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Accurate knowledge of the gravitational-wave signal from inspiraling compact binaries is essential to detect
these signatures in the data from gravitational-wave interferometers. With recent advances in post-Newtonian
(PN) theory and numerical relativity (NR) it has become possible to construct inspiral-merger-ringdown wave-
forms by combining both descriptions into one complete hybrid signal. It is important to estimate the error
of such waveforms and assess their reliability for detection and parameter estimation in different points of the
physical parameter space. Previous studies have identified the PN contribution as the dominant source of error,
which can be reduced by incorporating longer NR simulations. There are two outstanding issues that make it
difficult to determine the minimum simulation length necessary to produce suitably accurate hybrids for GW
astronomy applications: (1) the relevant criteria for a GW search is the mismatch between the true waveform
and a set of model waveforms, optimized over all waveforms in the model, but for discrete hybrid waveforms
this optimization is not possible. (2) these calculations require that numerical waveforms already exist, while
ideally we would like to know the necessary NR waveform length before performing the simulation. In this
paper we overcome both of these difficulties by developing a general procedure that allows us to estimate hy-
brid mismatch errors without numerical data, and to optimize these mismatches over all physical parameters.
Using this procedure we find that, contrary to some earlier studies, ∼10 NR orbits before merger allow for the
construction of waveform families that are accurate enough for detection in a broad range of parameters, only
excluding highly spinning, unequal-mass systems. Nonspinning systems, even with high mass-ratio (& 20) are
well modeled for astrophysically reasonable component masses. In addition, the parameter bias is only of the
order of 1% for total mass and symmetric mass-ratio and less than 0.1 for the dimensionless spin magnitude.
We take the view that similar NR waveform lengths will remain the state of the art in the Advanced detector era,
and begin to assess the limits of the science that can be done with them.

PACS numbers: 04.30.Db, 04.25.D–, 04.25.Nx

I. INTRODUCTION

A network of gravitational wave (GW) detectors is prepar-
ing to achieve a remarkable scientific goal: the first direct de-
tection of GWs. This will not only test the predictions from
Einstein’s general theory of relativity, it will also open a new
window to the universe, revealing details of the population,
composition and formation history of various astrophysical
objects [1]. One particularly interesting and promising source
of detectable GWs is the inspiral, merger and ringdown of
compact objects, such as black holes or neutron stars.

An important contribution to the effort of detecting the sig-
nature of coalescing compact binaries in the noise-dominated
spectrum of a GW interferometer is the accurate modeling of
the expected signals. Only with an entire family of these theo-
retically predicted template signals is it possible to filter large
amounts of data taken from the interferometers. In a “matched
filter” search (see e.g. [2]), these data are convolved with the
model signals and if the agreement exceeds some pre-defined
threshold one claims detection and further exploits theoreti-
cal predictions to estimate physical parameters of the binary
system, such as component masses and spins.

In the case of a binary black hole (BBH) with comparable
masses, at least two different approaches are needed to de-
scribe the full motion and radiated GW content from the sys-
tem. Post-Newtonian (PN) theory is an asymptotic weak field
approximation that treats black holes as point particles with
a relative velocity v that is small with respect to the speed of

light c (for details, see e.g., [3] and reference therein). The
standard PN formulation is based on expanding the relevant
quantities (such as energy and GW flux) in terms of the small
parameter v/c. Depending on the details of the expansion, re-
summation and integration of the resulting differential equa-
tions, different waveform models for the early inspiral are
known, commonly denoted by TaylorTn (with n = 1, . . . ,4)
[3–8], TaylorF2 [9–12] and TaylorEt [13, 14]. A further in-
spiral waveform family is obtained by mapping the two body
problem to an effective one body (EOB) system with the ap-
propriate potential [5, 15–17].

All these analytical approximations break down in the
strong gravity regime, and one has to perform computation-
ally expensive numerical calculations in full general relativity
to describe the complete dynamics. Since 2005 [18–20] sta-
ble numerical-relativity (NR) simulations of a few orbits plus
merger and ringdown to a final Kerr black hole have become
a standard tool to consistently predict the last stages of a BBH
coalescence [21]. The exploration of the whole parameter
space, however, has just begun and, for instance, long simula-
tions of systems with mass-ratios higher than q = m2/m1 ∼ 5
are still exceptionally time-consuming. For current overviews
of the field see [22–25].

