 제일 이뻐 지원이 제일 이뻐 맞어
Mandarin:
这是什么呀
哎呀 是 什么 呀
Russian:
вот твой папа не хочет с тобой остаться
как не хочет хочет
хочет папа хочет

Figure 1 (Waterfall & Edelman). Examples of child-directed speech in six languages. It is not necessary to be able to read, let alone understand, any of these languages to identify the most prominent structural characteristics common to these examples (see text for a hint). These characteristics should, therefore, be readily apparent to a prelinguistic infant, which is indeed the case, as the evidence we mention suggests. All the examples are from CHILDES corpora (MacWhinney 2000).

speech, phrase structure, and other structural "universals." In other words, certain forms may be common across languages because they are easier to learn, given the algorithmic constraints on the learner.¹

Language acquisition becomes easier not only when linguistic forms match the algorithmic capabilities of the learner, but also when the learner's social environment is structured in various helpful ways. One possibility here is for mature speakers to embed structural cues in child-directed speech (CDS). Indeed, a growing body of evidence suggests that language acquisition is made easier than it would have been otherwise because of the way CDS is shaped by caregivers during their interaction with children.² One seemingly universal property of CDS is the prevalence of variation sets (Hoff-Ginsberg 1990; Ku" ntay & Slobin 1996; Waterfall 2006; under review) – partial alignment among phrases uttered in temporal proximity, of the kind illustrated in Figure 1. The proportion of CDS utterances contained in variation sets is surprisingly constant across languages: 22% in Mandarin, 20% in Turkish, and 25% in English (when variation sets are defined by requiring consecutive caregiver utterances to have in common at least two lexical items in the same order; cf. Ku'ntay & Slobin 1996; this proportion grows to about 50% if a gap of two utterances is allowed between the partially matching ones). Furthermore, the lexical items (types) on which CDS utterances are aligned constitute a significant proportion of the corpus vocabulary, ranging from 9% in Mandarin to 32% in English.

Crucially, the nouns and verbs in variation sets in CDS were shown to be related to children's verb and noun use at the same observation, as well as to their production of verbs, pronouns, and subcategorization frames four months later (Hoff-Ginsberg, 1990; Waterfall 2006; under review). Moreover, experiments involving artificial language learning highlighted the causal role of variation sets: adults exposed to input which contained variation sets performed better in word segmentation and phrase boundary judgment tasks than a control group that heard the same utterances in a scrambled order, which had no variation sets (Onnis et al. 2008).

The convergence of the three lines of evidence mentioned – the ubiquity of variation sets in child-directed speech in widely different languages, their proven effectiveness in facilitating acquisition, and the algorithmic revival of the principles of acquisition intuited by Harris – supports E&L's proposal of the origin of observed universals. More research is needed to integrate the computational framework outlined here with models of social interaction during acquisition and with neurobiological constraints on learning that undoubtedly contribute to the emergence of cognitive/cultural language universals.

NOTES

1. Language may also be expected to evolve in the direction of a better fit between its structure and the learners' abilities (Christiansen & Chater 2008).

2. Social cues complement and reinforce structural ones in this context (Goldstein & Schwade 2008).

Authors' Response

With diversity in mind: Freeing the language sciences from Universal Grammar

doi:10.1017/S0140525X09990525

Nicholas Evans^a and Stephen C. Levinson^b

^aDepartment of Linguistics, Research School of Asian and Pacific Studies, Australian National University, ACT 0200, Australia; ^bMax Planck Institute fo Psycholinguistics, Wundtlaan 1, NL-6525 XD Nijmegen, The Netherlands; an Radboud University, The Netherlands. <u>nicholas.evans@anu.edu.au</u>

http://rspas.anu.edu.au/people/personal/evann_ling.php stephen.levinson@mpi.nl http://www.mpi.nl/Members/StephenLevinson

Abstract: Our response takes advantage of the wide-rangin commentary to clarify some aspects of our original proposa and augment others. We argue against the generative critics o our coevolutionary program for the language sciences, defen the use of close-to-surface models as minimizing cross linguistic data distortion, and stress the growing role o stochastic simulations in making generalized historical account testable. These methods lead the search for general principle away from idealized representations and towards selectiv processes. Putting cultural evolution central in understandin language diversity makes learning fundamental in the cognitio of language: increasingly powerful models of general learning paired with channelled caregiver input, seem set to manag language acquisition without recourse to any innate "universa grammar." Understanding why human language has no clea parallels in the animal world requires a cross-specie perspective: crucial ingredients are vocal learning (for whic there are clear non-primate parallels) and an intention attributing cognitive infrastructure that provides a universa base for language evolution. We conclude by situating linguisti diversity within a broader trend towards understanding huma

cognition through the study of variation in, for example, human genetics, neurocognition, and psycholinguistic processing.

R1. Introduction

The purpose of our target article was to draw attention to linguistic diversity and its implications for theories of human cognition: Structural diversity at every level is not consonant with a theory of fixed innate language structure, but instead suggests remarkable cognitive plasticity and powerful learning mechanisms. We pointed out that human communication is the only animal communication system that varies in myriad ways in both form and meaning across the species, and this must be a central fact that should never be lost sight of.

The responses in the commentaries show that opinion in the language sciences, and especially in linguistics, is still sharply divided on "the myth of language universals," or at least our telling of it. The comments of the typological and functional linguists (Croft, Goldberg, Haspelmath) show that much of our argument is already widely accepted there: "evolutionary linguistics is already here" (Croft). Positive responses from many commentators in experimental and cross-species comparative psychology suggest that researchers in experimental psychology and cross-species studies of communication are ready for the kind of coevolutionary, variability-centred approach we outlined (Bavin, Catania, McMurray & Wasserman, Merker, Tomasello, and Waterfall & Edelman). Generative linguists, by contrast, disagreed sharply with our presentation, laying bare some fundamental differences in how linguistics is conceived as a science.¹

We have organized the response as follows.

- Section R2 responds to the critical comments from the generative camp, suggesting that the assumptions behind many of these responses are misplaced.
- Section R3 looks at the question of whether we have overstated the range of diversity by ignoring unpopulated regions of the design space.
- Section R4 takes the commentaries from the non-generative linguists and the psychological, animal behavior, and computational learning research communities, which were overwhelmingly positive, and indicates how these might be used to round out, or in places correct, our position.
- Section R5 sketches where we think these new developments are heading, and their relationship to what else is happening in the cognitive sciences.

We set aside the specific data questions till an appendix at the end, where we concede two factual mistakes, clarify disputed facts and generalizations, and examine more specific linguistic points that would bog down the main argument – on nearly all of them, we think the criticisms from our generativist colleagues do not stand up to scrutiny.

R2. Incompatible evaluation metrics reflect different paradigms

It was never our intention to engage in mud-slinging with our generative colleagues, but as Tomasello has predicted there was a certain inevitability that familiar sibling quarrels would be rerun. Most of the criticisms from the generative camp reflect deep differences between generative and typological/functionalist approaches in their overall assumptions about many issues. Where do we locate causal explanations? Where do we seek the general unifying laws behind surface diversity - in structure or in process? Do we use only discrete mathematical models (favoring regularized representations), or do we bring in continuous and stochastic models as well (favoring representations sticking closer to surface variety)? Should generalizations purport to directly represent mental reality, or are they modelling the summed information of thousands of different coevolutionary products shaped by multiple selective factors? Should we adopt essentializing categorizations (as "formal universals"), or abandon these as misleading and adopt a strategy that measures surface diversity directly so as not to lose data that is useful for evaluating the fit of models?

Generative and typological/functionalist accounts will give different answers to each of these questions, and it is this difference in overall scientific paradigm that accounts for the seemingly irreconcilable conflict between generativist commentators like Freidin and Pesetsky, who see our proposals as so imprecise as to be unfalsifiable, and psychologists like Tomasello and Margoliash & Nusbaum, for whom it is the generative approach that has moved away from falsifiability.

To clarify these differences, we try here to give a brief and constructive account of where the real differences lie (as Pullum & Scholz opine, more could be fruitless). The generativist critique includes the following interlinked charges:

1. Lack of theory, precise representation, or falsifiability (Smolensky & Dupoux, Freidin)

2. Mistaken ontology, mistaking behavior for cognition and (a point we hold off till sect. R4.1) history for science (Smolensky & Dupoux)

3. Lack of abstractness – that we are misled by surface variation into ignoring underlying structural regularities (Baker, Harbour)

4. That taking surface diversity at face value leads away from the quest for general principles (Smolensky & Dupoux, Nevins)

5. That we have neglected the presence of "formal universals" (Nevins)

6. That the typologists' preference for using a nonabstract descriptive apparatus is the wrong methodological choice (Rizzi)

7. That we have merely presented an under-analyzed Wunderkammer of variation that can be shown to reduce to well-known phenomena (Pesetsky).

We now take up these issues one at a time. A further criticism, that we may have overstated the range of diversity by ignoring the fact that languages all lie within a bounded corner of the possibility space (Pinker & Jackendoff, Tallerman) is dealt with separately in section R3.

R.2.1. What kind of theory?

Smolensky & Dupoux and Freidin complain that we did not offer a fully articulated theory with precise predictions about sentential structure. But that was not what we set out to do. Our goal was to survey our current understanding of language variation, explain its import for the cognitive sciences, and outline a fertile area for future research. We sketched the kind of biological models into which this variation neatly seems to fit and the ones that invite future development in a number of directions. A lot of these materials and ideas have not been sufficiently taken into account, we felt, by researchers in the cognitive sciences. We were gently suggesting that the time has come for a paradigm change, and at the end of this response we will say a little more.

Nevertheless, at the end of the target article we did sketch directions for future research (see also sect. R5 in this response). Commentators outside the generative camp (e.g., Waterfall & Edelman, Christiansen & Chater) in many cases saw no difficulty in deriving a range of predictions or consequences, and indeed saw the target article as "mov[ing] the study of language in the direction of the research methods of the experimental sciences and away from enclosed personal belief systems" (Margoliash & Nusbaum).

The radically different assessments of empirical grounding here reflect (we think) a narrow view of theory and evidence on the part of some of our critics. Within the language sciences there is a wide variety of theory – theories about language change (historical linguistics), language usage (pragmatics), microvariation within individual languages (sociolinguistics), language production, acquisition and comprehension (psycholinguistics), language variation (typology), and language structure (the traditional heart of linguistics), to name just a few. Generative theory is just one version of a theory of linguistic structure and representation, and it is marked by a lack of external explanatory variables, making no reference to function, use, or psychological or neural implementation. It has delivered important insights into linguistic complexity, but has now run into severely diminishing returns. It is time to look at the larger context and develop theories that are more responsive to "external" constraints, be they anatomical and neural, cognitive, functional, cultural, or historical. Here we think an evolutionary framework has a great deal to offer in the multiple directions we sketched.

We pointed out the central fact that the human communication system is characterized by a diversity in form and meaning that has no parallel in the animal kingdom. Generative theory has never come fully to terms with this, and a theory of universal grammar that isn't answerable to linguistic variation consequently has distinctly limited appeal.

R.2.2. Cognition, behavior, and representation

Various Chomskyan dichotomies (competence vs. performance, i-language vs. e-language, Smolensky & Dupoux's cog-universals vs. des-universals) have been used to drive a wedge between cognition and behavior. There are distinct dangers in this.

First, most cognitive scientists will agree that cognition exists to service perception and behavior. Second, the evidence for cognition remains behavioral and perceptual (even when we can look at the functioning brain in vivo, we look at its response to an event), and most cognitive scientists will want all theories measured ultimately in terms of predictions over brain events and behavior or response (as the very title of this journal suggests; cf. Margoliash & Nusbaum). Third, many cognitive scientists view favorably the new "embodiment" perspectives which blur the line between representation and process. Chomsky, in his initial work on formal grammars, suggested that the descriptive apparatus chosen to model language should be just sufficient and not more powerful than is required – in that way, some match to cognition may be achieved. From then on, in the generative tradition there has been a systematic conflation between the language of description and what is attributed to the language learner and user: "the brains of all speakers represent a shared set of grammatical categories" (Berent), and "formal universals in phonology are constituted by the analytic elements that human minds employ in constructing representations of sound structure" (Nevins).

Many generativist approaches – particularly parametric formulations – consequently attribute cognitive reality to conditionals of the form "if structural decision X, then also structural decision Y" or "learning X is universally easier than learning Y" (essentially Nevins' Example [1]). No language typologist would maintain that conditional regularities of this type would be found in speakers' heads. Yet this is precisely what is advocated in the OT (Optimality Theory) framework advocated by Smolensky & Dupoux:

OT ... is inherently typological: the grammar of one language inevitably incorporates claims about the grammars of all languages. This joining of the individual and the universal, which OT accomplishes through ranking permutation, is probably the most important insight of the theory. (McCarthy 2002, p. 1)

To make this work, an infinite set of possible sentences are first generated then filtered by (among other things) comparisons of this type. Instead of putting the filtering where it belongs, in cultural system evolution across generations, OT effectively burdens each individual mind with a pre´cis of the functional history of all known human languages, and loads the entire optimization process onto on-line grammatical computation. This is not just cognitively unrealistic – it is computationally intractable (Idsardi 2006).

This conflation of the metalanguage with the object of description is a peculiar trick of the generative tradition. By going down this path, it has opened up a huge gap between theory and the behavioral data that would verify it. The complex representational structures look undermotivated, and covert processes proliferate where alternative models deftly avoid them (see the discussion of Subjacency and covert movement in sect. R6.8).

A biologist does not assume that a snail maintains an internalized representation of the mathematical equations that describe the helical growth of its shell. Even for the internal characterization of a mental faculty, the strategy is odd: computer scientists interested in characterizing the properties of programming languages use a more general auxiliary language to describe them, as in Scott-Strachey denotational semantics. Once explanatory theories hook external factors (e.g., psycholinguistic or evolutionary factors) into the account, this conflation of cognition and metalanguage must be dropped.

Smolensky & Dupoux's aphorism "Generative grammar merits a central place in cognitive science because its topic is cognition and its method is science," then, will not find universal approval: other branches of linguistics are much more in tune with psychological reality as reflected in language acquisition, production, and comprehension. Nor has generative grammar of the Chomskyan variety been particularly successful as an explicit theory of linguistic representation. Many other representational formats, such as HPSG and LFG, have had greater uptake in computational circles (see, e.g., Butt et al. 2006, Reuer 2004). LFG, for example, adopts a parallel constraint-based architecture that includes dependency as well as constituency relations. This allows for the direct representation of crucial types of variability discussed in sect. 5 of our target article, while avoiding the need for movement rules or large numbers of empty nodes (see sect. R6.8 for further discussion of how this works for subjacency). These formats, which represent different outgrowths from the same generative roots, show that precise, testable, computationally tractable models of language can be developed that reflect cross-linguistic diversity much more directly in their architecture.

R2.3. Abstractness and universal generalizations

A number of commentators (Baker, Harbour, Nevins, Pesetsky) felt that we were unwilling to entertain the sorts of abstract analyses which allow us to find unity in diversity. But we are simply pointing out that the proposals on the table haven't worked. Abstractness has a cost: the more unverifiable unobservables, the greater the explanatory payoff we expect. Judging the point where explanatory superstructure becomes epicyclic and unproductive may be tough, and generative and non-generative camps clearly have different thresholds here. But the increasingly abstruse theoretical apparatus is like a spiralling loan that risks never being paid by the theory's meagre empirical income (cf. Edelman & Christiansen 2003). Even attempts to deal with the growing evidence of variability through the theory of parameters - projecting out diversity by a limited number of "switches" pre-provided in Universal Grammar (UG) - has empirically collapsed (Newmeyer 2004, p. 545), a point largely undisputed by our commentators (although Rizzi continues to use the notion - see the discussion of Subjacency in sect. R6.8).

All sciences search for underlying regularities – that's the game, and there is no branch of linguistics (least of all historical linguistics, with its laws of sound change) that is not a player. For this reason Harbour's commentary misses the target – of course some middle level generalizations about the semantics of grammatical number are valid in any framework (although his account of the plural seems to not generalize beyond three participants, and there are additional problems that we discuss in sect. R6.4). The art is to find the highest level generalization that still has empirical "bite."

R2.4. Recognizing structural diversity is not incompatible with seeking general laws

The criticisms by Nevins, Pesetsky, and Smolensky & Dupoux – that we are not interested in seeking deeper laws behind the surface variation in linguistic structure – reveal a failure to understand the typological/functional approach. In a coevolutionary model the underlying regularities in the cross-linguistic landscape are sought in the vocal-auditory, cognitive, sociolinguistic, functional, and acquisitional selectors which favor the development of some structures over others. The goal is to seek a constrained set of motivated selectors (each testable) that

filter what structures can be learned, processed, and transmitted. The stochastic nature of the selection process, and the interaction and competition between multiple selectors, accounts for the characteristic balance we find, of recurrent but not universal patterns with marked diversity in the outliers.

Phonological structures, for example, will be favored to the extent that they can be easily said, easily heard, and easily learned.² But these targets regularly conflict, as when streamlined articulation weakens perceptual contrasts or creates formal alternations that are harder to learn. In fact it has been a key insight of optimality theory (OT) that many competing factors need to be juggled, but that not all are equally potent and most can be "non-fatally violated." The different weightings of these "constraints" generate a kaleidoscope of languagespecific configurations, and modelling their interaction has been a strong appeal of the OT program. But the constraints identified by OT are more fruitfully treated as the sorts of scalar processing effects sketched in Haspelmath's commentary. The typological sweep, like OT phonology, aims at a comprehensive documentation of all such constraints and their interactions, finding languages in which individual effects can best be isolated or recombined, with laboratory phonology studying why each effect occurs.

The line of attack that "languages share structural similarities often masked by one of their differences" (Pesetsky) thus misses the point of why it is useful to confront diversity head on. Like generative theory, the program we have outlined seeks to discover the general behind the particular. But it differs in where we seek the general laws. For our generativist critics, generality is to be found at the level of structural representation; for us, at the level of process. Our claim, in Darwinian mode, is that the unity of evolutionary mechanisms can best be discerned by reckoning with the full diversity of evolutionary products and processes.

R2.5. Non-abstract representations preserve information

Rizzi suggests that the typologist's strategy of using an "extremely impoverished, non-abstract descriptive apparatus" that takes diversity at face value in representing phenomena will have less success than the generative program in establishing universal patterns. Yet, as the burden of explanation for cross-linguistic patterning is moved out of the prewired mind and into the evolution of individual language systems under selection from the sorts of factors outlined earlier, the most appropriate mathematical models employ stochastical and continuous methods rather than the discrete methods that have characterized the generative tradition (Pierrehumbert et al. 2000). And once we employ these methods, there are positive benefits in "directly measuring the variation, instead of reducing it" (Bickel 2009): any other strategy risks degrading the information on which the methods are based.