An obvious goal is to combine PN and NR results to pro-
duce “complete” waveform models. Such signals contain
physical information up to frequencies higher than the pure
PN templates, which becomes increasingly important when
the total mass of the system increases. According to re-
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cent studies, binary neutron stars as well as mixed black
hole/neutron star binaries are captured well by point-particle
PN templates [26, 27] assuming the current and anticipated
performance of the Laser Interferometer Gravitational-wave
Observatory (LIGO) [28]. We therefore focus on complete
waveform models for BBH coalescences in this paper. By in-
cluding systems with small total masses in our analysis, how-
ever, we effectively consider a broad range of possible com-
pact binary systems.

Several approaches have already been suggested to analyt-
ically build template families that include all the stages that
the BBH undergoes. The EOB family has been refined by
adding extra parameters that cannot be determined by PN cal-
culations but are fixed by calibrating them to highly accu-
rate NR data. This combination of EOB and NR information
yields a description of the entire coalescence process in the
time domain [29–36], often referred to as EOBNR. A differ-
ent time-domain description based on standard PN expansions
was presented in [37] as a step towards modeling generic spin
configurations. In this paper, we consider the direct match-
ing of standard PN waveform models to NR data. In this ap-
proach, PN data are used up to some point in time or frequency
and NR results are then taken to describe the remaining part
of the waveform. A phenomenological fitting of these “hy-
brid” waveforms can then be performed to obtain an analytical
closed formula (in the frequency domain) which interpolates
between the physical parameters of the hybrids [38–41].

All these procedures are subject to ambiguities and errors
that limit the applicability of the final waveforms. The major
source of uncertainty is the long PN inspiral part of the wave-
form, as previous studies have shown [41–44]; and we con-
tinue the effort to estimate modeling errors on this basis here.
In a previous paper [42] we started addressing the important
question of how long numerical waveforms have to be in order
to fulfill the accuracy requirements for a PN/NR hybridiza-
tion. Our analysis of nonspinning binaries with mass-ratio
q ∈ [1,4] and equal-mass binaries with spins (anti-)aligned
to the orbital angular momentum (with χi = Si/m2

2 ≤ 0.5)
lead to the conclusion that NR simulations of such systems
should cover 5 to 10 orbits to be used in hybrids that satisfy
the minimal accuracy requirement for signal detection. For
larger mass-ratios and larger spins, our results suggested that
far longer numerical waveforms were required.

However, that study was limited due to the following re-
striction: The efficacy of a model in a search is determined
by the best match between the true waveform and any other
waveform in the search model. This best match (called the
“fitting factor”) should be calculated by maximizing the match
over all of the physical parameters of the model. With access
to hybrids from only discrete points in the parameter space,
we were only able to maximize the match over the total mass
of the binary, and so our results were a (possibly very) conser-
vative estimate of waveform length requirements.

Even stronger requirements were presented in a number of
other studies, where no maximization was performed at all
(except over the initial phase and time-of-arrival of the sig-
nal), with the intention of determining the waveform length
requirements not just for detection, but also for parameter es-

timation. With these more stringent requirements, MacDon-
ald et al. [43] as well as Boyle [44], concluded that NR
waveforms generally have to be much longer than currently
possible to produce hybrids sufficiently accurate for both de-
tection and parameter estimation. In addition, Damour et al.
[45] presented a detailed comparison of one phenomenologi-
cal waveform model [40] and a recent member of the EOBNR
family [33]. As part of their approach they find that in partic-
ular systems with higher mass-ratio (q & 10) can be combined
accurately with a standard PN approximant in the frequency
domain only if the NR waveform contains hundreds of orbits.

In this paper, we study study hybrid accuracy and NR wave-
form length requirements in the context of fully optimized mis-
matches, i.e., fitting factors. To do this, we first show that it is
possible to estimate the hybrid mismatch without full numer-
ical waveforms. This is because to a good approximation we
need only integrated quantities from the numerical waveforms
(for example, their total power), and these bulk quantities can
be calculated with sufficient accuracy from phenomenological
models; the uncertainties in the fine details of those models
do not affect these calculations. Furthermore, it is possible
to generalize this procedure, to allow us to optimize the mis-
match with respect to physical parameters, and to then cal-
culate the fitting factor that is necessary to make estimates
of NR waveform length requirements that are meaningful for
GW searches. By looking at the parameter bias between the
best-match waveform and the target signal, we also gain some
insight into the parameter estimation errors due to the uncer-
tainties in the waveform modeling process.

In the following sections, we will develop this procedure
step by step. After introducing the mismatch as our data
analysis-motivated definition of error (Sec. II), we show in
Sec. III that the mismatch between two hybrids can be par-
tially estimated with knowledge of only the relative power
between the NR and PN parts of the signal. In Sec. IV we
include the possible dephasing between the NR parts of two
waveforms, which completes our procedure for making an ac-
curate estimate of the mismatch. (This is similar to the pro-
cedure presented by [44]). Along the way we compare with
previous results in the literature, showing that we fully agree
on non-optimized mismatch errors.

When we finally optimize these mismatches with respect to
physical parameters in Sec. V, we find that the corresponding
errors for waveform families are much smaller than assumed
so far. In particular, NR simulations that cover ∼ 10 orbits
are probably acceptable for most astrophysical applications
during the Advanced detector era. This includes nonspinning
binaries (for which significant improvements in PN approx-
imants are less likely in the next five years), where we ex-
plicitly show that this relatively small number of NR orbits
is sufficient up to at least q = 10, and with astrophysically
reasonable restrictions even for q = 20 and above. We also
adopt the view that, since typical simulations will be of com-
parable lengths over the next five years, our focus here and
in future work should not be on prescribing ideal (and unreal-
istic) waveform lengths, but on determining the limits of the
science that we can do with them.
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II. PRELIMINARY CONSIDERATIONS

We shall address the question of accuracy of BBH hybrid
waveforms in the following sense. Let

h = h+− ih× (1)

be the complex GW strain that combines the plus and cross
polarization of the GW as the real and imaginary part, respec-
tively. It is constructed from its PN description hPN and the
NR part hNR. We assume that the transition from hPN to hNR
is enforced at a single frequency,

h̃( f ) =

{
h̃PN( f ) , for f ≤ fm

h̃NR( f ) , for f > fm
, (2)

where h̃ denotes the Fourier transform of h and fm is the
matching frequency. Such a procedure can be employed in a
direct Fourier-domain construction of the hybrid [41], but it is
also approximately true for time-domain hybrid constructions.
In the latter case, the transition is carried out at a time tm,
where the instantaneous frequency is ω(tm) =

d argh
dt = 2π fm.

Then, for (2) to be true, we have to assume that

1. the transition frequency in the Fourier-domain is equal
to the instantaneous matching frequency calculated in
the time-domain;

2. the signal at times t < tm only significantly affects the
Fourier-domain for f < fm and t > tm correspondingly
determines the wave for f > fm.

These assumptions are not trivial since the Fourier-integral is a
“global” transformation. However, it was shown that assum-
ing such a stationarity is reasonable in a regime where both
PN and NR are valid [41] and time- and frequency-domain
construction methods lead to very similar results [42].

The final hybrid waveform is subject to several errors, and
we account for these errors here simply by the fact that one
could have taken slightly different ingredients hPN and hNR
for the same physical scenario. These could be different post-
Newtonian approximants and numerical data from different
codes or different resolutions. Denoting the different wave-
form models by h1 and h2, we calculate the mismatch

M = 1−O(h1,h2) = 1− 〈h1,h2〉
‖h1‖‖h2‖

(3)

= 1−max
φ0,t0

[
4Re

∫ f2

f1

h̃1( f ) h̃∗2( f )
Sn( f )

df
‖h1‖‖h2‖

]
, (4)

where φ0 and t0 are relative phase and time shifts between the
waveforms and ‖h‖2 = 〈h,h〉. Sn is the noise spectral density
of the assumed detector, ∗ indicates the complex conjugation
and ( f1, f2) is a suitable integration range. O is called the
overlap of the two waveforms. Throughout this paper, we will
follow the choices of our preceding work [42], i.e., f1 = 20Hz
and Sn is given by the analytic fit of the design sensitivity of
Advanced LIGO [39]. The upper integration bound f2 is given
by our waveform model, and we use f2 = 0.15/M, although

the results do not depend sensitively on this value (M is the
total mass of the binary).