Take the question of how perceptual discriminability and articulatory ease interact in the domain of vowel dispersion over the formant space to favor the emergence of some vowel systems over others. The classic study by Liljencrants and Lindblom (1972) simulated the evolution

Response/Evans & Levinson: The myth of language unive

of vowel systems over time under these twin selectional pressures and compared the results to the distribution of attested vowel inventories. The insights yielded by their model would not have been possible if the descriptions of vowel systems had been in terms of discrete binary features such as [front] and [round] rather than in terms of position in a continuous three-dimensional space based on formant frequencies.

Staying close to the surface thus avoids the essentializing fallacy critiqued by Goldberg and Croft, while retaining the maximum information for matching against stochastic models of how general evolutionary processes interact to produce a scatter of different structural outcomes across the language sample.

R2.6. Neglect of "formal universals"

We are criticized by Nevins for neglecting "formal universals" – "the analytic elements that human minds employ in constructing representations of sound structure ... the available data structures (e.g., binary features, metrical grids, autosegmental tiers) and the possible operations on them that can be used in constructing a grammar of a language." (See also our discussion in sect. R6.8 of Subjacency, as raised by Smolensky & Dupoux, Freidin, and Rizzi.)

Data structures like these have undoubted value in constructing formal representations of phonological phenomena. But, first, it does not follow that they are the actual representations that humans learn and use. As Tomasello and Bavin argue, increasingly powerful general pattern learning mechanisms suggest that many of the relevant phenomena can be managed without needing the representations that Nevins advocates. Second, even if such structures prove to have psychological reality, it does not follow that we are natively endowed with them. Take the general issue of discrete combinatoriality – the fact that languages recombine discrete units like consonants and vowels – which is relevant both to binary features (like + consonantal) and, in many models, the separation of consonantal and vocalic elements onto distinct autosegmental tiers.³ Zuidema and De Boer (2009) have used evolutionary game theory simulations to investigate the hypothesis that combinatorial phonology results from optimizing signal systems for perceptual distinctiveness. Selection for acoustic distinctiveness, defined in terms of the probability of confusion, leads along a path of increasing fitness from unstructured, holistic signals to structured signals that can be analyzed as combinatorial. Some very general assumptions – temporal structuring of signals and selection for acoustic distinctiveness – lead over time to the emergence of combinatorial signals from holistic origins.

Should linguists use binary features and autosegmental tiers in the grammars and phonological descriptions they write? Sure, whenever they are useful and elegant. Do we need them to draw on a single, universal feature set to account for the mental representations that speakers have? Probably not, judging by the direction in which the psycholinguistic learning literature is headed. Do we need them to account for why languages all exhibit discrete combinatoriality? No – this can emerge through the sorts of processes that Zuidema and De Boer have modelled. Intriguingly, an empirical parallel has been

identified in one new sign language: Meir et al. (in press) and Sandler et al. (2009) show that duality of patterning has only been gradually emerging over three generations of one Bedouin sign language variety.

R2.7. An underanalyzed Wunderkammer of variation

A number of commentators charge us with producing a Wunderkammer of exotica (Pesetsky), intended more to dazzle rather than illuminate. Pesetsky and Tallerman suggest that if properly analyzed these exotica will turn out just to be ordinary, universal-conforming languages. Both take up the issue of constituency, and argue that recent research finds it subtly present in languages previously claimed to lack it. A clarification is in order. There are two potential issues:

a. Is constituency universal in the sense that all languages exhibit it somewhere in their systems, if even marginally?

b. Is constituency universal in the sense that all languages use it as the main organizational principle of sentence structure and the main way of signalling grammatical relations?

Our target was (b) – different languages use different mixes, as has been well-modelled by approaches like LFG; but our commentators tend to target (a).

Pesetsky points out that Tlingit may after all have an initial slot into which constituents can be systematically shifted (we would need to know actually what can go there, and if that is actually predicted by a constituency analysis). But he is wrong in presenting Warlpiri as the "free word order language par excellence." It is well known that Warlpiri places its auxiliary after the first constituent, and that when words are grouped together into a contiguous NP only the last word needs to carry case, instead of the usual patterning of inflecting every word. Neither of these properties, however, are found in Jiwarli (Austin & Bresnan 1996), which is why we chose it as our example.

The point about free word order languages, whether or not they have small islands of constituency, is that they cannot be parsed by a constituency-based algorithm as in most NLP (natural language programming) today, because they do not use constituency as the systematic organizing principle of sentence structure. If constituency is not the universal architecture for sentence structure, then the entire generative apparatus of c-command, bounding nodes, subjacency, and so forth collapses, since all are defined in terms of constituency. In this way Tallerman is wrong in thinking that parsing free word order is just like parsing English discontinuous constructions – the latter are allowed by rule, which sets up precise expectations of what comes next in what order.

Incidentally, the reader should note the argumentation of these rejoinders: that we, Evans & Levinson (E&L), have cherry-picked exotic facts about language A, but look, language B yields to the normal universal analysis, so there's no reason to take A seriously. Since absolute universals can be falsified by a single counterexample, it is a logical fallacy to defend a universal by adducing facts from some other language which happens not to violate it.

The seven general charges we have discussed capture, we think, most of the sources of disagreement. Freidin's commentary in particular indicates the deep rift in contemporary linguistics between Chomskyans and the rest, which ultimately rests on different judgements about the interlocking of theory and evidence. This is regrettable, as generative grammar has served to open up the "deep unconscious" of language as it were, showing how languages are organized with far greater complexity than had hitherto been imagined. While Chomskyans have presumed that these complexities must be innate, we have argued that there are two blind watchmakers: cultural evolution acting over deep time, and genetic infrastructure, which for the most part, of course, will not be specific to language.

Finally, let us note that Chomsky's own position makes it clear that the generative enterprise simply has a different target than the program we are trying to promote, namely, (in our case) working out the implications of language diversity for theories of cognition and human evolution. The following recent quote makes this clear:

Complexity, variety, effects of historical accident, and so on, are overwhelmingly restricted to morphology and phonology, the mapping to the sensorimotor interface. That's why these are virtually the only topics investigated in traditional linguistics, or that enter into language teaching. They are idiosyncrasies, so are noticed, and have to be learned. If so, then it appears that language evolved, and is designed, primarily as an instrument of thought. Emergence of unbounded Merge in human evolutionary history provides what has been called a "language of thought," an internal generative system that constructs thoughts of arbitrary richness and complexity, exploiting conceptual resources that are already available or may develop with the availability of structured expressions. (Chomsky 2007, p. 22; our emphasis)

On this view, UG primarily constrains the "language of thought," not the details of its external expression. The same conclusion was stoically reached by Newmeyer (2004, p. 545): "Typological generalizations are therefore phenomena whose explanation is not the task of grammatical theory. If such a conclusion is correct, then the explanatory domain of Universal Grammar is considerably smaller than has been assumed in much work in the Principles-and-Parameters approach" and Chomsky (2007, p. 18) seems in part to concur: "Diversity of language provides an upper bound on what may be attributed to UG."

These then are simply different enterprises – Chomsky is concerned with the nature of recursive thought capacities, whereas linguistic typology and the non-generative linguists are concerned with what external language behavior indicates about the nature of cognition and its evolution. We have argued that the latter program has more to offer cognitive science at this juncture in intellectual history. Perhaps a mark of this is that our crosslinguistic enterprise is actually close to Chomsky's new position in some respects, locating recursion not as a universal property of (linguistic) syntax, but as a universal property of language use (pragmatics, or mind) – a fact, though, that emerges from empirical cross-linguistic work.

R3. How much of the design space is populated?

Pinker & Jackendoff point out no doubt correctly that the possible design space for human languages is much greater than the space actually explored by existing languages. Two basic questions arise: (1) What exactly are the dimensions of the possible design space, of which just one corner is actually occupied? (2) What exactly does this sequestration in a small corner imply?

Before we get too excited by (1), we should consider (2). Pinker & Jackendoff imply that languages are locked into the corner by intrinsic, innate constraints, and that's why we don't find languages with really outlandish properties. But there is a fundamental fact they have overlooked. The earliest modern human remains date back to about 200,000 BP, and outside Africa date from only 100,000 years or so ago. If that is the date of the great diaspora, there has been relatively little time for diversification. Let us explain.

We have to presume that most likely all the languages we have now are descended by cultural evolution from a single ancestral tongue (it would take an event of total spoken language loss to be otherwise – not impossible, but requiring a highly unlikely scenario, such as an isolated lineage descended from a deaf couple). Now consider the following surprising fact. The structural properties of language change on a near-glacial time scale. In an ongoing study using Bayesian phylogenetics, Dunn et al. (in preparation) have found that taken individually, a structural feature within a single large language-family like Austronesian changes on average just once about every 50,000 years.⁴ What that implies is that all the languages we now sample from are within structural spitting distance of the ancestral tongue! It is quite surprising in this light that typologists have been able to catalogue so much linguistic variation. Once again, a coevolutionary perspective is an essential corrective to the enterprise.

So whether we need a lot of further explanation for the fact that languages seem to be cultivating the same garden (Tallerman), to the degree that this can be shown, depends crucially on the extent to which you think the languages of the world are independent experiments. Francis Galton, who stressed the need for genealogical independence in statistical sampling, would urge caution!

Let us turn now to the properties of the design space. Pinker & Jackendoff point out that we set aside a rich set of functional universals on the grounds that they are definitional of language (a move we borrowed directly from Greenberg). Of course it is not trivial that these seem shared by all human groups (although very little empirical work has actually been done to establish this but see, e.g., Stivers et al. 2009). We think that there is a clear biological infrastructure for language, which is distinct from the structural properties of language. This consists of two key elements: the vocal apparatus and the capacity for vocal learning, on the one hand (both biological properties unique in our immediate biological family, the Hominidae), and a rich set of pragmatic universals (communicative intention recognition prime among them), on the other. This is the platform from which languages arise by cultural evolution, and yes, it limits the design space, like our general cognitive and learning capacities (Christiansen & Chater). We emphasized that those interested in the evolution of the biological preconditions for language have been looking in the wrong place: Instead of looking at the input-output system (as Philip Lieberman has been urging for years; see, e.g., Lieberman 2006), or the pragmatics of communicative exchange, they've been focussed on the syntax and combinatorics, the least determined part of the system, as demonstrated by linguistic typology.

Response/Evans & Levinson: The myth of language unive

A functional perspective has been a long running undercurrent in typological and descriptive linguistics, as Croft and Goldberg remind us. Goldberg suggests that the design space is highly constrained by systems motivations; for example, pressures to keep forms distinct while staying within the normal sound patterns of a language. These pressures provide explanations for the internal coherence of language structure, a perspective that is indeed necessary to explain how languages are not for the most part a heap of flotsam and jetsam accumulated during cultural evolution, but rather, beautifully machined systems, with innovations constantly being adjusted to their functions.

Returning to the question of how saturated or otherwise the design space is, Pinker & Jackendoff maintain it is easy to think of highly improbable but possible language types, and they suggest a few. Quite a few of these simply fail on the functional front – they are unproductive like their Cadda, or limited in expressiveness like their Bacca, and groups confined to speaking such languages would rapidly lose out to groups with more expressive systems. Daffa, the quantificational-logic language, lacks any form of deictics like "I," "you," "this," "now," or "here": The presence of some deictics is certainly a functional universal of human language and follows from the emergence of human language from interactional, socially situated transactions.

Interestingly, though, some natural languages do have properties that partake of Pinker & Jackendoff's thought experiments. For example, their imaginary Cadda, a language of one word holophrases, lacks double articulation. The three-generation sign language of Al Sayyid is also said to lack double articulation (Meir et al., in press; Sandler et al. 2009), showing that this has to arise by cultural evolution: it is not given by instinct.

The musical language Gahha, likewise, isn't too far off attested reality. The West Papuan language Iau (Bateman 1986a; 1986b; 1990a; 1990b) has eight phonemic tones (including melodic contours), close to the number of phonemic segments, and uses them both for lexical distinctions and for grammatical distinctions including aspect, mood, and speech-act distinctions; other tone languages use pitch to indicate modality or case (e.g., Maasai).

Nor is the "rational" Fagga too far "outside the envelope." Sure, it would require a level of semantic factorization down to a number of combinable semantic components not larger than the number of phonemes, but some semantic theories posit a few score "semantic primitives" in terms of which all meanings can be stated (e.g., Goddard & Wierzbicka 2002), and Demiin, the Lardil initiation language, maps the entire lexicon down to around 150 elements (Hale 1982). Combine Demiin semantics with Xoor phonology (159 consonant phonemes on some analyses), pair one semantic element to each phoneme, and Fagga might just squeak in.⁵ Whether or not it then actually existed would depend on whether a possibly evolutionary route past the "historical filters" could be found - in other words whether an evolutionary pathway could exist to reach this highly economical mapping of meaning elements onto phonological segments.

Finally, it is salutary to recollect that it is only relatively recently that we have come to recognize sign languages as fully developed languages with equal expressive power to spoken languages. These languages with their easy access to iconicity and analog spatial coding break out of the design space restricted by the strictly linear coding of the vocal-auditory channel. The typology of these languages is still in development, and there are plenty of surprises yet to come (see Meir et al., in press; Zeshan 2006a; 2006b).

R4. Language variation and the future directions of cognitive science

R4.1. Is history bunk? Linguistics as a science of change

History is more or less bunk. It's tradition. We don't want tradition. We want to live in the present and the only history that is worth a tinker's dam is the history we make today.

- Henry Ford (Interview in Chicago Tribune, May 25, 1916)

Nevins' dismissal of the coevolutionary approach we are advocating as "hand-waving at diachronic contingencies" hints at another kind of dissatisfaction with the general program we outlined in the target article: the suspicion that we advocate an old-fashioned historical and cultural approach, which will return linguistics wholly to the humanities. The antipathy to history is based on the view that (a) it is the study of particularities, whereas we should be in the business of generalizing, (b) it cannot be predictive, while any empirical science should make falsifiable predictions.

But the study of evolution is centrally about history, the study of the match between organisms and environment over time, and few would doubt its scientific credentials. And modern linguistics began as a historical discipline, that rapidly felt able to announce laws of historical change, while recent sociolinguistics has been able to catch language change in the making.

A fundamental shift is that modern computational methods have revolutionized the possibility of studying change in systems using more and more complex and realistic simulations. Within the study of evolution, computational cladistics exploits this to the full, using, for example, Bayesian inference to run millions of simulations and Monte Carlo Markov chains to search for the optimum model that predicts back the data with the greatest likelihood. We can make history today, as Henry Ford thought we should.

In the coda of the target article (sect. 8) we sketched a set of future directions for the language sciences based on evolutionary ideas, and these new methods put those directions within our grasp right now. Take the idea stated in thesis (3), that recurrent clustering of solutions will occur in grammars of non-closely related languages – such a claim can be tested by simulations. Equally tractable is the idea that changes cascade (thesis [4]), so that a few crucial ones may land a language in a gully of future developments. Thesis (5) about coevolution between brain, vocal organs, and language has already begun being intensively explored by simulation (Christiansen & Chater 2008; Christian et al. 2009). Thesis (7) suggests that we should investigate how the full range of attested language systems could have arisen - pie in the sky without computational simulation, but now thinkable. For example, we could follow Bickerton (1981) and start with a simple Creolelike language, described by a set of formal features or characters, and use the rates and parameters of character change derived from recent work on the Bayesian

phylogenetics of language families to simulate cultural evolution over more than 100,000 years. Do we derive patterns of diversity like we now see, or would we need to model special historical circumstances such as massive hybridization?

Smolensky & Dupoux ignore the recent synthesis of biological and cultural evolution. Thus they assert "language is more a biological than a cultural construct." We would go further: "language is one hundred percent a biological phenomenon." It is absurd to imagine that humans by means of culture have escaped the biosphere – we are just a species with a very highly developed "extended phenotype" or "niche construction" (Laland et al. 1999), using culture to create conditions favorable to our survival. The twin-track approach to human evolution that we sketched (derivatively from, e.g., Boyd & Richerson 1985; Durham 1991) tries to explicate this, unifying perspectives on history and phylogeny as the science of likely state changes in a population. There is immense room for future theoretical and modelling work here: without it we are not going to understand how we as a species evolved with the particular cognitive capacities we have.

R4.2. Learning and development

A number of commentators stress how two further avenues of research will help to situate our understanding of human cognition in a biological context: human development, and comparative psychology across species. For reasons of space, and reflecting the limits of our own expertise, we underplayed the crucial role of learning and cognitive development that is presupposed by the linguistic variation we outlined. These commentators offer a valuable corrective, summarizing the human and cross-species literature. They show how much more powerful are the learning mechanisms we can now draw on than the basic associationist models available in the 1950s when Chomsky argued that their lack of power forced us to postulate rich innate endowments for language learning. Indeed, the combined arguments put forth by the commentators go some way towards providing a solution to a problem we left unanswered at the end of section 7 of the target article: accounting for how language learning is possible in the face of the levels of diversity we describe.

Bavin does a good job of reminding readers what the basic issues are here, and especially the central debate over the domain-specificity of language learning. Tomasello observes that the Chomskyan argument about the unlearnability of language structure crucially relies on the assumption of a simple association learning: once we take into account the rich context of communication, with shared attention and intention interpretation, not to mention capacities for analogy and statistical learning, the argument fails. Catania also refers to work on other species showing that category discrimination can be triggered right across the board by a single new stimulus. Catania, Christiansen & Chater, and Merker all stress the funnelling effects of the learner bottleneck via "C-induction": In Merker's words. "cultural transmission delivers the restricted search space needed to enable language learning, not by constraining the form language takes on an innate basis, but by ensuring that the form in which language is presented to the learner is learnable." Catania suggests we explicitly incorporate a "third track" – acquisition – into our coevolutionary model, but we would prefer to maintain it as one (albeit powerful) set of selectors on linguistic structure alongside the others we outline in our article.

A number of commentators dwelt on Chomsky's "poverty of the stimulus" argument for rich innate language capacities. Bavin points out that the complex sentential syntax that motivates the argument is learnt so late that the child has wide experience of language on which to build. Perhaps the neatest refutation is provided by Waterfall & Edelman, who note a crucial property of the linguistic input to children: namely, repetition with minor variation, which draws attention to the structural properties of strings, exhibiting for the infant the "transformations" of Zellig Harris. They show how learning algorithms can effectively use this information to bootstrap from unsegmented text to grammatical analysis.

McMurray & Wasserman correctly point out that our position radically moves the goal posts for language learning, suggesting that not only are a slew of specialized learning strategies employed to learn a language (and these commentators provide very useful bibliographic leads here), but which of these strategies is deployed may depend on the language being learnt. We don't necessarily learn Ye'l Dnye with its 90 phonemes, flexible phrase order, and widespread verb suppletion using the same strategies we use for English: As McMurray & Wasserman write, "humans ... assemble language with a variety of learning mechanisms and sources of information, this assembly being guided by the particularities of the language they are learning." Instead of talking about the passive acquisition of language, we should be talking about the active construction of many different skills. This perspective buries the idea of a single language acquisition device (LAD).