Broadly speaking, the mismatch indicates how “close” h1
and h2 are. Smaller values for M represent smaller errors in
the waveform model, given that h1 and h2 are approximations
of the same signal. Direct conclusions can be drawn from cal-
culating the mismatch: If M is less than some threshold, we
regard the final hybrid as accurate enough for the purpose in
question. For a maximum loss of 10% of the signals in the
detection process, we can accept a mismatch of ≈ 3%, dis-
regarding the addition from a discrete template spacing. If
we account for the latter, one may decrease the accepted mis-
match in the waveform modeling to 1.5% (see a similar dis-
cussion in [42]) or even 0.5% as suggested in [46].

A generally more stringent requirement is that the uncer-
tainty we have in the modeling is indistinguishable by the
detector. Such a statement is obviously dependent on how
“loud” the signal is in the detector. As discussed in [46] and
further detailed in [45, 47] we can write the indistinguishabil-
ity criterion as

‖h1−h2‖2 < ε
2 , (5)

where the waveforms are optimally aligned in the sense of (4)
and ε parametrizes the effective noise-increase due to model
uncertainties. The minimal requirement for h1 and h2 to be
indistinguishable is ε = 1, although [45] argues that ε ∼ 1/2
and probably less are more reasonable thresholds. Manipu-
lating (5) under the assumption of equal norms leads to the
equivalent inequality (see the calculation in [48])

M <
1

2ρ2
eff

, (6)

where ρeff = ‖h‖/ε is the effective signal-to-noise ratio (SNR)
of the signal.

When we later calculate M as a measure of the error in
hybrid waveforms, we can set various thresholds based on
M < Mmax or Eq. (6) to evaluate the reliability of current
models. A potentially very useful application is then to con-
clude which matching frequency is needed (i.e., how long do
the numerical waveforms have to be) to ensure the desired ac-
curacy.

III. A FIRST APPROXIMATION TO THE HYBRID
MISMATCH

Before we calculate mismatches for many different scenar-
ios, we establish a few more assumptions to gain some in-
sights on the structure of Eq. (4). These will allow us to pro-
pose an approximation to the mismatch between two hybrid
waveforms that can be calculated without the need for any NR
data.

In addition to (2), we further assume:

3. Following [21, 41] we regard the error on the NR side
as small, negligible compared to the uncertainties PN
introduces up to currently practical matching frequen-
cies.
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4. Independent of the PN approximant that is used, the
norm of the waveforms are to high accuracy the same
(i.e., only the phase is affected). This is reasonable to
take as a good approximation, because the amplitude
description in PN is usually formulated as a function of
the orbital frequency [49–51] (which we again identify
with the content on the Fourier side as well) and the
mismatch is much more sensitive to phase differences
than to amplitude discrepancies.

With these assumptions, we can find an instructive lower
bound on M :

M = 1− 4
‖h‖2 max

φ0,t0

[
Re
∫ fm

f1

h̃1 h̃∗2
Sn

df +
∫ f2

fm

|h̃|2

Sn
df
]

≥ 1− 〈h1,h2〉
‖h‖2

( f1, fm)

‖h‖2
( f1, fm)

‖h‖2 −
‖h‖2

( fm, f2)

‖h‖2

=
‖h‖2

( f1, fm)

‖h‖2 MPN . (7)

Here we introduced the notation ‖h‖2
(a,b) to specify the in-

tegration range. MPN is the mismatch of the PN part only,
restricted to f < fm. In the first line of (7) we use the fact
that the amplitudes agree (in fact, we do not require point-
wise agreement, only the norm is assumed to be the same)
and that h1 = h2 for f > fm. The second line is a lower esti-
mate because the maximization was originally carried out by
shifting the entire waveforms relative to each other, whereas
now we allow the maximization over the PN part alone. The
final step involves the obvious relation ‖h‖2 = ‖h‖2