Christiansen & Chater, as well as Catania, emphasize that learning in development is the crucial filter through which languages have to pass. Languages have to be good to think with (to modify an adage of Levi-Strauss), otherwise they won't make it. Christiansen & Chater have described (both in their 2008 BBS article [see BBS 31(5)] and in Christiansen et al. 2009) interesting modelling that shows that the learning filter must be largely language-independent, and thus that properties of learning are unlikely to have evolved specifically for language. This is a new kind of evidence against the position taken by Pinker & Jackendoff that language-specific learning principles must be involved in the acquisition of language.

Finally, we would like to draw attention to one other crucial aspect of development, namely, the way in which the environment is known to modulate developmental timing in the underlying biology of organisms, so that phenotypic variation can be achieved from the same genotype ("phenotypic plasticity"), and conversely, phenotypic identity can be obtained from variant genotypes ("developmental buffering"). In the conclusion to our target article we drew attention to the extraordinary achievement that is culture – generating phenotypic difference where there is no genetic difference, and phenotypic identity where there is genetic difference. These issues have been much explored in the biological literature on epigenesis and development (see West-Eberhard [2003] for a fascinating overview).

R4.3. The comparative perspective across species

Our other major omission, as some commentators noticed, is the lack of reference to the comparative psychology of other species. Margoliash & Nusbaum appeal to linguists and others interested in the evolution of language to "cast off the remaining intellectual shackles of linguistic speciesism" and take the findings of animal research more into account. They usefully remind us of the importance of the relationship between perceptual and motor skills. Merker notes how findings about complex learned birdsong can explain how a prelinguistic human adaptation for emancipated song could provide a mechanism for sustaining and elaborating string transmission, even if this was timed before the full emergence of social cognition: it can be driven by the need to impress by elaborate vocal display even when not yet used to communicate meaning. Darwin (1871) had, of course, imagined that language evolved from song (see Fisher & Scharff 2009; Fitch 2006, for an update).

Penn, Holyoak, & Povinelli (Penn et al.) point out that our demonstration of the variability in language, and the implication that there is no simple innate basis for it, has interesting implications for a central issue in comparative psychology: what exactly is the Rubicon which divides us from apes? If the crucial ingredient was a chance language gene or the genetic substrate for UG, it might be possible to argue that language alone is responsible for the sea-change in our cognition. But if there is no such magic bullet, then languages must be learnt by principles of general cognition, and the Rubicon must be constituted by more fundamental and more general differences in cognition.

Penn et al. err, though, when they try to extend the argument to downplay Tomasello's (2008) thesis that the crucial divide is the special assemblage of abilities that make up the pragmatic infrastructure for human language. Tomasello's assemblage of specialized social cognition is precisely what we need to explain the genesis of language diversity – it provides a general platform both for language learning and for the elaboration of distinct systems. Still, bringing their point together with those by Margoliash & Nusbaum and Merker is a useful reminder that we need to account both for the emergence of patterned form (where cross-species studies of sophisticated vocalizers must take on greater importance) and of productive meaning (where social cognition is likely to remain the main driver).

Penn et al. see in our display of language variation more evidence for their identification of a major discontinuity between apes and humans in the capacity for relational thought. If this capacity is not introduced by a single new evolved trait, human language, then the gulf is a feature of general cognition. But we note two caveats here: First, in our very nearest cousins (chimps and bonobos), there are pale shadows of relational thinking (Haun & Call 2009). Second, no one doubts the importance of language in delivering ready-made relational concepts (Gentner 2003). Beyond that, we probably agree about the facts, but might value them differently: Is 10% continuity with chimps a telling bit of continuity, or is 90% discontinuity a hopeless Rubicon?

R5. Situating language and cognition in the biology of variation

Science moves in new directions blown by winds of different kinds - Kuhnian collapses, new technologies, new integrative insights, newly developing fields, funding biases, even boredom with old paradigms. We think it is pretty clear that for a mix of these reasons, the cognitive sciences are about to undergo a major upheaval. Classical cognitive science was based on a mechanistic analogy with a serial computational device, where serial algebraic algorithms could represent models of the mind. A simplifying assumption was made at the outset: we need only characterize one invariant system. That is, the human mind is essentially an invariant processing device, processing different content to be sure, but running the same basic algorithms regardless of its instantiations in different individuals with different experiences, different environments, and different languages (cf. Smolensky & Dupoux's "a universal principle is a property true of all minds").

This view has taken a number of knocks in the last twenty years; for example, from the success of parallel computational models and the rise of the brain sciences. The brain sciences were at first harnessed to the classical enterprise, with invariance sought beneath individual variation in brain structure and function through selecting only right-handed or male subjects, pooling data, and normalizing brains. But cognitive neuroscience has increasingly broken free, and now the range of individual biological variation is a subject of interest in its own right.

Pushing this development is genetics. It is now feasible to correlatebrain structure and function with scans across half a million single nucleotide polymorphisms (SNPs) or genetic markers. We already know detailed facts about, for example, the alleles that favor better long-term memory (Papassotiropoulos et al. 2006), and we are well on the way to knowing something about the genetic bases of language (Fisher & Marcus 2006, Vernes et al. 2008). On the processing side, we know that about 8% of individuals have rightlateralized language, that individuals differ markedly in the degree of language lateralization, and that on specific tasks about 10% of individuals may not show activation of the classic language areas at all (Mu⁻ ller 2009). (True, most individuals will have circuitry special to language, as Pinker & Jackendoff remark, but that may be only because using language bundles specific mental tasks, and because adults have built the circuitry in extended development.) We even have preliminary evidence that gene pools with certain biases in allele distribution are more likely to harbour languages of specific sorts (Dediu & Ladd 2007). We are not dealing, then, with an invariant machine at all, but with a biological system whose evolution has relied on keeping variance in the gene pool.

This research is going to revolutionize what we know about the mind and brain and how it works. By putting variation central, as the fuel of evolution, it will recast the language sciences. Some aspects of the language sciences are pre-adapted to the sea-change –sociolinguistics, dialectology, historical linguistics, and typology – provided they can take the new mathematical methods on board. But we can look forward to the new psycholinguistics, centrally concerned with variation in human performance in the language domain both within and across language groups, and the new neurocognition of language which will explore both the varying demands that different languages put on the neural circuitry and the way in which superficial phenotypic standardization is achieved by distinct underlying processing strategies in different individuals.

In this context, renewed interest in the variation in human experience and expertise, in the cultural contexts of learning, and the diversity in our highest learned skill - language - is inevitable. For the cognitive and language sciences to engage with these developments, a first step is to take on board the lessons of those linguistic approaches that place variation and process at centre stage. Then the very diversity of languages becomes no longer an embarrassment but a serious scientific resource. That is the message we have been trying to convey.

R6. Appendix: Disputed data and generalizations

R6.1. Kayardild nominal tense

The occurrence of tense on Kayardild nominals was cited by us as a counterexample to Pinker and Bloom's (1990) claim that languages will not code tense on nominals. Baker's commentary does not dispute this, but then tries to use it to establish an orthogonal issue, namely, his verb-object constraint (see sect. R.6.10). While it is true that in Kayardild, tense appears on objects rather than subjects, it is not hard to find other languages, such as Pitta-Pitta (Blake 1979), where it is the subject rather than the object that codes for tense – so the general phenomenon gives no succor to Baker's hoped-for universal. Needless to say, all this only reinforces the fact that tense can occur on nominals.

R6.2. Positionals and ideophones

We noted in the target article that not only are the "big four" word classes (noun, verb, adjective, adverb) not wholly universal, but there were plenty of other word classes out there, including positionals and ideophones. We used the example of Mayan positionals. Pesetsky is right that Mayan positionals are classically defined as a root class, not a stem class, but the facts are actually more complex (see, e.g., Haviland 1994). Positionals have their own unique distribution at the stem level too, occurring, for example, in a special class of mensural classifiers (de Le'on 1988), body-part constructions (Haviland 1988, p. 92) and color-plus-position constructions (Haviland, submitted). In any case, many languages from around the world (such as Ye'l Dnye; Levinson 2000) have positionals as a special word class with their own distinctive distributions. (See Ameka and Levinson [2007] for detailed examples and a typology.)

Pesetsky similarly tries to undermine the status of ideophones/expressives as a word class (the terms are more or less synonymous, but come from different linguistic descriptive traditions). He correctly notes that Osada (1992) does not discuss their syntax in Mundari, and this reflects a general neglect of their syntactic characteristics in linguistic descriptions, apart from simplistic characterizations of them as "syntactically unintegrated." However, a careful discussion of the syntax of the functionally similar class of expressives in another Austroasiatic language, Semelai, can be found in Kruspe (2004): their syntactic distribution closely parallels that of direct speech complements. Likewise in Southern Sotho (Molotsi 1993), ideophones pattern like complements of "say," with the further property that they can be passivized, so that "John snatched the woman's purse" is literally "John said snatch woman's purse," which can be passivized as "snatch was said woman's purse." In short, ideophones and expressives have a syntax, if sometimes limited.

R6.3. Straits Salish noun versus verb distinction

We pointed out that it was still unclear whether in fact there is a universal noun/verb distinction. We mentioned the Wakashan language Straits Salish as an example of a language plausibly claimed to lack a noun/verb distinction. Instead of presenting counteranalyses of the Straits Salish data, Tallerman cites data from Nuuchahnulth (Nootka), from another language family, with no demonstration that the arguments can be transferred to Straits Salish. A crucial difference between the languages is that names can be predicative in Straits Salish but not in Nootka. Tallerman's major arguments for the existence of a noun/verb distinction in Nuuchahnulth were already given in Jacobsen (1979) and Schachter (1985), and Jelinek (1995) takes care to show that they don't apply to Straits Salish, which is why we used Salish rather than Nootka as an example. We agree with her, though, that further investigation of the Salish case is needed (a point also articulated in Evans & Osada 2005); hence our statement that no definitive consensus has been reached.

R6.4. Jemez/Kiowa number

Harbour reproaches us for attributing the "unexpected number" facts to Jemez rather than Kiowa: in fact, the languages are related and both exhibit similar phenomena (Mithun 1999, p. 81, and personal communication). We thank Harbour for picking up the factual errors he points out, but for our part would like to correct his mischaracterization of this case as our "prime example" of "something we would never think of" – it was one of many, and the rest still stand. More importantly, further cross-linguistic data disputes his claim that "singular 'we' arises because Winnebago uses only [+ augmented]." The use of "because" here illustrates the fallacy of inferring cause from single cases. Harbour's formulation predicts that if a language uses a more elaborated grammatical number system than just [+ augmented] it should not treat "1 b 2" as singular. Yet there are many languages which have a three-way number system and which nonetheless treat 1b2 in the same series as the singulars, like Bininj Gun-wok (Evans 2003a).

R6.5. Arrernte syllable structure

Nevins, and (briefly) Berent, take issue with our citing Arrente as an example of a language that defies the "Universal CV preference" by taking VC as the underlying syllable type. To contextualize their riposte, it is worth quoting Hyman (2008, p. 13):

In each of the above cases, there is no "knock-out argument." Anyone determined to maintain [these] universals can continue to do so, the worst consequence being an indeterminate or more awkward analysis... Architectural universals have this property: it all depends on your model and on what complications you are willing to live with.

Nevins' purported counter-analysis is of this type. To make it work is not just a matter of allowing onset-sensitive morae, not a problem in itself, but also of leaving the coda out of weight considerations, which is more problematic. Moreover, he only considers some of the phenomena that Breen and Pensalfini (1999) cite - such as the fact that the language game known as "Rabbit Talk" picks out exactly the VC syllable to move to the end of the word and ignores the arguments they give for postulating an initial vowel in words which start with a C when pronounced in isolation; namely, that this vowel appears when the word is not pronounced breath-group initially, and that postulating it simplifies other morphonological processes. A further argument in favor of the VC analysis (see Evans 1995b) is that although there is considerable variation in how words are pronounced in isolation (e.g., "sits" can be pronounced [anama], [anam], [nama], or [nam]), the number of syllables remains constant under the VC syllable analysis (at 2 in this instance), whereas the number of syllables under other analyses remains inconstant, even with the moraic adjustments that Nevins proposes. In short, proposing VC syllables lines up beautifully with a whole range of rules, whereas adopting the alternative, while workable, is crabbed by inelegancies.

A deeper problem than mere inelegance in forcing a language like Arrernte into a procrustean CV bed is that it draws attention away from explaining what forces have shaped the unusual Arrente structure. There is growing evidence from phonetic work by Butcher (2006) that the Arrernte VC syllable represents the phonologization of a whole syndrome of phonetic and phonological effects at work in Australian languages, linking a number of phenomena like: (a) the unusual proliferation of distinctive heterorganic clusters intervocalically (e.g., nk vs. r)k vs. Jik vs. n,k); (b) the large set of place contrasts for oral and nasal stops, including contrasts like alveolar versus postalveolar, that are most effectively cued by the leading rather than following vowel; (c) the neutralization of the apicoalveolar versus apico-postalveolar contrast word-initially; and (d) the widespread pre-stopping of intervocalic nasals and laterals.

The joint effect of all these features is to concentrate the maximum amount of contrasting information in intervocalic position, and make the leading vowel crucial for signalling the place of following consonants through F2 and F3 formant transitions. In other words, it is VC rather than CV units (or, more accurately, the continuous phonetic signals that correspond to them) which are the most informative, in terms of cueing the greater number of contrasts. This now allows us to give an insightful account of why VC syllables emerge as phonological units in some Australian languages. We would not be led to this explanation if we use too much abstract representational machinery to conjure away the existence of an aberrant pattern.

R6.6. Finite state grammars and cotton-top tamarins

Pullum & Scholz pull us up for propagating a misinterpretation of the findings in Fitch and Hauser (2004), by stating that cotton-top tamarins have a general ability to learn finite state languages. We stand corrected, and urge the reader to heed Pullum & Scholz's clarification that Fitch and Hauser's findings are restricted to the much smaller subset known as SL (strictly local) languages.

The investigation of recursive and augmentative structures in animal cognition is a current minor industry in cognitive science. If this is meant to shed light on the human language capacity, it is arguably quite misguided. Indefinite recursion, or discrete infinity as Chomsky prefers, is not an actual property of human language no human is capable of indefinite centre-embedding, for example. Only in the light of a radical distinction between competence and performance does this minor industry make any sense at all, and that little sense is undermined by the impossibility of testing animals directly for indefinite recursion.

R6.7. Cinque's generalization about Greenberg's Universal #20

Specifying strict ordering in noun phrases where the noun comes last, is raised by Rizzi as an example of how implicational universals can be made to follow from parameterized rules. However, Dryer (2009), drawing on a larger cross-linguistic sample, shows that you get better fit with the data if Cinque's formal categories (like Adjective) are replaced by semantic categories (like "modifier denoting size, color, etc."). Cinque's parameterization just gives a discrete and approximate characterization of statistical trends reflecting the interaction of many functional selectors.

R6.8. Subjacency and "invisible Wh-movement"

A number of commentators (Smolensky & Dupoux, Freidin, Rizzi) appealed to the Chomskyan notion of "Subjacency" as a convincing example of a highly abstract principle or rule-constraint which is manifested directly in languages like English. The idea in a nutshell is that movement of constituents is constrained so that they may not cross more than one "bounding node" in the syntactic tree (in English, bounding nodes are a NP, i.e., noun phrase, or a complementizer phrase headed by *that*). Hence you can say "What does John believe that Mary saw___?" but not "*What does John believe the rumor that Mary saw _?".

Now consider Rizzi's point that many languages, including Chinese, do not move their Wh-words (so called in situ Wh) - they would stay in the corresponding slots indicated in the just provided sentences - but appear to exhibit semantic interpretations that might constitute a parallel phenomenon. The apparent lack of Wh-movement in Chinese, which at first seems an embarrassment to the theory, is claimed however to mask covert movement at an underlying level, close to semantic interpretation: consequently the range of construals of a Chinese Whquestion is argued to be limited by the very same abstract constraint postulated for languages with overt movement (see examples in Rizzi's commentary). For generativists, this may seem like a double scoop: Not only is the constraint of an abstract enough kind that children would find it hard to learn in English, but it even holds in Chinese where it is, in effect, invisible, so could not possibly be learnt! Moreover, it is a completely arbitrary and

unmotivated constraint, so there is no apparent way for the child to infer its existence. Therefore, it must be part of UG, a quirk of our innate language organ.

But this in fact is not at all a convincing example to the other camp. First, to make it work in languages with and without overt "movement," it has to be so particularized ("parameterized") for each language so that, as we noted in the target article, the child might as well learn the whole thing (Newmeyer 2005). Second, there are perfectly good alternative models that do not use movement: Whwords are simply generated in the right place from the start, using other methods than movement to get the correct logical interpretations. Within LFG, a combination of the FOCUS discourse function and prosodic structure can get in situ Wh interpretation with no covert movement required (Mycock 2006). Through methods like these, LFG, HPSG, and Role and Reference Grammar have all developed ways of modelling both the English syntactic constraints and the Chinese interpretation constraints without any covert operations or unlearnable constraints.

Van Valin (1998) offers one of these rival explanations.⁶ He notes that for entirely general purposes one needs to have a notion of "focus domain" – roughly the unit that can be focussed on as new information in a sentence. A chunk like Mary did X is such a unit, but the rumor that Mary did X is not, because it marks the information as already presumed. So it makes no sense to question part of it. Focus domains have a precise structural characterization, and the informational structure of this kind explains both the English and the Chinese facts without positing covert entities or unmotivated rule constraints. Van Valin shows that the focus domains are easily learned by children from the range of possible yes/no question elliptical answers. This explanation needs the minimum equipment (a definition of focus domain) and no magic or UG.

Take your pick between the two explanations – an unmotivated, unlearnable, hidden constraint implying innate complex architecture, or a general design for communication requiring nothing you wouldn't need for other explanatory purposes. As C.-R. Huang (1993) notes after discussing the Mandarin data, "there is no concrete evidence for an abstract movement account ... invoking Ockham's razor would exclude movements at an abstract level."

R6.9. C-command

Rizzi claims that "no language allows coreference between a pronoun and a NP when the pronoun c-commands the NP" (*He said that John was sick; *each other saw the men). We pointed out that in languages (like Jiwarli) which lack constituency as the main organizing principle of sentence structure, notions like c-command cannot be defined (c-command is defined in terms of a particular kind of position higher in a syntactic constituency tree). But let us interpret this relation loosely and charitably, in terms of some general notion of domination or control. Then the observation would have very wide validity, but it would still be only a strong tendency. Counterexamples include Abaza reciprocals (Hewitt 1979) where the verbal affix corresponding to "each other" occupies the subject rather than the object slot, and Guugu Yimidhirr pronominalization, where it is possible to have a pronoun in the higher clause coreferential with a full NP in the lower clause (Levinson 1987).