( f1, f2)
=

‖h‖2
( f1, fm)

+‖h‖2
( fm, f2)

.
Let us emphasize that all numerical tests we performed

strongly suggest that the simplifications and assumptions that
are detailed above only weakly affect the final result. In partic-
ular, amplitude differences and non-stationary contributions to
the Fourier transform have a much smaller effect on the mis-
match than the intrinsic difference of various models, which
we are interested in measuring here.

The interpretation of (7) is straightforward: the mismatch
of hybrids is determined by the uncertainty of PN [restricted
to the frequency range ( f1, fm)] multiplied by the fraction of
power that is coming from the PN part of the wave signal.
This fundamental error, independent of the actual PN/NR fit-
ting, is directly inherited from the differences of standard PN
approximants and any PN/NR matching cannot be better than
the result of (7). Therefore, one might think that analyzing the
overlaps or fitting factors (or whatever strategy is appropri-
ate) of different post-Newtonian approximants directly leads
to conclusions of how reliable the hybrid is for a particular
choice of fm. When we compare, however, the mismatch of
actual hybrid waveforms with the estimate (7) we find that
the latter is considerably less than M . In Fig. 1 we illus-
trate this fact for hybrids consisting of either the TaylorT1
or TaylorT4 approximant (in the form detailed in [41]; see
also Sec. IV B) and the numerical data from the SpEC equal-
mass run [52, 53]. The matching frequencies are chosen as
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FIG. 1. Mismatch of nonspinning, equal-mass hybrid waveforms
produced with either the TaylorT4 or TaylorT1 approximant. The
lower bound (7), indicated as gray dashed lines, is compared to the
actual mismatch of complete hybrid waveforms where the PN ap-
proximants are aligned to late merger NR data. The matching fre-
quencies in each case are Mωm ∈ {0.04,0.06,0.08} (from bottom to
top).

Mωm = 2πM fm ∈ {0.04,0.06,0.08}, and the stitching proce-
dure is carried out in the Fourier domain as explained in [41].

Why is the mismatch that much greater than what is ex-
pected from PN in the given frequency range? The reason can
be identified from the derivation of (7), where we effectively
allow an optimal alignment (for each M) of both PN models
while independently keeping the NR part perfectly aligned. In
a true hybrid mismatch calculation, one the other hand, a time
and/or phase shift always affects the entire PN+NR hybrid,
and an optimal alignment of one part leads to a dephasing of
the other. This effect is not caused by an erroneous matching,
but an illustration of the fact that the optimal choice of t0 and
φ0 in the sense of Eq. (4) is mass (frequency)-dependent for
the PN models we consider.

Finally, by considering the obvious generalization of (7),

M ≥
‖h‖2

( f1, fm)

‖h‖2 MPN +
‖h‖2

( fm, f2)

‖h‖2 MNR , (8)

we can identify the three main contributions to the hybrid un-
certainty: The PN and NR error, each weighted by the power
they contribute to the signal and the misalignment caused by
the fact that in the hybridization procedure the PN wave is
aligned at high frequency which is potentially different from
the optimal alignment for lower frequencies.

IV. HYBRID MISMATCHES

A. General procedure

The appealing prospects of (7) have been that the waveform
error could be estimated only by the construction of the dif-
ferent PN approximants and the knowledge of the power con-
tained in both the PN and NR part of the signal. In particular, a
detailed understanding of the phase evolution beyond fm was
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not required. Fig. 1, however, made clear that the simple form
of (7) is not sufficient to accurately estimate M because the
dephasing of the NR part is neglected.

We shall illustrate in this section that there is indeed a
slightly generalized algorithm that accurately predicts the hy-
brid mismatch only with the ingredients listed above. A sim-
ilar approach was recently suggested by Boyle [44] who re-
alized that it is sufficient to combine PN approximants with
ersatz NR data which he takes from the EOBNR model
[15, 16, 30, 34]. We independently derive an algorithm here
that is based on the same perceptions but highlights that no
NR phase information at all is needed.