Once again, then, we are dealing with a widespread but not universal pattern. The typological/functional paradigm explains it as emerging from a more general tendency in discourse (not just syntax): reference to entities proceeds with increasing generality, which is why "She came in. Barbara sat down" is not a way of expressing "Barbara came in. She sat down." (see Levinson [2000] for a detailed Gricean account). Many languages have grammaticalized the results of this more general tendency, producing grammatical rules which can then be described by c-command (if you want to use that formalism) but also by other formalisms. Seeking the most general explanation for cross-linguistic patterning here directs us to more general pragmatic principles ("use the least informative form compatible with ensuring successful reference given the current state of common ground"), rather than in terms of a specific syntactic constraint which only applies in a subset (even if a majority) of the world's languages. Many strong tendencies across languages appear to have a pragmatic or functional base, undermining a presumption of innate syntax.

R6.10. The "Verb-Object Constraint"

Baker offers his "Verb-Object Constraint (VOC)" as a proposal for a "true linguistic universal" of this high level kind – the generalization that the verb "combines" with the theme/patient before a nominal that expresses the agent/cause ("combines" is not defined, so we take it loosely). But this, too, rapidly runs afoul of the cross-linguistic facts. Note that his formulation equivocates between whether the constraint is formulated in terms of semantic roles such as agent and patient, or grammatical relations such as subject and object; some of the problems below pertain to one of these, some to the other, some to both:

1. Many languages don't have a clear notion of subject and object (see remarks in our target article). If we avoid this problem by stating the universal in terms of thematic roles (theme, patient, agent, experiencer), then we'll find such anomalies as languages which effectively idiomatize the subject-verb combination, only combining secondarily with the patient, employing idioms like "headache strikes me/the girl" or "fever burns him" (Evans 2004; Pawley et al. 2000).

2. Although polysynthetic languages like Mohawk usually incorporate objects rather than subjects into the verb, there are some that do incorporate transitive subjects/agents (not just objects as Baker's generalization would predict), most famously the Munda language Sora (Ramamurti 1931; cf. Anderson 2007).

3. There are twice as many VSO languages as VOS languages, 14% versus 7%, respectively, in a worldwide sample by Dryer (2009), but only VOS languages seem likely to facilitate a "combination" of verb and object.

4. Languages with ergative syntax group the object of transitives and the subject of intransitives as one type of entity, around which the syntax is organized (Baker notes this as a potential problem, but doesn't offer the solution).

Taken together, these problems make the VOC just one more observation that is certainly a statistical tendency, but which it is misleading to elevate to "universal" status.

References/Evans & Levinson: The myth of language universals

ACKNOWLEDGMENTS

We thank the following people for discussion, comments, and ideas in preparing this response: Mary Beckman, Balthasar Bickel, Penelope Brown, Andy Butcher, Grev Corbett, Bill Croft, Nick Enfield, Adele Goldberg, Martin Haspelmath, Yan Huang, Larry Hyman, Rachel Nordlinger, Masha Polinsky, Arie Verhagen, and Robert Van Valin.

NOTES

1. We use the term generative linguists to refer to linguists working specifically within frameworks deriving from the various theories of Chomsky. The term also has a wider sense, referring to a larger body of researchers working in fully explicit formal models of language such as LFG, HPSG, and their derivatives. These alternative theoretical developments have been much less wedded to the Chomskyan notion of Universal Grammar. LFG, in particular, has explicitly developed a much more flexible multidimensional architecture allowing for both constituency and dependency relations as well as the direct representation of prosodic units.

2. Of course these need to be relativized to modality: facts about the position of the larynx or the stability of some vowel formants across varying vocal tract configurations are only relevant to sound, whereas constraints on the production of hand or arm gestures are only relevant to manual sign. There will be some parallels, but the degree to which "sonority" is the same phenomenon in both, as Berent suggests, is still controversial (Sandler 2009; Sandler & Lillo-Martin 2006, p. 245).

3. Hockett (1960) correctly identified this as part of the "duality of patterning" (together with combinatorial semantics) necessary if language is to be unlimited in its productivity.

4. Lest this finding invite incredulity, given that the language family is assumed to be less than 6,000 years old, this figure is worked out by summing independent path-lengths in many branches of the family tree and looking for the total numbers of changes from an ancestral language. The number should be taken with a pinch of salt but is probably in the right general ballpark.

Abui, on Frantis ek Kratochvil's (2007) analysis, comes rather close.
 For other kinds of explanation in terms of processing costs, see Kluender (1992; 1998), Hawkins (1999), and Sag et al. (2007).

References

[The letters "a" and "r" before author's initials stand for target article and response references, respectively.]

- Ameka, F. & Levinson, S. C., eds. (2007) The typology and semantics of locative predicates: Posturals, positionals and other beasts. Linguistics 45(5/6):847–72. [Special issue] [arNE]
- Anderson, G. D. S. (2007) The Munda verb. Typological perspectives. Mouton de Gruyter. [rNE]
- Anderson, P. W. (1972) More is different. Science 177(4047):393-96. [AEG]
- Anderson, S. & Keenan, E. L. (1985) Deixis. In: Language typology and syntactic description, vol. III: Grammatical categories and the lexicon, ed. T. Shopen, pp. 259–308. Cambridge University Press. [aNE]
- Aoki, K. & Feldman, M. W. (1989) Pleiotropy and preadaptation in the evolution of human language capacity. Theoretical Population Biology 35:181–94. [aNE]
- (1994) Cultural transmission of a sign language when deafness is caused by recessive alleles at two independent loci. Theoretical Population Biology 45:253–61. [aNE]
- Arbib, M. A. (2005) From monkey-like action recognition to human language: An evolutionary framework for neurolinguistics. Behavioral and Brain Sciences 28(2):105–24. [aNE]
- Archibald, L. M. & Gathercole, S. E. (2007) The complexities of complex memory span: Storage and processing deficits in specific language impairment. Journal of Memory and Language 57:177–94. [ELB]
- Arnold, K. & Zuberbu
 Øhler, K. (2006) Language evolution: Semantic combinations in primate calls. Nature 441(7091):303. [GKP]
- Aronoff, M., Meir, I., Padden, C. & Sandler, W. (2008) The roots of linguistic organization in a new language. In: Holophrasis, compositionality and protolanguage, special issue of interaction studies, ed. D. Bickerton & M. Arbib, pp. 133–49. John Benjamins. [aNE]
- Atkinson, Q. D. & Gray, R. D. (2005) Are accurate dates an intractable problem for historical linguistics? In: Mapping our ancestry: Phylogenetic methods in anthropology and prehistory, ed. C. Lipo, M. O'Brien, S. Shennan & M. Collard, pp. 193–219. Aldine. [aNE]
- Atkinson, Q. D., Meade, A., Venditti, C., Greenhill, S. & Pagel, M. (2008) Languages evolve in punctuational bursts. Science: 319(5863):588. [aNE]

- Austin, P. (1995) Double case marking in Kanyara and Mantharta languages, Western Australia. In: Double case: Agreement by Suffixaufnahme, ed.
 F. Plank, pp. 363–79. Oxford University Press. [aNE]
- Austin, P. & Bresnan, J. (1996) Non-configurationality in Australian Aboriginal languages. Natural Language and Linguistic Theory 14(2):215–68. [arNE]
- Baker, M. C. (1988) Incorporation: A theory of grammatical function changing. University of Chicago Press. [MCB, aNE]
- (1993) Noun incorporation and the nature of linguistic representation. In: The role of theory in language description, ed. W. Foley, pp. 13–44. Mouton de Gruyter. [aNE]
- (1996) The polysynthesis parameter. Oxford University Press. [MCB, aNE]
 (2001) Atoms of language: The mind's hidden rules of grammar. Basic Books.
 [MCB, aNE, MH]
- (2003) Linguistic differences and language design. Trends in Cognitive Science 7:349-53. [aNE]
- (in press) Formal generative typology. In: Oxford handbook of linguistic analysis, ed. B. Heine & H. Narrog. Oxford University Press. [MCB]
- Barwise, J. & Cooper, R. (1981) Generalized quantifiers and natural language. Linguistics and Philosophy 4:159–219. [aNE]
- Bateman, J. (1986a) Tone morphemes and aspect in Iau. Nusa 26:1–50. [rNE] (1986b) Tone morphemes and status in Iau. Nusa 26:51–76. [rNE]
- (1990a) Iau segmental and tone phonology. Nusa 32:29–42. [rNE] (1990b) Pragmatic functions of the tone morphemes and illocutionary force
- particles in Iau. Nusa 32:1–28. [rNE] Bates, E., Devescovi, A. & Wulfeck, B. (2001) Psycholinguistics: A cross-language perspective. Annual Review of Psychology 52:369–96. [aNE]
- Bates, E. & Goodman, J. (1999) On the emergence of grammar from the lexicon. In: Mechanisms of language acquisition, ed. B. MacWhinney, pp. 29–79. Erlbaum. [ELB]
- Bates, E. & MacWhinney, B. (1987) Competition, variation and language learning. In: Mechanisms of language acquisition, ed. B. MacWhinney, pp. 157–94. Erlbaum. [ELB]
- Bavin, E. L., Wilson, P., Maruff, P. & Sleeman, F. (2005) Spatio-visual memory of children with specific language impairment: Evidence for generalized processing problems. International Journal of Language and Communication Disorders 40:319–32. [ELB]
- Baylis, J. R. (1982) Avian vocal mimicry: Its function and evolution. In: Acoustic communication in birds, ed. D. E. Kroodsma & E. H. Miller, pp. 51–83. Academic Press. [BMe]
- Baynes, K. & Gazzaniga, M. (2005) Lateralization of language: Toward a biologically based model of language. The Linguistic Review 22:303–26. [aNE]
- Becker, M., Ketrez, N. & Nevins, A. (submitted) The surfeit of the stimulus: Analytic biases filter lexical statistics in Turkish devoicing neutralization. [IB]
- Berent, I. (2008) Are phonological representations of printed and spoken language isomorphic? Evidence from the restrictions on unattested onsets. Journal of Experimental Psychology: Human Perception and Performance 34:1288–1304. [IB]
- Berent, I., Lennertz, T., Jun, J., Moreno, M. A. & Smolensky, P. (2008) Language universals in human brains. Proceedings of the National Academy of Sciences USA 105:5321–25. [IB]
- Berent, I., Lennertz, T., Smolensky, P. & Vaknin-Nusbaum, V. (2009) Listeners' knowledge of phonological universals: Evidence from nasal clusters. Phonology 26:1–34. [IB]
- Berent, I., Steriade, D., Lennertz, T. & Vaknin, V. (2007) What we know about what we have never heard: Evidence from perceptual illusions. Cognition 104:591–630. [IB]
- Bermudez, J. L. (2005) Philosophy of psychology: A contemporary introduction. Routledge. [DCP]
- Berry, L. B. (1998) Alignment and adjacency in optimality theory: Evidence from Walpiri and Arrente. Doctoral dissertation, University of Sydney, Sydney, Australia. [IB]
- Bickel, B. (2009) Typological patterns and hidden diversity. Plenary Talk, 8th Association for Linguistic Typology Conference, Berkeley, CA, July 24, 2009. [rNE]
 Bickerton, D. (1981) Roots of language. Karoma. [arNE]
- (2009) Adam's tongue: How humans made language, how language made humans. Hill and Wang. [DCP]
- Bitterman, M. E. (1975) The comparative analysis of learning. Science 188(4189):699–709. [BMc]
- Blake, B. J. (1979) Pitta-Pitta. In: Handbook of Australian languages, vol. 1, ed. R. M. W. Dixon & B. J. Blake, pp. 182–242. Australian National University (ANU) Press. [rNE]
- (2001) The noun phrase in Australian languages. In: Forty years on: Ken Hale and Australian languages, ed. D. Nash, M. Laughren, P. Austin & B. Alpher, pp. 415–25. Pacific Linguistics. [MTa]
- Blevins, J. (1995) The syllable in phonological theory. In: Handbook of phonological theory, ed. J. Goldsmith, pp. 206–44. Blackwell. [aNE]
- (2001) Where have all the onsets gone? Initial consonant loss in Australian aboriginal languages. In: Forty years on: Ken Hale and Australian languages,

References/Evans & Levinson: The myth of language universals

ed. J. Simpson, D. Nash, M. Laughren, P. Austin & B. Alpher, pp. 481–92. Pacific Linguistics 512. The Australian National University. [AN]

Boeckx, C. & Hornstein, N. (2008) Superiority, reconstruction, and islands. In: Foundational issues in linguistic theory, ed. R. Freidin, C. Otero & M.-L. Zubizaretta, pp. 197–225. MIT Press. [RF]

Bohnemeyer, J. & Brown P. (2007) Standing divided: Dispositional verbs and locative predications in two Mayan languages. Linguistics 45(5/6):1105–51. [aNE]

Bok-Bennema, R. (1991) Case and agreement in Inuit. Foris. [MCB]

Boroditsky, L. (2001) Does language shape thought? English and Mandarin speakers' conceptions of time. Cognitive Psychology 43(1):1–22. [aNE]

Boroditsky, L., Schmidt, L. & Phillips, W. (2003) Sex, syntax, and semantics.
In: Language in mind: Advances in the study of language and cognition, ed.
D. Gentner & S. Goldin-Meadow, pp. 61–80. Cambridge University Press. [aNE]

- Bowerman, M. & Levinson, S., eds. (2001) Language acquisition and conceptual development. Cambridge University Press. [aNE]
- Boyd, R. & Richerson, P. J. (1985) Culture and the evolutionary process. University of Chicago Press. [arNE]
- (2005) Solving the puzzle of human cooperation in evolution and culture. In: Evolution and culture. A Fyssen foundation symposium, ed. S. C. Levinson & P. Jaisson, pp. 105–32. MIT Press. [aNE]
- Braithwaite, B. (2008) Word and sentence structure in Nuuchahnulth. Unpublished doctoral dissertation, Linguistics Section, Newcastle University, United Kingdom. [MTa]
- Breen, G. & Pensalfini, R. (1999) Arrente: A language with no syllable onsets. Linguistic Inquiry 30(1):1–26. [arNE, AN]

Bresnan, J. (2001) Lexical functional syntax. Blackwell. [aNE]

Brodsky, P., Waterfall, H. R. & Edelman, S. (2007) Characterizing motherese: On the computational structure of child-directed language. In: Proceedings of the 29th Cognitive Science Society Conference, ed. D. S. McNamara & J. G. Trafton, pp. 833–38. Cognitive Science Society. [HW]

Brown, P. (1994) The INs and ONs of Tzeltal locative expressions: The semantics of static descriptions of location. In: Space in Mayan languages, ed.
J. B. Haviland & S. C. Levinson, pp. 743–90. [Linguistics 32(4/5): Special issue] [aNE, NP]

- Brown, S., Ngan, E. & Liotti, M. (2008) A larynx area in the human motor cortex. Cerebral Cortex 18:837–45. [BMe]
- Burzio, L. (2002) Missing players: Phonology and the past-tense debate. Lingua 112(3):157–99. [AEG]
- Butcher, A. (2006) Australian Aboriginal languages: Consonant-salient phonologies and the "place-of-articulation imperative". In: Speech production: Models, phonetics processes and techniques, ed. J. M. Harrington & M. Tabain, pp. 187–210. Psychology Press. [rNE]
- Butt, M., Dalrymple, M. & Holloway King, T., eds. (2006) Intelligent linguistic architectures: Variations on themes by Ronald M. Kaplan. CSLI. [rNE]
- Bybee, J. (2000) Lexicalization of sound change and alternating environments. In: Papers in laboratory phonology V: Acquisition and the lexicon, ed. M. D. Broe & J. B. Pierrehumbert, pp. 250–68. Cambridge University Press. [aNE]
- (2006) Language change and universals. In: Linguistic universals, ed. R. Mairal & J. Gil, pp. 179–94. Cambridge University Press. [BMe]
- Cable, S. (2007) The grammar of Q: Q-particles and the nature of Wh-fronting, as revealed by the Wh-questions of Tlingit. Doctoral dissertation, Massachusetts Institute of Technology. Available at: <u>http://ling.auf.net/lingbuzz/000553</u>. [DP]
- (2008) Q-particles and the nature of wh-fronting. In: Quantification: A crosslinguistic perspective, ed. L. Matthewson, pp. 105–78. Elsevier. Available at: <u>http://people.umass.edu/scable/papers/Q-Particles-and-Wh-Fronting.pdf</u>. [DP]
- Catania, A. C. (1973) The psychologies of structure, function, and development. American Psychologist 28:434–43. [ACC]
 - (1987) Some Darwinian lessons for behavior analysis. A review of Peter
 J. Bowler's "The eclipse of Darwinism." Journal of the Experimental Analysis of Behavior 47:249–57. [ACC]
 - (1990) What good is five percent of a language competence? Behavioral and Brain Sciences 13:729–31. [ACC]
 - (1995) Single words, multiple words, and the functions of language. Behavioral and Brain Sciences 18:184–85. [ACC]
 - (2001) Three varieties of selection and their implications for the origins of language. In: Language evolution: Biological, linguistic and philosophical perspectives, ed. G. Gyori, pp. 55–71. Peter Lang. [ACC]
 - (2003) Why behavior should matter to linguists. Behavioral and Brain Sciences 26:670–72. [ACC]
 - (2004) Antecedents and consequences of words. European Journal of Behavior Analysis 5:55–64. [ACC]
 - (2008) Brain and behavior: Which way does the shaping go? Behavioral and Brain Sciences 31(5):516–17. [ACC]

Catania, A. C. & Cerutti, D. (1986) Some nonverbal properties of verbal behavior. In: Analysis and integration of behavioral units, ed. T. Thompson & M. D. Zeiler, pp. 185–211. Erlbaum. [ACC]

- Catania, A. C. & Shimoff, E. (1998) The experimental analysis of verbal behavior. Analysis of Verbal Behavior 15:97–100. [ACC]
- Cavalli-Sforza, L. L. (1997) Genes, peoples, and languages. Proceedings of the National Academy of Sciences USA 94:7719–24. [BMe]
- Chater, N. & Christiansen, M. H. (in press) Language acquisition meets language evolution. Cognitive Science. [MHC]
- Chater, N., Reali, F. & Christiansen, M. H. (2009) Restrictions on biological adaptation in language evolution. Proceedings of the National Academy of Sciences USA 106(4):1015–20. [MHC]
- Chater, N. & Vita'nyi, P. (2007) 'Ideal learning' of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology 51:135–63. [MHC]
- Chomsky, N. (1955) Logical syntax and semantics: Their linguistic relevance. Language 31(1):36–45. [aNE]
 - (1957) Syntactic structures. De Gruyter. [MCB, aNE, RF]
 - (1959) A review of B. F. Skinner's Verbal Behavior. Language 35:26–58. [BMe]
 - (1964) The logical basis of linguistic theory. Proceeding of the Ninth International Congress of Linguists, pp. 914–1008. Mouton de Gruyter. [RF]
 - (1965) Aspects of the theory of syntax. MIT Press. [MCB, ACC, aNE] (1973) Conditions on transformations. In: A Festschrift for Morris Halle, ed. S.
 - Anderson & P. Kiparsky, pp. 232–86. Holt, Rinehart, & Winston. [RF] (1977) On wh-movement. In: Formal syntax, ed. P. Culicover, T. Wasow &
 - A. Akmajian, pp. 71–132. Academic Press. [RF]
 - (1980) On cognitive structures and their development: A reply to Piaget. In: Language and learning: The debate between Jean Piaget and Noam Chomsky, ed. M. Piattelli-Palmarini, pp. 35–52. Harvard University Press. [aNE]
 - (1981) Lectures on government and binding. Foris. [aNE]
 - (1995) The minimalist program. MIT Press. $\ \ [LR]$
 - (2000) Minimalist inquiries: The framework. In: Step by step essays in minimalist syntax in honor of Howard Lasnik, ed. R. Martin, D. Michaels & J. Uriagereka. MIT Press. [LR]
 - (2007) Of minds and language. Biolinguistics 1:1009-27. [rNE]
 - (2008) On phases. In: Foundational issues in linguistic theory, ed. R. Freidin, C. Otero & M-L. Zubizaretta, pp. 133–66. MIT Press. [RF]
- Christiansen, M. H. & Chater, N. (1999) Toward a connectionist model of recursion in human linguistic performance. Cognitive Science 23:157 –205. [MHC]
 - (2003) Constituency and recursion in language. In: The handbook of brain theory and neural networks, 2nd edition, ed. M. A. Arbib, pp. 267–71. MIT Press. [MHC]
 - (2008) Language as shaped by the brain. Behavioral and Brain Sciences 31(5):489–509; discussion 509–58. [BMe, MHC, arNE, AEG, DCP, HW] eds. (2001) Connectionist psycholinguistics. Ablex. [BMc]
- Christiansen M. H. Chatan N. & Dashi E. (in mose) The hist
- Christiansen, M. H., Chater, N. & Reali, F. (in press) The biological and cultural foundations of language. Communicative and Integrative Biology. [MHC]
- Christiansen, M. H., Collins, C. & Edelman, S., eds. (2009) Language universals. Oxford University Press. [rNE]
- Christiansen, M. H. & Kirby, S. (2003) Language evolution. Oxford University Press. [aNE]
- Christiansen, M. H. & MacDonald, M.C. (in press) A usage-based approach to recursion in sentence processing. Language Learning. [MHC]
- Christiansen, M. H., Onnis, L. & Hockema, S. A. (2009) The secret is in the sound: From unsegmented speech to lexical categories. Developmental Science 12:388–95. [BMc]
- Christianson, K. & Ferreira, F. (2005) Conceptual accessibility and sentence production in a free word order language (Odawa). Cognition 98:105–35. [aNE]
- Chung, S. (1989) On the notion "null anaphor" in Chamorro. In: The null subject parameter, ed. O. Jaeggli & K. Safir, pp. 143–84. Kluwer. [aNE]
- (1998) The design of agreement. University of Chicago Press. [MCB]
- Cinque, G. (1990) Types of A'-Dependencies. MIT Press. [LR]
- (2005) Deriving Greenberg's universal 20 and its exceptions. Linguistic Inquiry 36:315–32. [LR]
- Clark, A. (2001) Unsupervised language acquisition: Theory and practice. Doctoral dissertation, University of Sussex, England. [BMe]
- (2006) Language, embodiment, and the cognitive niche. Trends in Cognitive Sciences 10(8):370–74. [DCP]
- Clark, H. H. (1975) Bridging. In: Theoretical issues in natural language processing, ed. R. C. Schank & B. L. Nash-Webber, pp. 169–74. Association for Computing Machinery. [MHC]
- Clements, G. N. (1990) The role of the sonority cycle in core syllabification. In: Papers in laboratory phonology. I: Between the grammar and physics of speech, ed. J. Kingston & M. Beckman, pp. 282–333. Cambridge University Press. [IB]

References/Evans & Levinson: The myth of language univ

Clements, N. & Keyser, S. J. (1983) CV Phonology: A generative theory of the syllable. MIT Press. [aNE]

Colarusso, J. (1982) Western Circassian vocalism. Folia Slavica 5:89–114. [aNE] Collard, I. F. & Foley, R. A. (2002) Latitudinal patterns and environmental

determinants of recent cultural diversity: Do humans follow biogeographical rules? Evolutionary Ecology Research 4:371-83. [aNE]

Comrie, B. (1976) Aspect. Cambridge University Press. [aNE] (1985) Tense. Cambridge University Press. [aNE]

(1989) Language universals and linguistic typology, 2nd edition. Blackwell. [aNE]

Cook, R. G. & Wasserman, E. A. (2006) Relational discrimination learning in pigeons. In: Comparative cognition: Experimental explorations of animal intelligence, ed. E. A. Wasserman & T. R. Zentall, pp. 307–24. Oxford University Press. [BMc]

Coon, J. & Preminger, O. (2009) Positional roots and case absorption. In: New perspectives in Mayan linguistics (MIT Working Papers in Linguistics 59), ed. H. Avelino, J. Coon & E. Norcliffe, pp. 35–58. Massachusetts Institute of Technology. Available at: <u>http://web.mit.edu/jcoon/www/Jessica_Coon/</u> Publications_files/coonpremingerssila.pdf. [DP]

Coppock, E. (2008) The logical and empirical foundations of Baker's paradox. Doctoral dissertation, Stanford University. [AEG]

Corbett, G. (2000) Number. Cambridge University Press. [DH]

Corina, D. P. (1990) Reassessing the role of sonority in syllable structure: Evidence from visual gestural language. In: Proceedings of the 26th regional meeting of the Chicago Linguistic Society, vol. 2, ed. M. Ziolkowski, M. Noske & K. Deaton, pp. 33–43. University of Chicago Press. [IB]

Crain, S. (1991) Language acquisition in the absence of experience. Behavioral and Brain Sciences 14:597–650. [LR]

Croft, W. (1991) Syntactic categories and grammatical relations: The cognitive organization of information. University of Chicago Press. [WC]

(2000a) Explaining language change: An evolutionary approach. Longman. [WC]

(2000b) Parts of speech as language universals and as language-particular categories. In: Approaches to the typology of word classes, ed. P. Vogel & B. Comrie, pp. 65–102. Mouton de Gruyter. [MH]

(2001) Radical construction grammar. Syntactic theory in typological perspective. Oxford University Press. [WC, aNE, AEG]

(2003) Typology and universals, 2nd edition. Cambridge University Press. [WC, aNE, MH]

(2007) Beyond Aristotle and gradience: A reply to Aarts. Studies in Language 31:409–30. [WC]

(2009) Methods for finding language universals in syntax. In: Universals of language today, ed. S. Scalise, E. Magni & A. Bisetto, pp. 145–64. Springer. [WC]

Croft, W. & Cruse, D. A. (2004) Cognitive linguistics. Cambridge University Press. [WC]

Culicover, P. W. (1999) Syntactic nuts: Hard cases in syntax. Oxford University Press. [SP]

Culicover, P. W. & Jackendoff, R. (2005) Simpler syntax. Oxford University Press. [SP]

Cutler, A., Mehler, J., Norris, D. & Segui, J. (1983) A language-specific comprehension strategy. Nature 304:159–60. [aNE]

(1989) Limits on bilingualism. Nature 340:229-30. [aNE]

Cysouw, M. (2001) The paradigmatic structure of person marking. Unpublished doctoral dissertation, Radboud University, Nijmegen, Netherlands. [aNE]

Darwin, C. (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray. [DCP] (1871) The descent of man and selection in relation to sex. John Murray. [rNE, BMe, DCP]

Davidoff, J., Davies, I. & Roberson, D. (1999) Color categories of a stone-age tribe. Nature 398:203–204. [aNE]

Davidson, L. (2006) Phonotactics and articulatory coordination interact in phonology: Evidence from nonnative production. Cognitive Science 30:837–62. [IB]

Davis, S. (1988) Syllable onsets as a factor in stress rules. Phonology 5:1-19. [AN]

Dawkins, R. (1982) The extended phenotype. Freeman. [ACC]

de Lacy, P. (2006) Markedness: Reduction and preservation in phonology. Cambridge University Press. [IB]

(2008) Phonological evidence. In: Phonological argumentation: Essays on evidence and motivation, ed. S. Parker, pp. 43–77. Equinox. [IB]

Dediu, D. & Ladd, D. R. (2007) Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proceedings of the National Academy of Sciences of the USA 104:10944–49. [arNE]

de Leo'n, L. (1988) Noun and numeral classifiers in Mixtec and Tzotzil: A referential view. Unpublished Ph.D. dissersation, University of Sussex.

Dench, A. & Evans, N. (1988) Multiple case-marking in Australian languages. Australian Journal of Linguistics 8(1):1–47. [aNE] Dixon, R. M. W. (1972) The Dyirbal language of North Queensland. Cambridge University Press. [aNE]

(1977) The syntactic development of Australian languages. In: Mechanisms of syntactic change, ed. C. Li, pp. 365–418. University of Texas Press. [aNE]

Doupe', A. J. & Kuhl, P. K. (1999) Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience 22:567–631. [BMe]

Downing, L. (1998) On the prosodic misalignment of onsetless syllables. Natural Language and Linguistic Theory 16:1–52. [AN]

Dowsett-Lemaire, F. (1979) The imitation range of the song of the Marsh Warbler, Acrocephalus palustris, with special reference to imitations of African birds. Ibis 121:453–68. [BMe]

Dryer, M. (1998) Why statistical universals are better than absolute universals. Chicago Linguistic Society: The Panels 33:123–45. [aNE]

(2005) Order of subject, object, and verb. In: The world atlas of language structures, ed. M. Haspelmath, M. Dryer, D. Gil & B. Comrie, pp. 386–89. Oxford University Press. [MCB]

(2009) On the order of demonstrative, numeral, adjective and noun: An alternative to Cinque. Public Lecture, Max Planck Institute for Evolutionary Anthropology, Department of Linguistics, and University of Leipzig, Institute of Linguistics, May 19, 2009. [rNE]

Dubois, J. W. (1987) The discourse basis of ergativity. Language 63(4):805–55. [aNE]

Dunn, M., Greenhill, S. J., Levinson, S. C. & Gray, R. D. (in preparation) Phylogenetic trees reveal lineage specific trends in the evolved structure of language. [rNE]

Dunn, M., Levinson, S. C., Lindstro^{-m}, E., Reesink, G. & Terrill, A. (2008) Structural phylogeny in historical linguistics: Methodological explorations applied in Island Melanesia. Language 84(4):710–59. [aNE]

Dunn, M., Terrill, A., Reesink, G., Foley, R. & Levinson, S. C. (2005) Structural phylogenetics and the reconstruction of ancient language history. Science 309:2072–75. [aNE]

Durham, W. H. (1991) Coevolution: Genes, culture and human diversity. Stanford University Press. [arNE]

Durie, M. (1985) A grammar of Acehnese, on the basis of a dialect of North Aceh. Foris. [aNE]

Edelman, S. & Christiansen, M. H. (2003) How seriously should we take minimalist syntax? Trends in Cognitive Sciences 7.2:60–61. [rNE]

Edelman, S. & Solan, Z. (in press) Translation using an automatically inferred structured language model. [HW]

Edelman, S., Solan, Z., Horn, D. & Ruppin, E. (2004) Bridging computational, formal and psycholinguistic approaches to language. In: Proceedings of the 26th Conference of the Cognitive Science Society, ed. K. Forbus, D. Gentner & T. Regier, pp. 345–50. Erlbaum. [HW]

(2005) Learning syntactic constructions from raw corpora. In: Proceedings of the 29th annual Boston University Conference on language development, ed. A. Brugos, M. R. Clark-Cotton, & S. Ha, pp. 180–91. Cascadilla Press. [HW]

Edelman, S. & Waterfall, H. R. (2007) Behavioral and computational aspects of language and its acquisition. Physics of Life Reviews 4:253–77. [HW]

Elman, J. L. (1990) Finding structure in time. Cognitive Science 14:179–211. [BMc]

Elman, J. L., Bates, E., Johnson, M. H. & Karmiloff–Smith, A. (1996) Rethinking innateness: A connectionist perspective on development. MIT Press. [aNE]

Emmorey, K. (2002) Language, cognition, and the brain: Insights from sign language research. Erlbaum. [aNE]

Enfield, N. J. (2004) Adjectives in Lao. In: Adjective classes: A cross-linguistic typology, ed. R. M. W. Dixon & A. Aikhenvald, pp. 323–47. Oxford University Press. [aNE]

- Enfield, N. J. & Levinson, S. C. (2006) Roots of human sociality: Cognition, culture and interaction. Berg. [aNE]
- England, N. C. (1983) A grammar of Mam, a Mayan language. University of Texas Press. [DP]

(2001) Introduccio'n a la grama'tica de los idiomas Mayas. Cholsomaj. [aNE]
(2004) Adjectives in Mam. In: Adjective classes: A cross-linguistic typology, ed. R. M. W. Dixon, pp. 125–46. Oxford University Press. [aNE]

Evans, N. (1995a) A grammar of Kayardild. Mouton de Gruyter. [MCB, aNE] (1995b) Current Issues in Australian phonology. In: Handbook of phonological theory, ed. J. Goldsmith, pp. 723–61. Blackwell. [rNE]

(1995c) Multiple case in Kayardild: Anti-iconic suffix ordering and the diachronic filter. In: Double case: Agreement by Suffixaufnahme, ed. F. Plank, pp. 396–430. Oxford University Press. [aNE]

(2002) The true status of grammatical object affixes: Evidence from Bininj Gun-wok. In: Problems of polysynthesis, ed. N. Evans & H.-J. Sasse, pp. 15–50. Akademie. [aNE]

(2003a) Bininj Gun-wok: A pan-dialectal grammar of Mayali, Kunwinjku and Kune. 2 vols. Pacific Linguistics. [arNE]

ences/Evans & Levinson: The myth of language universals

- (2003b) Context, culture and structuration in the languages of Australia. Annual Review of Anthropology 32:13–40. [aNE]
- (2004) Experiencer objects in Iwaidjan languages. In: Non-nominative subjects, vol. 1, ed. B. Peri & S. Karumuri Venkata, pp. 169–92. John Benjamins. [rNE]
- Evans, N. & Osada, T. (2005) Mundari: The myth of a language without word classes. Linguistic Typology 9(3):351–90. [arNE]
- Evans, N. & Sasse, H.-J., eds. (2002) Problems of polysynthesis. Akademie. [aNE] Everett, D. L. (2005) Cultural constraints on grammar and cognition in Piraha⁻.
- Another look at the design features of human language. Current Anthropology 46:621–46. [aNE, BMe]
- Fink, G. R., Manjaly, Z. M., Stephen, K. E., Gurd, J. M., Zilles, K., Amunts, K. & Marshall, J. C. (2005) A role for Broca's area beyond language processing: Evidence from neuropsychology and fMRI. In: Broca's area, ed. K. Amunts & Y. Grodzinsky, pp. 254–71. Oxford University Press. [aNE]
- Fisher S. E. & Marcus, G. F. (2006) The eloquent ape: Genes, brains and the evolution of language. Nature Reviews Genetics 7:9–20. [arNE]
- Fisher, S. & Scharff, C. (2009) FOXP2 as a molecular window into speech and language. Trends in Genetics 25(4):166–77. [rNE]
- Fitch, W. T. (2006) The biology and evolution of music: A comparative perspective. Cognition 100(1):173–215. [rNE]
- (2008) Co-evolution of phylogeny and glossogeny: There is no "logical problem of language evolution." Behavioral and Brain Sciences 31(5):521–22. [BMe]
- Fitch, W. T. & Hauser, M. D. (2004) Computational constraints on syntactic processing in a nonhuman primate. Science 303(5656):377–80. [arNE, DM, GKP]
- Fitch, W. T., Hauser, M. D. & Chomsky, N. (2005) The evolution of the language faculty: Clarifications and implications. Cognition 97:179–210. [BMe, aNE]
- Fodor, J. A. (1975) The language of thought. Thomas Y. Crowell. [aNE] (1983) The modularity of mind. MIT Press. [aNE]
- Francois, A. (2005) A typological overview of Mwotlap, an Oceanic language of Vanuatu. Linguistic Typology 9(1):115–46. [aNE]
- Freidin, R. (1992) Foundations of generative syntax. MIT Press. [RF]
- Freidin, R. & Quicoli, C. (1989) Zero-stimulation for parameter setting. Behavioral and Brain Sciences 12:338–39. [RF]
- Friederici, A. (2004) Processing local transitions versus long-distance syntactic hierarchies. Trends in Cognitive Science 8:245–47. [aNE, GKP]
- Gathercole, S. E. & Baddeley, A. D. (1989) Development of vocabulary in children and short-term phonological memory. Journal of Memory and Language 28:200–13. [ELB]
- Gazdar, G., Klein, E., Pullum, G. & Sag, I. (1985) Generalized phrase structure grammar. Blackwell. [aNE]
- Gazdar, G. & Pullum, G. K. (1982) Generalized phrase structure grammar: A theoretical synopsis. Indiana Linguistics Club. [aNE]
- Gelman, S. (2003) The essentialist child: Origins of essentialism in everyday thought. Oxford University Press. [AEG]
- Gentner, D. (2003) Why we are so smart. In: Language in mind, ed. D. Gentner & S. Goldin-Meadow, pp. 195–236. MIT Press. [rNE]
- Gentner, D. & Boroditsky, L. (2001) Individuation, relativity, and early word learning. In: Language acquisition and conceptual development, ed. M. Bowerman & S. C. Levinson, pp. 215–56. Cambridge University Press. [aNE]
- Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. (2006) Recursive syntactic pattern learning by songbirds. Nature 440(7088):1204–1207. [BMc, DM]
- Gil, D. (2001) Escaping eurocentrism. In: Linguistic fieldwork, ed. P. Newman & M. Ratliff, pp. 102–32. Cambridge University Press. [aNE]
- Givo'n, T. (2008) The genesis of syntactic complexity: Diachrony, ontogeny, neuro-Cognition, evolution. John Benjamins. [aNE]
- Gleitman, L. (1990) The structural sources of verb meanings. Language Acquisition 1:3–55. [aNE]
- Goddard, C. & Wierzbicka, A., eds. (2002) Meaning and universal grammar theory and empirical findings. 2 volumes. John Benjamins. [rNE]
- Goedemans, R. (1998) Weightless segments. Holland Academic Graphics. [AN]
- Goffman, E. (1978) Response cries. Language 54(4):787-815. [SP]