Let us consider a BBH system with fixed physical parame-
ters. As before, our error measurement assumes the construc-
tion of two hybrid waveforms that differ in the PN part only.
Their overlap reads

O(h1,h2) = max
φ0,t0

[
4Re

∫ f2

f1

h̃1( f ) h̃∗2( f )
Sn( f )

df
‖h1‖‖h2‖

]
(9)

= max
φ0,t0

[
4Re

∫ f2

f1

|A1A2|
Sn

ei(φ1−φ2) ei(2π f t0+φ0)
df

‖h1‖‖h2‖

]
,

where Ai = |h̃i| and φi = arg h̃i. The effect of a time and phase
shift of one waveform with respect to the other is explicitly
written out in the second exponential term.

Assuming two PN models (PN1 and PN2) combined with
the same NR waveform we trivially have

φ1−φ2 =

{
φPN1−φPN2 , f < fm

0 , f ≥ fm .
(10)

The open question is the functional form of the PN phase-
difference (or simply the PN phase error) in the case where the
NR part of h1 and h2 are perfectly aligned. Here we have to
apply an actual matching procedure, although we can use any
preferred method without having NR data at hand. The key
property of (10) we are exploiting is that only PN-PN differ-
ences are taken into account, and a direct PN-NR comparison
is not necessary. The only input we need from NR simulations
is the amplitude |h̃|=A1 =A2 for f > fm. A good estimate for
that can be taken from phenomenological models, such as [40]
or [41], where the Fourier-domain amplitude is approximated
by a closed-form analytic description.

The final global time and phase shift used in (9) to max-
imize the overlap is simply a (phase shifted) inverse Fourier
transform of the remaining integrand. Its maximal real part is
obtained by choosing φ0 (for any t0) such that the generally
complex number lies on the real axis.

Based on that, our final algorithm for estimating hybrid
mismatch errors caused by the uncertainty in the PN model
is the following

1. Calculate the two different PN waveforms expressing
the uncertainty to be quantified.

2. Apply the matching procedure such that one PN ap-
proximant is matched to the other at fm (as if it were
the NR waveform).
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FIG. 2. Hybrid mismatches in the equal-mass, nonspinning case.
Black solid lines are mismatches of actual TaylorT1/T4+NR hybrids,
whereas the dashed (red online) lines are our estimates obtained
without directly using any NR data (NR amplitude taken from a phe-
nomenological model). The matching frequencies are from bottom
to top Mωm = 0.04,0.06,0.08.

3. Fourier transform the so-aligned PN waveforms and
keep the data for f ∈ [ f1, fm].

4. Complete the waveforms in the Fourier-domain by us-
ing an existing expression for the amplitude in the range
f ≥ fm, e.g. from [40, 41] or from a short NR simula-
tion. Set the phase in this regime to 0 (or any other
function, but equal for both h̃1 and h̃2).

5. Calculate the overlap of h̃1 and h̃2 by maximizing the
magnitude of the inverse Fourier transformation.

As expected by the relatively small effect of the amplitude
on the mismatch calculation, this method is fairly robust with
respect to the chosen amplitude description in the NR regime.
In fact, the dashed lines in Fig. 2 use the recipe detailed in [41]
but there is no noticeable difference when we use the formulas
presented in [40]. In all cases we find excellent agreement
with the actual PN+NR hybrid mismatches, see Fig. 2.

B. Application

Now that we have established an algorithm to predict the
full waveform mismatches, we can exploit the computation-
ally cheap procedure and calculate M for many different
physical scenarios. Our aim is to show how “reliable” the final
combination of PN and NR waveforms is in different points of
the parameter space.