Goldberg, A. E. (2006) Constructions at work: The nature of generalization in language. Oxford University Press. [AEG]

- Goldberg, A. E. & Boyd, J. K. (2009) Learning what not to say: Categorization, preemption and discounting in a-adjectives. Unpublished manuscript, Princeton University. [AEG]
- Goldin-Meadow, S. (2003) The resilience of language: What gesture creation in deaf children can tell us about how all children learn language. Psychology Press. [aNE]
- Goldsmith, J. A. (2007) Towards a new empiricism. In: Recherches linguistiques a Vincennes, vol. 36, ed. J. B. de Carvalho. Presses universitaires de Vincenne. [HW]

- Goldstein, M. H., King, A. P. & West, M. J. (2003) Social interaction shapes babbling: Testing parallels between birdsong and speech. Proceedings of the National Academy of Sciences USA 100(13):8030–35. [BMc]
- Goldstein, M. H. & Schwade, J. A. (2008) Social feedback to infants' babbling facilitates rapid phonological learning. Psychological Science 19:515–23. [HW]
- Gordon, M. (2005) A perceptually-driven account of onset-sensitive stress. Natural Language and Linguistic Theory 23:595–653. [AN]
- Gordon, P. (2004) Numerical cognition without words: Evidence from Amazonia. Science 306(5695):496–99. [aNE]
- Gray, R. D. & Atkinson, Q. D. (2003) Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature 426:435–39. [aNE]
- Greenberg, J. H. (1963a) Some universals of grammar with particular reference to the order of meaningful elements. In: Universals of language, ed. J. H. Greenberg, pp. 72–113. MIT Press. [aNE, LR]
- ed. (1963b) Universals of language. MIT Press. [aNE]
- ed. (1966) Language universals. Mouton de Gruyter. [aNE]
- (1969) Some methods of dynamic comparison in linguistics. In: Substance and structure of language, ed. J. Puhvel, pp. 147–203. University of California Press. [WC, BMe]
- (1978a) Diachrony, synchrony and language universals. In: Universals of human language, vol. 1: Method and theory, ed. J. H. Greenberg, C. A. Ferguson & E. A. Moravcsik, pp. 61–92. Stanford University Press. [WC]
- ed. (1978b) Generalizations about numeral systems. In: Universals of human language, ed. J. H. Greenberg, pp. 249–96. Stanford University Press. [aNE]
- (1979) Rethinking linguistics diachronically. Language 55:275-90. [WC]
- ed. (1986) On being a linguistic anthropologist. Annual Review of Anthropology 15:1–24. [aNE]
- Greenberg, J. H., Osgood, C. E. & Jenkins, J. J. (1963) Memorandum concerning language universals. In: Universals of language, ed. J. H. Greenberg, pp. xv-xxvii. MIT Press. [aNE]
- Greenfield, P. M. (1991) Language, tools, and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences 14(4):531–51. [aNE]
- Grice, H. P. (1967) Logic and conversation. William James Lectures. Unpublished manuscript, Harvard University, Cambridge, MA. [MHC]
- Grimshaw, J. & Samek-Lodovici, V. (1998) Optimal subjects and subject universals.
 In: Is the best good enough? Optimality and competition in syntax, ed. P.
 Barbosa, D. Fox, P. Hagstrom, M. McGinnis& D. Pesetsky, pp. 193–219. MIT
 Press. [PS]
- Gross, M. (1979) On the failure of generative grammar. Language 55:859–85. [WC]
- Guo, J., Lieven, E., Budwig, N., Ervin-Tripp, S., Nakamura, K. & Ozcaliskan, S., eds. (2008) Cross-linguistic approaches to the psychology of language. Psychology Press. [aNE]
- Hagoort, P. (2005) On Broca, brain and binding: A new framework. Trends in Cognitive Science 9:416–23. [aNE]
- Haiman, J. (1985) Iconicity in syntax. Cambridge University Press. [AEG]
- Hale, K. L. (1964) Classification of northern Paman languages, Cape York Peninsula, Australia: A research report. Oceanic Linguistics 3(2):248–64. [AN]
 - (1973) Person marking in Warlpiri. In: A Festschrift for Morris Halle, ed. S. A. Anderson & P. Kiparsky, pp. 308–44. Holt, Rinehart, & Winston. [MTa]
 - (1982) The logic of Damin kinship terminology. In: Languages of kinship in Aboriginal Australia, ed. J. Heath, F. Merlan & A. Rumsey, pp. 31–37. Oceania Linguistic Monographs. [rNE]
 - (1983) Warlpiri and the grammar of non-configurational languages. Natural Language and Linguistic Theory 1:5–47. [aNE]
 - (1997) Some observations on the contribution of local languages to linguistic science. Lingua 100:71–89. [DH]
- Hale, K., Laughren, M. & Simpson, J. (1995) Warlpiri. In: Syntax. Ein internationales Handbuch zeitgeno ssischer Forschung. (An international handbook of contemporary research), ed. J. Jacobs, A. von Stechow, W. Sternefeld & T. Vennemann, pp. 1430–51. Walter de Gruyter. [aNE]
- Halle, M. (1970) Is Kabardian a vowel-less language? Foundations of Language 6:95–103. [aNE]
- Hankamer, J. (1989) Morphological parsing and the lexicon. In: Lexical representation and process, ed. W. Marslen-Wilson, pp. 392–408. MIT Press. [aNE]
- Harbour, D. (2006) Valence and atomic number. Unpublished manuscript, Queen Mary, London. Available at: <u>http://webspace.qmul.ac.uk/dharbour/Harbour%20Valence%20Revised.pdf</u>. [DP, DH]
- (2007) Morphosemantic number: From Kiowa noun dasses to UG number features. Springer. [DH]

(in press) Descriptive and explanatory markedness. Morphology. [DH]

Harman, G. & Kulkarni, S. (2007) Reliable reasoning: Induction and statistical Learning theory. MIT Press. [MHC]

References/Evans & Levinson: The myth of language univ

Harnad, S. (1976) Induction, evolution and accountability. Discussion paper. Annals of the New York Academy of Sciences 280:58–60. [BMe]

Harris, A. (2008) On the explanation of typologically unusual structures. In: Language universals and language change, ed. J. Good, pp. 54–76. Oxford University Press. [aNE]

Harris, Z. S. (1946) From morpheme to utterance. Language 22:161–83. [HW] (1991) A theory of language and information. Clarendon. [HW]

Hart, B. & Risley, T. R. (1995) Meaningful differences in the everyday experience of young American children. Brookes. [ACC]

Haspelmath, M. (1993) A grammar of Lezgian [Mouton Grammar Library, 9]. Mouton de Gruyter. [aNE]

(1999) Optimality and diachronic adaptation. Zeitschrift fü'r Sprachwissenschaft 18(2):180-205. [aNE, AN]

(2007) Pre-established categories don't exist: Consequences for language description and typology. Linguistic Typology 11(1):119–32. [aNE]

(2008a) A frequentist explanation of some universals of reflexive marking. Linguistic Discovery 6.1:40–63. [MH]

(2008b) Parametric versus functional explanations of syntactic universals. In: The limits of syntactic variation, ed. T. Biberauer, pp. 75–107, Benjamins. [MH]

(2009) The indeterminacy of word segmentation and the nature of morphology and syntax. Plenary talk presented at the Morphology of the World's Languages conference, University of Leipzig, June 2009, Benjamins. [MH]

Haun, D. & Call, J. (2009) Great apes' capacities to recognize relational similarity. Cognition 110:147–59. [rNE]

Hauser, M. D. (1997) The evolution of communication. MIT Press/Bradford Books. [aNE]

Hauser, M. D., Chomsky, N. & Fitch, W. T. (2002) The faculty of language: What is it, who has it and how did it evolve? Science 298(5598):1569–79. [aNE, BMe, DM, DCP]

Haviland, J. B. (1979) Guugu Yimidhirr. In: Handbook of Australian languages, vol. I, ed. B. Blake & R. M. W. Dixon, pp. 27–182. ANU Press. [aNE]

(1988) "It's my own invention: A comparative grammatical sketch of colonial Tzotzil" and grammatical annotations. In: The great Tzotzil dictionary of Santo Domingo Zinacanta'n, with grammatical analysis and historical commentary, ed. R. M. Laughlin & J. B. Haviland, pp. 79–121. (Smithsonian Contributions to Anthropology, No. 31). Smithsonian Institution Press. [rNE]

(1994) "Te xa setel xulem" [The buzzards were circling]: Categories of verbal roots in (Zinacantec) Tzotzil. Linguistics 32:691–741. [rNE, DP]

(submitted) "White-blossomed on bended knee": Linguistic mediations of nature and culture. Book chapter for Festschrift for Terry Kaufman, ed. R. M. Zavala & T. Smith-Stark. Available at: <u>http://anthro.ucsd.edu/~jhaviland/</u> Publications/BLOSSOMEdit.pfd [rNE]

Hawkins, J. A. (1999) Processing complexity and filler-gap dependencies across grammars. Language 75:244–85. [rNE]

(2004) Efficiency and complexity in grammars. Oxford University Press. [MH]
 Hayes, B. (1989) Compensatory lengthening in moraic phonology. Linguistic
 Inquiry 20:253–306. [AN]

Hayes, B. & Steriade, D. (2004) A review of perceptual cues and cue robustness.
 In: Phonetically based phonology, ed. B. Hayes, R. M. Kirchner & D. Steriade, pp. 1–33. Cambridge University Press. [IB]

Hayes, B., Zuraw, K., Siptar, P. & Londe, Z. (submitted) Natural and unnatural constraints in Hungarian vowel harmony. [IB]

Helgason, P. & Ringen, C. (2008) Voicing and aspiration in Swedish stops. Journal of Phonetics 36(4):607–28. [BMc]

Hengeveld, K. (1992) Parts of speech. In: Layered structure and reference in a functional perspective, ed. M. Fortescue, P. Harder & L. Kristofferson, pp. 29–56. John Benjamins. [aNE]

Hewitt, B. G. (1979) Aspects of verbal affixation in Abkhaz (Abzui dialect). Transactions of the Philological Society 77(1): 211–38. [rNE]

Himmelmann, N. (1997) Deiktikon, Artikel, Nominalphrase, Zur Emergenz Syntaktischer Struktur. Niemeyer. [aNE]

Hockett, C. F. (1960) The origin of speech. Scientific American 203:89–96. [rNE]
(1963) The problem of universals in language. In: Universals of language, ed.
J. H. Greenberg, pp. 1–29. MIT Press. [aNE]

Hoff-Ginsberg, E. (1990) Maternal speech and the child's development of syntax: A further look. Journal of Child Language 17:85–99. [HW]

HoØhle, B., Weissenborn, J., Kiefer, D. Schulz, A. & Schmitz, M. (2004) Functional elements in infants' speech processing: The role of determiners in the syntactic categorization of lexical elements. Infancy 5:341–53. [ELB]

 Hollich, G. J., Hirsh-Pasek, K. & Golinkoff, R. M. (2000) Breaking the language barrier: An emergentist coalition model for the origins of word learning. Monographs of the Society for Research in Child Development 65(3), Serial No. 262. [ELB]

Holyoak, K. J. & Hummel, J. E. (2000) The proper treatment of symbols in a connectionist architecture. In: Cognitive dynamics: Conceptual change in humans and machines, ed. E. Dietrich & A. B. Markman, pp. 229–63. Erlbaum. [DCP] Holyoak, K. J., Junn, E. N. & Billman, D. O. (1984) Development of analogical problem-solving skill. Child Development 55(6):2042–55. [DCP]

Horning, J. J. (1969) A study of grammatical inference. Doctoral dissertation, Computer Science Department, Stanford University. [BMe]

Hornstein, N., Nunes, J. & Grohmann, K. (2005) Understanding minimalism. Cambridge University Press. [aNE]

Huang, C.-R. (1993) Reverse long-distance dependency and functional uncertainty: The interpretation of Mandarin questions. In: Language, information, and computing, ed. C. Lee & B. M. Kang, pp. 111–20. Thaehaksa. [rNE]

Huang, C.-T. J. (1982) Logical relations in Chinese and the theory of grammar. Doctoral dissertation, Massachusetts Institute of Technology. Available at: <u>http://dspace.mit.edu/handle/1721.1/15215</u>. [DP, LR]

(1982/1998) Logical relations in Chinese and the theory of grammar. Garland. (Doctoral dissertation of 1982; published by Garland in 1988). [PS]

Hudson, R. (1993) Recent developments in dependency theory. In: Syntax: An international handbook of contemporary research, ed. J. Jacobs, A. von Stechow, W. Sternefelt & T. Vennemann, pp. 329–38. Walter de Gruyter. [aNE]

Hunley, K., Dunn, M., LindstroØm, E., Reesink, G., Terrill, A., Norton, H., Scheinfeldt, L., Friedlaender, F., Merriwether, D. A., Koki, G. & Friedlaender, J. (2007) Inferring prehistory from genetic, linguistic, and geographic variation. In: Genes, language, and culture history in the Southwest Pacific, ed. J. S. Friedlaender, pp. 141–54. Oxford University Press. [aNE]

Hyman, L. (1985) A theory of phonological weight. (Publications in Language Sciences 19). Foris. [AN]

(2008) Universals in phonology? The Linguistic Review 25:83–187. [rNE] Idsardi, W. J. (2006) A simple proof that optimality theory is computationally

intractable. Linguistic Inquiry 37:271–75. [rNE] Jackendoff, R. (1997) The architecture of the language faculty. MIT Press. [SP]

(2002) Foundations of language: Brain, meaning, grammar, evolution. Oxford University Press. [aNE, SP]

(2003a) Reintegrating generative grammar (Precis of Foundations of language). Behavioral and Brain Sciences 26:651–65. [aNE]

(2003b) Toward better mutual understanding [Response to peer commentaries on 2003a]. Behavorial and Brain Sciences 26:695–702. [aNE]

 Jacobsen, W. H. (1979) Noun and verb in Nootkan. In: The Victoria Conference on northwestern languages, Victoria, British Columbia, November 4/5, 1976, ed.
 B. S. Efrat, pp. 83–155. British Columbia Provincial Museum. [rNE]

Jakobson, R. (1962) Selected writings I: Phonological studies. Mouton de Gruyter. [aNE]

Jakobson, R. & Halle, M. (1956) Fundamentals of language. Mouton de Gruyter. [aNE]

Janik, V. M. & Slater, P. J. B. (1997) Vocal learning in mammals. Advances in the Study of Behavior 26:59–99. [BMe]

Jelinek, E. (1995) Quantification in Straits Salish. In: Quantification in natural languages, ed. E. Bach, E. Jelinek, A. Kratzer & B. Partee, pp. 487–540. Kluwer. [arNE]

Johnson, K. (2004) Gold's theorem and cognitive science. Philosophy of Science 71:571–92. [BMe]

Joos, M., ed. (1966) Readings in linguistics I, 2nd edition. University of Chicago Press. [GKP]

Jusczyk, P. (1997) The discovery of spoken language. MIT Press. [ELB]

Karmiloff-Smith, A. (2006) The tortuous route from genes to behaviour: A neuroconstructivist approach. Cognitive, Affective and Behavioural Neuroscience 6(1):9–17. [AEG]

Kasher, A. (1991) The Chomskyan turn. Blackwell. [GKP]

Kay, P. & Kempton, W. (1984) What is the Sapir-Whorf hypothesis? American Anthropologist 86:65–79. [aNE]

Kazenin, K. I. (1994) Split syntactic ergativity: Toward an implicational hierarchy. Sprachtypololgie und Universalienforschung 47:78–98. [WC]

Keller, G. & Hahnloser, R. (2009) Neural processing of auditory feedback during vocal practice in a songbird. Nature 457:187–90. [BMc]

Kirby, S. (2002) Learning, bottlenecks and the evolution of recursive syntax. In: Linguistic evolution through language acquisition: Formal and computational models, ed. T. Briscoe, pp. 173–204. Cambridge University Press. [BMe]

(2007) The evolution of meaning-space structure through iterated learning. In: Emergence of communication and language, ed. C. Lyon, C. Nehaniv & A. Cangelosi, pp. 253–68. Springer. [MHC]

Klima, E. S. & Bellugi, U. (1979) The signs of language. Harvard University Press. [aNE]

Kluender, R. (1992) Deriving island constraints from principles of predication. In: Island constraints, ed. H. Goodluck & M. Rochmont, pp. 223–58. Kluwer. [rNE]

(1998) On the distinction between strong and weak islands: A processing perspective. In: Syntax and semantics, ed. P. Culicover & L. McNally, pp. 241–79. Academic Press. [rNE]

- ences/Evans & Levinson: The myth of language universals
- Knecht, S., Deppe, M., Dra^{*}ger, B., Bobe, L., Lohmann, H., Ringelstein, E.-B. & Henningsen, H. (2000) Language lateralization in healthy right-handers. Brain 123(1):74–81. [aNE]
- Koster, J. & May, R. (1982) On the constituency of infinitives. Language 58:116–43. [aNE]
- Kratochvi 1, F. (2007) A grammar of Abui. Doctoral dissertation, Leiden University. [rNE]
- Kruspe, N. (2004) A grammar of Semelai. Cambridge University Press. [rNE]
- Kuhl, P. K. (1991) Perception, cognition and the ontogenetic and phylogenetic emergence of human speech. In: Plasticity of development, ed. S. E. Brauth, W. S. Hall & R. J. Dooling, pp. 73–106. MIT Press. [aNE]
- (2004) Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience 5:831–43. [ELB, aNE]
- Kuipers, A. H. (1960) Phoneme and morpheme in Kabardian. Mouton de Gruyter. [aNE]
- Ku ntay, A. & Slobin, D. (1996) Listening to a Turkish mother: Some puzzles for acquisition. In: Social interaction, social context, and language: Essays in honor of Susan Ervin-Tripp, ed. D. Slobin & J. Gerhardt, pp. 265–86. Erlbaum. [HW]
- Labov, W. (1980) The social origins of sound change. In: Locating language in time and space, ed. W. Labov, pp. 251–66. Academic Press. [aNE]
- (1994) Principles of linguistic change, vol. 1: Internal factors. Blackwell. [WC]
- (2001) Principles of linguistic change, vol. 2: Social factors. Blackwell. [WC]
 Ladefoged, P. & Maddieson, I. (1996) The sounds of the world's languages.
 Blackwell. [aNE]
- Lakoff, G. (1987) Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press. [AEG]
- Laland, K. N., Odling-Smee, J. & Feldman, M. W. (1999) Evolutionary consequences of niche construction and their implications for ecology. Proceedings of the National Academy of Sciences USA 96:10242–47. [INE] (2000) Niche serverster the indexident particular development of the server of th
- (2000) Niche construction, biological evolution and cultural change. Behavioral and Brain Science 23:131–75. [aNE]
- Landau, B. & Jackendoff, R. (1993) "What" and "where" in spatial language and spatial cognition. Behavioral and Brain Sciences 16:217–65. [aNE]
- Lander, E. S. (1994) Genetic dissection of complex traits. Science 265:2037–2048. [AEG]
- Langacker, W. (2008) Cognitive grammar: A basic introduction. Oxford University Press. [WC]
- Lappin, S. & Shieber, S. M. (2007) Machine learning theory and practice as a source of insight into universal grammar. Journal of Linguistics 43:1–34. [BMe]
- Lasnik, H. (1989) Essays on anaphora. Kluwer. [LR]
- Lasnik, H. & Saito, M. (1992) Move alpha. MIT Press. [LR]
- Laughren, M. (2002) Syntactic constraints in a "free word order language." In: Language universals and variation, ed. M. Amberber, pp. 83–130. Ablex. [DP]
- Lazareva, O. F. & Wasserman, E. A. (2008) Categories and concepts in animals. In: Learning and memory: A comprehensive reference. Vol. 1: Learning theory and behavior, ed. R. Menzel, pp. 197–226. (Series editor: J. Byrne). Elsevier. [BMc]
- Legate, J. A. (2001) The configurational structure of a nonconfigurational language. In: Linguistic Variation Yearbook, vol. 1, ed. P. Pica, pp. 61–104. John Benjamins. Available at: <u>http://www.ling.upenn.edu/~jlegate/livy.1.legate.pdf</u>. [DP]
- (2002) Warlpiri: Theoretical implications. Doctoral dissertation, Massachusetts Institute of Technology. Available at: <u>http://www.ling.upenn.edu/~jlegate/</u> main.pdf. [DP]
- Legendre, G., Smolensky, P. & Wilson, C. (1998) When is less more? Faithfulness and minimal links in wh-chains. In: Is the best good enough? Optimality and competition in syntax, ed. P. Barbosa, D. Fox, P. Hagstrom, M. McGinnis & D. Pesetsky, pp. 249–89. MIT Press. [PS]
- Lehmann, C. (1995) Thoughts on grammaticalization, 2nd revised edition. Lincom Europa. [BMe]
- Lenneberg, E. H. (1964) The capacity for language acquisition. In: The structure of language, ed. J. A. Fodor & J. J. Katz, pp. 579–603. Prentice Hall. [PS] (1967) Biological foundations of language. Wiley. [aNE]
- Leonard, L. B., Ellis Weismer, S., Miller, C. A., Francis, D. J., Tomblin, J. B. & Kail, R. V. (2007) Speed of processing, working memory, and language impairment in children. Journal of Speech, Language, and Hearing Research 50:408–28. [ELB]
- Levelt, W. J. M. (2008) Formal grammars in linguistics and psycholinguistics, vol.1-3. Benjamins. [aNE]
- Levin, B. (1993) English verb classes and alternations: A preliminary investigation. University of Chicago Press. [SP]
- Levinson, S. C. (1987) Pragmatics and the grammar of anaphora. Journal of Linguistics 23:379–434. [rNE]
- (2000) Presumptive meanings: The theory of generalized conversational implicature. MIT Press. [arNE]

- (2003) Space in language and cognition: Explorations in cognitive diversity. Cambridge University Press. [aNE]
- (under review) Syntactic ergativity in Yé省 Dnye, the Papuan language of Rossel Island, and its implications for typology. [aNE]
- Levinson, S. C. & Jaisson, P., eds. (2006) Evolution and culture. A Fyssen Foundation symposium. MIT Press. [aNE]
- Levinson, S. C. & Meira, S. (2003) "Natural concepts" in the spatial topological domain – adpositional meanings in crosslinguistic perspective: An exercise in semantic typology. Language 79(3):485–516. [aNE]
- Levinson, S. C. & Wilkins, D., eds. (2006) Grammars of space. Cambridge University Press. [aNE]
- Li, P. & Gleitman, L. R. (2002) Turning the tables: Language and spatial reasoning. Cognition 83(3):265–94. [aNE, SP]
- Li, P., Hai Tan, L., Bates, E. & Tzeng, O. (2006) The handbook of East Asian psycholinguistics, vol. 1: Chinese. Cambridge University Press. [aNE]
- Lickliter, R. & Honeycutt, H. (2003) Developmental dynamics: Towards a biologically plausible evolutionary psychology. Psychological Bulletin 129:819–35. [BMc]
- Lieberman, P. (2006) Toward an evolutionary biology of language. Belknap/ Harvard. [rNE]
- Lieven, E. V. M., Behrens, H., Speares, J. & Tomasello, M. (2003) Early syntactic creativity: A usage-based approach. Journal of Child Language 30:333–70. [ELB]
- Liljencrants, J. & Lindblom, B. (1972) Numerical simulations of vowel quality systems: The role of perceptual contrast. Language 48:839–62. [rNE] Lipkind, W. (1945) Winnebago grammar. King's Crown. [DH]
- Loewenstein, J. & Gentner, D. (2005) Relational language and the development of relational mapping. Cognitive Psychology 50(4):315–53. [DCP]
- Lucy, J. (1992) Grammatical categories and thought: A case study of the linguistic relativity hypothesis. Cambridge University Press. [aNE]
- Lucy, J. & Gaskins, S. (2001) Grammatical categories and the development of classification: it comparative approach. In: Language acquisition and conceptual development, ed. M. Bowerman & S. Levinson, pp. 257–83. Cambridge University Press. [aNE]
- Mace, R. & Pagel, M. (1995) A latitudinal gradient in the density of human languages in North America. Proceedings of the Royal Society of London B 261:117–21. [aNE]
- MacLarnon, A. & Hewitt, G. (2004) Increased breathing control: another factor in the evolution of human language. Evolutionary Anthropology 13:181–97. [aNE]
- MacSweeney, M., Woll, B., Campbell, R., McGuire, P. K., David, A. S., Williams, C. R., Suckling, J., Calvert, G. A. & Brammer, M. J. (2002) Neural systems underlying British Sign Language and audio-visual English processing in native users. Brain 125:1583–93. [aNE]
- MacWhinney, B., ed. (1999) The mechanisms of language acquisition. Erlbaum. [ELB]
- (2000) The CHILDES Project: Tools for analyzing talk. Vol. 1: Transcription format and programs. Vol. 2: The Database. Erlbaum. [HW]
- MacWhinney, B. & Bates, E., eds. (1989) The cross-linguistic study of sentence processing. Cambridge University Press. [aNE]
- $\label{eq:main_stability} Maddieson, \ I. \ (1983) \ The analysis of complex phonetic elements in Bura and the syllable. \ Studies in African Linguistics 14:285-310. \ [aNE]$
- (1984) Patterns of sounds. Cambridge University Press. [aNE]
- Maddieson, I. & Levinson, S. C. (in preparation) The phonetics of Ye' I^ Dnye, the language of Rossel Island. [aNE]
- Maguire, E., Gadian, D., Johnsrude, I, Good, D., Ashburner, J., Frackowiak, R. & Frith, C. (2000) Navigation-related structural changes in the hippocampi of taxi drivers. PNAS 97(8):4398–4403. [aNE]
- Majid, A., Bowerman, M., Kita, S., Haun, D. B. & Levinson, S. C. (2004) Can language restructure cognition? The case for space. Trends in Cognitive Science 8(3):108–14. [aNE, DCP]
- Manzini, M. R. & Wexler, K. (1986) Parameters, binding theory and learnability. Linguistic Inguiry 18:413–44. [LR]
- Marantz, A. (1984) On the nature of grammatical relations. MIT Press. $[\mbox{MCB}]$
- Marcus, G. F. (2001) The algebraic mind: Reflections on connectionism and cognitive science. MIT Press. [SP]
- Margetts, A. (2007) Learning verbs without boots and straps? The problem of "give" in Saliba. In: Cross-linguistic perspectives on argument structure: Implications for learnability, ed. M. Bowerman & P. Brown, pp 111–41. Erlbaum. [aNE]
- Marler, P. (1970) Bird song and speech development: Could there be parallels? American Scientist 58:669–73. [BMe]
- Marler, P. & Tamura, M. (1964) Culturally transmitted patterns of vocal behavior in sparrows. Science 146 (3650):1483–86. [DM]
- Marsaja, I. G. (2008) Desa kolok A deaf village and its sign language in Bali, Indonesia. Ishara Press. [aNE]

References/Evans & Levinson: The myth of language universals

- Master, A. (1946) The zero negative in Dravidian. Transactions of the Philological Society 1946:137–55. [aNE]
- Matthews, P. H. (1981) Syntax. Cambridge University Press. [aNE] (2007) Syntactic relations: A critical survey. Cambridge University Press. [aNE]
- Mayr, E. (1975) Evolution and the diversity of life. Harvard University Press. [AEG]
- McCarthy, J. J. (2002) A thematic guide to optimality theory (Research Surveys in Linguistics). Cambridge University Press. [rNE]
- McCarthy, J. & Prince, A. (1986) Prosodic morphology 1986. Report No. RuCCS-TR-32. Rutgers University Center for Cognitive Science. Available at: <u>http://</u> ruccs.rutgers.edu/pub/papers/pm86all.pdf. [AN]
- McCloskey, J. (1991) Clause structure, ellipsis and proper government in Irish. Lingua 85:259–302. [MCB]
- McMahon, A. & McMahon, R. (2006) Language classification by numbers. Oxford University Press. [aNE]
- McMurray, B., Aslin, R. N. & Toscano, J. (2009) Statistical learning of phonetic categories: Computational insights and limitations. Developmental Science 12(3):369–79. [BMc]
- Meir, I., Sandler, W., Padden, C. & Aronoff, M. (in press) Emerging sign languages. In: Oxford handbook of deaf studies, language, and education, vol. 2, ed. M. Marschark & P. Spencer. Oxford University Press. [arNE]
- Melc uk, I. (1988) Dependency syntax: Theory and practice. SUNY Press. [aNE] Merker, B. (2005) The conformal motive in birdsong, music and language: An
- introduction. Annals of the New York Academy of Sciences 1060:17–28. [BMe]
- (in press) The vocal learning constellation: Imitation, ritual culture, encephalization. In: Music, language and human evolution, ed. N. Bannan & S. Mithen. Oxford University Press. [BMe]
- Merker, B. & Okanoya, K. (2007) The natural history of human language: Bridging the gaps without magic. In: Emergence of communication and language, ed. C. Lyon, L. Nehaniv & A. Cangelosi, pp. 403–20. Springer-Verlag. [BMe]
- Mielke, J. (2007) The emergence of distinctive features. Oxford University Press. [aNE]
- Milroy, J. (1992) Linguistic variation and change. Blackwell. [WC]
- Mintz, T. H. (2006) Finding the verbs: Distributional clues to categories available to young learners. In: Action meets words: How children learn verbs, ed. K. Hirsh-Pasek & R. M. Golinkoff, pp. 31–63. Oxford University Press. [ELB]
- Mithun, M. (1984) How to avoid subordination. Berkeley Linguistic Society 10:493–509. [aNE]
- (1999) The languages of native North America (Cambridge Language Surveys). Cambridge University Press. [arNE, DP]
- Moerk, E. L. (1992) First language: Taught and learned. Brookes. [ACC]
- Molotsi, K. J. (1993) The characteristics of Southern Sotho ideophones. Master's thesis, University of Stellenbosch. [rNE]
- Montgomery, J. W., Evans, J. L. & Gillam, R. B. (2009) Relation of auditory attention and complex sentence comprehension in children with specific language impairment: A preliminary study. Applied Psycholinguistics 30:123–51. [ELB]
- Moreton, E. (2008) Analytic bias and phonological typology. Phonology 25(1):83–127. [IB, AN]
- Moro, A. (2008) The boundaries of Babel. MIT Press. [LR]
- Morsanyi, K. & Holyoak, K. J. (in press) Analogical reasoning ability in autistic and typically developing children. Developmental Science. [DCP]
- Mufwene, S. (2001) The ecology of language evolution. Cambridge University Press. [WC]
- (2008) Language evolution: Contact, competition and change. Continuum. [WC]
- MuØller, R.-A. (2009) Language universals in the brain: How linguistic are they? In: Language universals, ed. M. Christiansen, C. Collins & S. Edelman, pp. 224–52. Oxford University Press. [rNE]
- Mycock, L. (2006) The typology of constituent questions: A lexical-functional grammar analysis of "Wh"-questions. Unpublished Dissertation. University of Manchester. [rNE]
- Nakayama, R., Mazuka, R. & Shirai, Y. (2006) Handbook of East Asian psycholinguistics, vol. 2: Japanese. Cambridge University Press. [aNE]
- Nettle, D. (1999) Linguistic diversity. Oxford University Press. [aNE]
- Newell, A. (1980) Physical symbol systems. Cognitive Science 4:135–83. [DCP] Newmeyer, F. J. (1986) Linguistic theory in America, 2nd edition. Academic
- Press. [aNE] (2004) Typological evidence and universal grammar. Studies in Language
- 28(3):527–48. [arNE]
 (2005) Possible and probable languages: A generative perspective on linguistic typology. Oxford University Press. [arNE]
- Newport, E. L., Hauser, M. D., Spaepen, G. & Aslin, R. N. (2004) Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate. Cognitive Psychology 49:85–117. [BMc]

- Nichols, J. (1992) Language diversity in space and time. University of Chicago Press. [aNE]
- Nishimura, H., Hashikawa, K., Doi, K., Iwaki, T., Watanabe, Y., Kusuoka, H., Nishimura, T. & Kubo, T. (1999) Sign language "heard" in the auditory cortex. Nature 397(6715):116. [aNE]
- Nordlinger, R. (1998) Constructive case. Evidence from Australian languages. CSLI. [aNE]
- (2006) Spearing the Emu drinking: Subordination and the adjoined relative clause in Wambaya. Australian Journal of Linguistics 26:5–29. [MTa]
- Nordlinger, R. & Sadler, L. (2004) Nominal tense in crosslinguistic perspective. Language 80:776–806. [aNE]
- Norman, J. (1988) Chinese. Cambridge University Press. [aNE]
- Nottebohm, F. (1975) A zoologist's view of some language phenomena, with particular emphasis on vocal learning. In: Foundations of language development, ed. E. H. Lenneberg & E. Lenneberg, pp. 61–103. Academic Press. [BMe]
- Noyer, R. (1992) Features, positions and affixes in autonomous morphological structure. Doctoral dissertation, Massachusetts Institute of Technology. [DH]
- Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003) Niche construction: The neglected process in evolution. Princeton University Press. [aNE]
- O'Donnell, T., Hauser, M. & Fitch, W. T. (2005) Using mathematical models of language experimentally. Trends in Cognitive Science 9:284–89. [aNE]
- Okanoya, K. & Merker, B. (2007) Neural substrates for string-context mutual segmentation: A path to human language. In: Emergence of communication and language, ed. C. Lyon, L. Nehaniv & A. Cangelosi, pp. 421–34. Springer-Verlag. [BMe]
- Onnis, L., Waterfall, H. R. & Edelman, S. (2008) Learn locally, act globally: Learning language from variation set cues. Cognition 109:423–30. [HW]
- Osada, T. (1992) A reference grammar of Mundari. Institute for the Study of Languages and Cultures of Asia and Africa, Tokyo University of Foreign Studies. [arNE, DP]
- Padden, C. & Perlmutter, D. (1987) American Sign Language and the architecture of phonological theory. Natural Language and Linguistic Theory 5:335–75. [aNE]
- Pagel, M. (2000) The history, rate and pattern of world linguistic evolution. In: The evolutionary emergence of language, ed. C. Knight, M. Studdert-Kennedy & J. Hurford, pp. 391–416. Cambridge University Press. [aNE]
- Pagel, M., Atkinson, Q. D. & Meade, A. (2007) Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature 449:717-20. [aNE]
- Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., Huynh, K.-D., Brunner, F., Corneveaux, J., Osborne, D., Wollmer, M. A., Aerni, A., Coluccia, D., HaØnggi, J., Mondadori, C. R. A., Buchmann, A., Reiman, E. M., Caselli, R. J., Henke, K. & de Quervain, D. J.-F. (2006) Common Kibra alleles are associated with human memory performance. Science 314(5798):475–78. [rNE]
- Parker, A. (2006) Evolving the narrow language faculty: Was recursion the pivotal step? In: The evolution of language. Proceedings of the 6th international conference on the evolution of language, ed. A. Cangelosi, A. D. M. Smith & K. Smith, pp. 239–46. World Scientific Press. [aNE]
- Partee, B. H. (1995) Quantificational structures and compositionality. In: Quantification in natural languages, ed. E. Bach, E. Jelinek, A. Kratzer & B. H. Partee, pp. 541–602. Kluwer. [aNE]
- Partee, B., ter Meulen, A. & Wall, R. (1990) Mathematical methods in linguistics. Kluwer. [aNE]
- Pawley, A. (1993) A language which defies description by ordinary means. In: The role of theory in language description, ed. W. Foley, pp. 87–129. Mouton de Gruyter. [aNE]
- Pawley, A., Gi, S. P., Majnep, I. S. & Kias, J. (2000) Hunger acts on me: The grammar and semantics of bodily and mental process expressions in Kalam. In: Grammatical analysis: Morphology, syntax and semantics: Studies in honor of Stan Starosta, ed. V. P. De Guzman & B. W. Bender, pp. 153–85. University of Hawaii Press. [rNE]
- Pederson, E. (1993) Zero negation in South Dravidian. In: CLS 27: The parasession on negation, ed. L. M. Dobrin, L. Nicholas & R. M. Rodriguez, pp. 233–45. Chicago Linguistic Society. [aNE]
- Penn, D. C., Holyoak, K. J. & Povinelli, D. J. (2008) Darwin's mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences 31(2):109–78. [DCP]
- Penn, D. C. & Povinelli, D. J. (2007a) Causal cognition in human and nonhuman animals: A comparative, critical review. Annual Review of Psychology 58:97–118. [DCP]
- (2007b) On the lack of evidence that non-human animals possess anything remotely resembling a "theory of mind." Philosophical Transactions of the Royal Society B 362:731–44. [DCP]
- (in press) The comparative delusion: The "behavioristic"/ "mentalistic" dichotomy in comparative theory of mind research. In: Oxford handbook of

ences/Evans & Levinson: The myth of language universals

philosophy and cognitive science, ed. R. Samuels & S. P. Stich. Oxford University Press. [DCP]