First, let us highlight again that ideally, we are interested
in the mismatch of the approximate waveform model to the
true one. Since we cannot calculate the latter (which would
also make the whole discussion pointless), we estimate the
PN uncertainty by calculating the mismatch between different
approximants. This can certainly be no more than a rough
estimate since we are not aware of any principle that would
guide us to which approximants at which PN order should be
compared in order to obtain a well-defined notion of the PN
error.
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To still reach some understanding of the uncertainty in cur-
rently used high-order PN models we present the anticipated
hybrid mismatches when approximants commonly denoted by
TaylorT1, TaylorT4 and TaylorF2 are used. TaylorT1 and T4
are solutions of ordinary differential equations in the time do-
main describing the adiabatic inspiral of the BBH on quasi-
circular orbits, whereas TaylorF2 is a frequency-domain de-
scription based on the stationary phase approximation. De-
tails on these approximants can be found, e.g., in [7, 8] and
references therein. We mainly employ the equations pre-
sented in [41], but with an updated 2PN spin-spin contribu-
tion from [51], see [54] for a collection of explicit expres-
sions. Throughout this paper, we always employ the highest
currently determined PN order, i.e., 3.5PN accurate phasing
with spin contributions up to 2.5PN (and incomplete terms at
higher order) and the 3PN amplitude expansion [50] including
up to 2PN spinning corrections [51].

As in the construction of phenomenological models, we
restrict the parameter space to black holes with comparable
masses and spins aligned or anti-aligned with the orbital an-
gular momentum of the binary LLL (with its unit vector denoted
by L̂LL). Then, each spin can be parameterized by just one di-
mensionless quantity,

χi =
SSSiii · L̂LL
m2

i
, i = 1,2, (11)

where mi and SSSi are mass and spin of the individual black
hole, respectively. By exploiting a degeneracy in the spins,
as observed in [55, 56], the parameter space can be further
reduced, and we only use the mass-weighted total spin

χ = χ1 m1/M+χ2 m2/M (12)

and the symmetric mass-ratio

η =
m1m2

M2 (13)

to label the different physical setups. (In fact, in the following
analyses, each point with fixed χ is represented by χ1 = χ2 =
χ .)

To assess how the accuracy of currently feasible hybrid
waveforms varies in the parameter space, we apply the algo-
rithm outlined in Sec. IV A for different mass-ratios ranging
from equal masses to 4:1, with spin magnitudes from −0.9
to 0.9 in each case. For every pair (η ,χ) one obtains mass-
dependent mismatches in the form of Fig. 2 that generally in-
crease with increasing matching frequency Mωm.

Several plots illustrating this behavior can already be found
in the literature. Contour plots of the mismatch as a function
of mass and matching frequency are the main result of [44],
and we obtain similar results by continuously varying Mωm,
e.g., in Fig. 2. Taking the maximum mismatch with respect
to the total mass instead (i.e., only considering the peaks in
Fig. 2) Fig. 4 in [45] shows the inaccuracy of TaylorF2 hy-
brids compared to EOBNR as a function of the matching fre-
quency. Fig. 11 in [43] presents a similar study with Taylor ap-
proximants and actual NR data. Given some slightly different
choices in our approaches (especially lower cutoff frequency

and detector noise curve) the results we obtain are fully con-
sistent with the numbers presented in the articles mentioned.

Generally, the conclusions [43–45] draw are sobering re-
garding GW detections and parameter estimation. The mis-
matches found are too high, current numerical relativity wave-
forms are by far too short and hybrids are consequently too
inaccurate. In the following, we illustrate the basis of these
statements and expand the existing knowledge by exploring
the parameter space. To reduce the dimensionality of the prob-
lem, we calculate the maximum of the mismatch with respect
to the total mass and fix Mωm = 0.06 (which corresponds to
10 GW cycles before the maximum of |h(t)| in the equal-mass
case).

In Fig. 3 we show contour plots that compare either Tay-
lorT1 with TaylorT4 hybrids or TaylorT1 with TaylorF2 hy-
brids. The matching frequency is fixed at Mωm = 0.06. Cer-
tainly, we could include many more variants of PN approxi-
mants (including different versions of EOBNR), but we find
it sufficient to present some general conclusions that become
already clear from the examples chosen here. As reported be-
fore [42, 45] we see that deviating from equal mass cases, the
disagreement generally becomes larger. This effect is even
more pronounced when increasing spin magnitudes are con-
sidered. Heuristically we can understand the worse perfor-
mance for increasing spins by the simple fact that spin contri-
butions are only determined up to 2.5PN order, whereas non-
spinning terms are known up to relative 3.5PN order. Surpris-
ingly, the ‘island’ or ‘band’ of minimal mismatch does not oc-
cur strictly around vanishing spin magnitudes, indicating that
different approximants can by chance agree extremely well in
some portions of the parameter space. For completeness, let
us report that the TaylorT4/TaylorF2 mismatch yields a pat-
tern similar to the right panel of Fig. 3 but with minimal values
moved to weakly positive spins.