- Peperkamp, S., Le Calvez, R., Nadal, J. P. & Dupoux, E. (2006) The acquisition of allophonic rules: Statistical learning with linguistic constraints. Cognition 101(B):31–41. [PS]
- Perniss, P. M., Pfau, R. & Steinbach, M., eds. (2008) Visible variation: Comparative studies on sign language structure. Trends in Linguistics 188. Mouton de Gruyter. [aNE]
- Perniss, P. M. & Zeshan, U., eds. (2008) Possessive and existential constructions in sign languages. Sign Language Typology Series No. 2. Ishara Press. [aNE]
- Pesetsky, D. (2000) Phrasal movement and its kin. MIT Press. [LR]
- Piattelli-Palmarini, M., ed. (1980) Language and learning: The debate between Jean Piaget and Noam Chomsky. Harvard University Press. [BMe]
- Pierrehumbert, J. (2000) What people know about the sounds of language. Linguistic Sciences 29:111–20. [aNE]
- Pierrehumbert, J., Beckman, M. E. & Ladd, D. R. (2000) Conceptual foundations of phonology as a laboratory science. In: Phonological knowledge: Its nature and status, ed. N. Burton-Roberts, P. Carr & G. Docherty, pp. 273–303. Cambridge University Press/Oxford University Press. [arNE]
- Pinker, S. (1989) Learnability and cognition: The acquisition of argument structure. MIT Press. [SP]
 - (1994) The language instinct. W. Morrow. [aNE, MH, DCP]
- (2007) The stuff of thought: Language as a window into human nature. Viking. [SP]
- Pinker, S. & Bloom, P. (1990) Natural language and natural selection. Behavioral and Brain Sciences 13:707–26. [aNE]
- Pinker, S. & Jackendoff, R. (2005) The faculty of language: What's special about it? Cognition 95:201–36. [aNE, SP]
- Pinker, S. & Ullman, M. T. (2002a) Combination and structure, not gradedness, is the issue. Trends in Cognitive Sciences 6(11):472–74. [SP]
- (2002b) The past and future of the past tense. Trends in Cognitive Sciences 6(11):456–63. [SP]
- (2003) Beyond one model per phenomenon. Trends in Cognitive Science 7(3):108–109. [SP]
- Plank, F. (2001) Typology by the end of the 18th century. In: History of the language sciences, vol. 2, ed. S. Auroux, pp. 1399–1414. Mouton de Gruyter. [MH]
- Pomerantz, J. R. & Kubovy, M. (1986) Theoretical approaches to perceptual organization: Simplicity and likelihood principles. In: Handbook of perception and human performance, vol. 2: Cognitive processes and performance, ed. K. R. Boff, L. Kaufman & J. P. Thomas, pp. 36:1–46. Wiley. [MHC]
- Port, R. & Leary, A. (2005) Against formal phonology. Language 81:927–64. [aNE]
- Postal, P. (1970) The method of universal grammar. In: On method in linguistics, ed. P. Garvin, pp. 113–31. Mouton de Gruyter. [aNE]
- Povinelli, D. J. (2000) Folk physics for apes: The chimpanzee's theory of how the world works. Oxford University Press. [DCP]
- Povinelli, D. J. & Vonk, J. (2003) Chimpanzee minds: Suspiciously human? Trends in Cognitive Sciences 7(4):157–60. [DCP]
- Prince, A. & Smolensky, P. (1993/2004) Optimality theory: Constraint interaction in generative grammar. Technical Report, Rutgers University and University of Colorado at Boulder, 1993. Rutgers Optimality Archive 537. [Revised version published by Blackwell, 2004.] [IB, PS]
- (1997) Optimality: From neural networks to universal grammar. Science 275(5306):1604–10. [PS]
- Pullum, G. K. & Rogers, J. (2006) Animal pattern learning experiments: Some mathematical background. Unpublished ms, University of Edinburgh. Available at: <u>http://ling.ed.ac.uk/~gpullum/MonkeyMath.pdf</u>. [GKP]
- Pullum, G. K. & Scholz, B. C. (2002) Empirical assessment of stimulus poverty arguments. Linguistic Review 19:9–50. [MHC]
- (2007) Systematicity and natural language syntax. Croatian Journal of Philosophy 7(21):375–402. [GKP]
- Pye, C., Pfeiler, B., de Leo'n, L., Brown, P. & Mateo, P. (2007) Roots or edges? Explaining variation in children's early verb forms across five Mayan languages. In: Learning indigenous languages: Child language acquisition in Mesoamerica and among the Basques, ed. B. Blaha Pfeiler, pp. 15–46. Mouton de Gruyter. [aNE]
- Ramamurti, G. V. (1931) A manual of the So:ra (or Savara) language. Government Press. [rNE]
- Reali, F. & Christiansen, M. H. (2005) Uncovering the richness of the stimulus: Structure dependence and indirect statistical evidence. Cognitive Science 29:1007–28. [MHC]
- Reddy, M. J. (1979) The conduit metaphor a case of frame conflict in our language about language. In: Metaphor and thought, ed. A. Ortony, pp. 284–324. Cambridge University Press. [ACC]
- Reesink, G., Dunn, M. & Singer, R. (under review) Explaining the linguistic diversity of Sahul using population models. PLoS. [aNE]

- Reinhart, T. (1976) The syntactic domain of anaphora. Doctoral dissertation, Massachusetts Institute of Technology. [LR]
- Reuer, V. (2004) Book review of Falk, Yehuda N., Lexical-functional grammar an introduction to parallel constraint-based syntax. Lecture Notes No. 126 (CSLI-LN). Center for the Study of Language and Information, Stanford, 2001, xv b 237 pages. Machine Translation 18.4:359–64. [rNE]
- Rice, M. & Wexler, K. (1996) Toward tense as a clinical marker of specific language impairment in English-speaking children. Journal of Speech, Language, and Hearing Research 39:1239–57. [ELB]
- Rizzi, L. (1978/1982) Violations of the wh-island constraint in Italian and the subjacency condition. In: Montreal Working Papers in Linguistics, vol. 11, ed. C. Dubisson, D. Lightfoot & Y. C. Morin, pp. 155–90. Reprinted in L. Rizzi (1982) Issues in Italian syntax, pp. 49–76. Foris. [RF, LR]
 (1990) Relativized minimality. MIT Press. [LR]
 - (1997) The fine structure of the left periphery. In: Elements of grammar, ed. L. Haegeman, pp. 281–337. Kluwer Academic. [DP]
 - (2006) Grammatically-based target-inconsistencies in child language. In: The Proceedings of the Inaugural Conference on Generative Approaches to Language Acquisition – North America (GALANA), ed. K. U. Deen, J. Nomura, B. Schulz & B. D. Schwartz. (UCONN/MIT Working Papers in Linguistics). MIT Press. [LR]
- Rogers, J. & Pullum, G. K. (2007) Aural pattern recognition experiments and the subregular hierarchy. Paper presented at the Mathematics of Language 10 Conference, UCLA, July 2007. Available at: <u>http://ling.ed.ac.uk/~gpullum/</u> MoL10paper.pdf. [GKP]
- Ross, J. R. (1967) Constraints on variables in syntax. Unpublished doctoral dissertation, MIT. Published as Infinite syntax. Ablex. 1986. [RF]
- Rost, G. & McMurray, B. (2009) Speaker variability augments phonological processing in early word learning. Developmental Science 12(2):339–49. [BMc]
- Saffran, J. R., Aslin, R. N. & Newport, E. (1996) Statistical learning by 8-month-old infants. Science 274(5294):1926–28. [ELB, BMc]
- Sag, I., Hofmeister, P. & Snider, N. (2007) Processing complexity in subjacency violations: The complex noun phrase constraint. Chicago Linguistics Society 43(1):219–29. [rNE]
- Sandler, W. (1993) A sonority cycle in American Sign language. Phonology 10:242–79. [IB]
- (2009) Symbiotic symbolization by hand and mouth in sign language. Semiotica 174(1/4):241–75. [arNE]
- Sandler, W., Aronoff, M., Meir, I. & Padden, C. (2009) The gradual emergence of phonological form in a new language. Master's thesis, University of Haifa, State University of New York at Stony Brook, and University of California, San Diego. [rNE]
- Sandler, W. & Lillo-Martin, D. C. (2006) Sign language and linguistic universals. Cambridge University Press. [IB, rNE]
- Sandler, W., Meir, I., Padden, C. & Aronoff, M. (2005) The emergence of grammar in a new sign language. Proceedings of the National Academy of Sciences USA 102(7):2661–65. [aNE]
- Schachter, P. (1976) The subject in Philippine languages: Topic–actor, actor–topic, or none of the above. In: Subject and topic, ed. C. Li, pp. 491–518. Academic Press. [aNE]
- (1985) Parts-of-speech systems. In: Language typology and syntactic description, vol. 1: Clause structure, ed. T. Shopen, pp. 3–61. Cambridge University Press. [rNE]
- Schultze-Berndt, E. (2000) Simple and complex verbs in Jaminjung: A study of event categorization in an Australian language. Doctoral dissertation, Radboud University, MPI Series in Psycholinguistics. [aNE]
- Schwager, W. & Zeshan, U. (2008) Word classes in sign languages criteria and classifications. Studies in Language 32(3):509–45. [aNE]
- Senghas, A., Kita, S. & Özyu" rek, A. (2004) Children creating core properties of language: Evidence from an emerging sign language in Nicaragua. Science 305(5691):1779–82. [aNE]
- Skinner, B. F. (1957) Verbal behavior. Appleton-Century-Crofts. [BMc]
- Slobin, D. I., ed. (1985a) The cross linguistic study of language acquisition, vol. 1. Erlbaum. [ELB]
- (1985b) The cross linguistic study of language acquisition, vol. 2. Erlbaum. [ELB]
- (1992) The cross linguistic study of language acquisition, vol. 3. Erlbaum. [ELB]
- (1997a) The crosslinguistic study of language acquisition, vol. 4. Erlbaum. [ELB, aNE]
- (1997b) The cross linguistic study of language acquisition, vol. 5. Erlbaum. [ELB]
- Smith, J. L. (2005) Phonological augmentation in prominent positions. Routledge. [IB]
- Smith, L. B. (1999) Children's noun learning: How general learning processes make specialized learning mechanisms. In: The emergence of language, ed. B. MacWhinney, pp. 277–303. Erlbaum. [ELB]
- Smith, N. (1999) Chomsky: Ideas and ideals. Cambridge University Press.
 [GKP]

 BEHAVIORAL AND BRAIN SCIENCES (2009) 32:5
 491

References/Evans & Levinson: The myth of language univ

Smolensky, P. (2006) Optimality in phonology. II: Markedness, feature domains, and local constraint conjunction. In: The harmonic mind: From neural computation to optimality-theoretic grammar, vol. 2: Linguistic and philosophical implications, ed. P. Smolensky & G. Legendre, pp. 27–160. MIT Press. [IB]

Smolensky, P. & Legendre, G. (2006) The harmonic mind. vol. 2. MIT Press. [PS]

- Soderstrom, M., Mathis, D. & Smolensky, P. (2006) Abstract genomic encoding of universal grammar in optimality theory. In: The harmonic mind, vol. 2, ed. P. Smolensky & G. Legendre, pp. 403–71. MIT Press. [PS]
- Solan, Z., Horn, D., Ruppin, E. & Edelman, S. (2005) Unsupervised learning of natural languages. Proceedings of the National Academy of Sciences USA 102:11629–34. [HW]
- Solan, Z., Ruppin, E., Horn, D. & Edelman, S. (2003) Unsupervised efficient learning and representation of language structure. In: Proceedings of the 25th conference of the Cognitive Science Society, ed. R. Alterman & D. Kirsh, pp. 1106–11. Erlbaum. [HW]
- Sommer, B. (1970) An Australian language without CV syllables. International Journal of American Linguistics 36:57–58. [AN]
- (1981) The shape of Kunjen syllables. In: Phonology in the 1980's, ed. D. L. Goyvaerts, pp. 231–44. E. Story-Scientia. [AN]
- Starke, M. (2001) Move dissolves into merge. Doctoral dissertation, University of Geneva. [LR]
- Steels, L. & Belpaeme, T. (2005) Coordinating perceptually grounded categories through language: A case study for colour. Behavioral and Brain Sciences 28:469–529. [aNE]
- Stivers, T., Enfield, N., Brown, P., Englert, C., Hayashi, M., Heinemann, T., Hoymann, G., Rossano, F., de Ruiter, J. P., Yoon, K.-E. & Levinson, S. C. (2009) Universals and cultural variation in turn taking in conversation. Proceedings of the National Academy of Sciences USA 106(26):10587–92. [rNE]
- Swadesh, M. (1939) Nootka internal syntax. International Journal of American Linguistics 9:78–102. [MTa]
- Szabolcsi, A. (2006) Strong vs. weak islands. In: The Blackwell companion to syntax, vol. 4, ed. M. Everaert & H. van Riemsdijk, pp. 479–532. Blackwell. [LR]
- Talmy, L. (2000) Towards a cognitive semantics. MIT Press. [aNE]
- Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'Brien, S. J. & Murphy, W. J. (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–84. [aNE]
- Terrace, H. S. (1975) Evidence of the innate basis of the hue dimension in the duckling. Journal of the Experimental Analysis of Behavior 24:79–87. [ACC]
- Tettamanti, M., Alkadhi, H., Moro, A., Perani, D., Kollias, S. & Weniger, D. (2002) Neural correlates for the acquisition of natural language syntax. NeuroImage 17:700–709. [LR]
- Thiessen, E. D. (2007) The effect of distributional information on children's use of phonemic contrasts. Journal of Memory and Language 56(1):16–34. [BMc]
- (2009) Statistical learning. In: The Cambridge handbook of child language, ed. E. L. Bavin, pp. 35–50. Cambridge University Press. [ELB]
- Thomas, D. (1955) Three analyses of the Ilocano pronoun system. Word 11:204–208. [DH]
- Thornton, R. (2008) Why continuity. Natural Language and Linguistic Theory 26(1):107–46. [LR]
- Tomasello, M. (1995) Language is not an instinct. Cognitive Development 10:131–56. [aNE]
- ed. (1998) The new psychology of language: Cognitive and functional approaches to language structure. Erlbaum. [WC]
- (2000) The cultural origins of human cognition. Harvard University Press. [aNE]
- (2003a) Constructing a language: A usage-based theory of language acquisition. Harvard University Press. [ELB, MTo]
- ed. (2003b) The new psychology of language, vol. 2. Erlbaum. [WC]
- (2004) What kind of evidence could refute the UG hypothesis? Commentary on Wunderlich. Studies in Language 28(3):642–45. [AEG]
- (2008) The origins of human communication. MIT Press. [arNE, DCP, MTo] (2009) The usage-based theory of language acquisition. In: The Cambridge
- handbook of child language, ed. E. L. Bavin, pp. 69–87. Cambridge University Press. [ELB]

- Topintzi, N. (2009) Onsets: An exploration of their suprasegmental and prosodic behaviour. Unpublished book manuscript, Aristotle University of Thessaloniki. [AN]
- Tsai, W.-T. D. (1994) On economizing the theory of A-bar dependencies. Doctoral dissertation, Massachusetts Institute of Technology. [LR]
- Valian, V. (2009) Innateness and learnability. In: The Cambridge handbook of child language, ed. E. L. Bavin, pp. 15–34. Cambridge University Press. ELB]
- Van Valin, R. D. (1998) The acquisition of WH-questions and the mechanisms of language acquisition. In: The new psychology of language: Cognitive and functional approaches to language structure, ed. M. Tomasello, pp. 221-49. Erlbaum. [rNE]
- Van Valin, R. D. & LaPolla, R. (1997) Syntax. Structure, meaning and function. Cambridge University Press. [aNE]
- Vernes, S. C, Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., Alarcon, M., Oliver, P. L., Davies, K. E., Geschwind, D. H., Monaco, A. P. & Fisher, S. E. (2008) A functional genetic link between distinct developmental language disorders. *New England Journal of Medicine* 359:2337-45. arNE
- Vigliocco, G., Vinson, D. P., Paganelli, F. & Dworzynski, K. (2005) Grammatical gender effects on cognition: Implications for language learning and language use. *Journal of Experimental Psychology: General* 134:501-20. aNE]
- Wall, J. D. & Kim S. K. (2007) Inconsistencies in Neanderthal genomic DNA sequences. *PLoS Genetics* 3(10):e175. [aNE]
- Wasserman, E. A. & Zentall, T. R., eds. (2006) Comparative cognition: Experimental explorations of animal intelligence. Oxford University Press. [BMc]
- Waterfall, H. R. (2006) A little change is a good thing: Feature theory, language acquisition and variation sets. Doctoral dissertation, University of Chicago. HW]
- (under review) A little change is a good thing: The relation of variation sets to children's noun, verb and verb-frame development. [HW]
- Waterfall, H. R., Sandbank, B., Onnis, L. & Edelman, S. (under review) An empirical generative framework for computational modeling of language acquisition. [HW]
- Werker J. & Curtin, S. (2005) PRIMPAR: A developmental framework of early speech processing. Language Learning and Development 1:197-234. [ELB]
- Werker, J. F. & Tees, R. C. (1984) Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. *Infant Behavior and Development* 7:49-63. [ELB]
- (2005) Speech perception as a window for understanding plasticity and commitment in language systems of the brain. *Developmental Psychobiology* 46(3):233–51. [aNE]
- West-Eberhard, M. J. (2003) Developmental plasticity and evolution. Oxford University Press. [rNE]
- Whaley, L. (1997) Introduction to typology. Sage. [aNE]
- Widmann, T. & Bakker, D. (2006) Does sampling matter: A test in replicability, concerning numerals. *Linguistic Typology* 10(1):83–95. [aNE]
- Wierzbicka, A. (1982) Why can you have a drink when you can't *have an eat? Language 58:753–99. [WC]
- Wilson, C. (2006) Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive Science* 30:945–82. IB]

Wittgenstein, L. (1953) Philosophical investigations. Blackwell. [MHC]

- Zeshan, U. (2002) Indo-Pakistani sign language grammar: A typological outline. Sign Language Studies 3(2):157-212. [aNE]
- ed.(2006a) Interrogative and negative constructions in sign languages (Sign Language Typology Series No. 1). Ishara Press. [arNE]
- (2006b) Sign languages of the world. In: *Encyclopedia oflanguage and linguistics*, 2nd editon, ed. K. Brown, pp. 358–65. Elsevier. [arNE]
- Zuidema, W. (2003) How the poverty of the stimulus solves the poverty of the stimulus. In: Advances in neural information processing systems 15 (Proceedings of NIPS'02), ed. S. Becker, S. Thrun & K. Obermayer, pp. 51–58. MIT Press. [BMe]
- Zuidema, W. & De Boer, B. (2009) The evolution of combinatorial phonology. Journal of Phonetics 37(2):125-44. [rNE]