The conclusions suggested by Fig. 3 and results from pre-
vious work [41, 43, 44] are indeed disappointing. If the mis-
matches caused by different PN approximants is actually a
reasonable estimate for the uncertainty in currently practical
hybrid waveforms, then values up to M ≈ 50% are certainly
unacceptable. Reducing the matching frequency, thereby de-
manding longer NR waveforms, does reduce the mismatch
everywhere, but it leads to unrealistic requirements in many
portions of the parameter space.

To illustrate this, Table I addresses two important questions
that form the basis of our TaylorT1/TaylorF2 comparison, list-
ing selected points in the parameter space. First, what is the
required matching frequency if a desired accuracy has to be
fulfilled? Note that due to our algorithm we overcome the re-
striction of currently available NR waveform lengths that the
authors in [41, 43] were facing. We also do not rely on as-
suming a particularly promising ‘candidate waveform’ to act
as a long NR waveform as was done in [42, 44]. In fact,
phase information above Mωm are not required and do not
enter the result; we can simply apply our algorithm to arbi-
trarily small matching frequencies. For each set of parame-
ters we maximize the mismatch with respect to the total mass
M (which we, however, restrict to M ≥ 5M� for computa-
tional reasons) and thus obtain the monotonically increasing
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FIG. 3. Contour plots of the mismatch (in %) between different fictitious hybrids, as a function of the symmetric mass-ratio η and equal
aligned spins with dimensionless magnitude χ . Left panel: PN part either defined by the TaylorT1 or TaylorT4 approximant. Right panel:
Comparison of TaylorT1 and TaylorF2 in the PN part.

qqq χχχ
MMMωωωmmm[[[×××111000−2]]] MMMmin///MMM��� (Mωm = 0.06)

M < 3% ρeff < 20 M < 3% ρeff < 20
1:1 0.0 3.93 (23) 1.15 (212) 15 40
1:2 0.2 2.40 (68) 0.99 (313) 25 49
1:3 0.5 1.70 (155) 0.84 (499) 33 57
1:4 0.8 1.38 (268) 0.75 (730) 38 61

TABLE I. Faithfulness of hybrid waveforms based on a Tay-
lorT1/TaylorF2 comparison for selected physical parameters. The
required matching frequency is reported if either a 3% maximal mis-
match M can be tolerated or if the error should be indistinguishable
for SNRs less than 20, see (6). The parentheses indicate the number
of GW cycles to the maximum of |h(t)|. The two right columns as-
sume Mωm = 0.06 and give the minimal mass, where the waveforms
are accurate enough in the sense described above.

function maxM M (Mωm). By demanding either M < 3% as
the most relaxed requirement or the more stringent case of in-
distinguishable differences for effective SNRs of at most 20
[see (6)] we obtain the values given in Table I. In parenthe-
ses we also give the number of gravitational wave cycles from
dφGW/dt = ωm to the maximum of |h(t)| as predicted by the
phenomenological waveform model [41].

It is unlikely that the typical length of “long” numerical
waveforms will change by an order of magnitude before the
advent of Advanced LIGO, and so a more practical question
is: given a currently achievable NR waveform length, in which
mass-range is the PN+NR hybrid accurate enough? As an ex-
ample we assume again a matching frequency of Mωm = 0.06
and show on the right-hand side of Table I the minimal masses
the hybrid is accurate for in the sense detailed above. For
comparison, the pure NR part occupies the entire frequency
band down to 20Hz for masses M ≥ 97M�. Note that, distinct
from [45], we do not consider errors above Mωm since we are

concerned with hybrids and not possibly fitted closed-form
waveform models that introduce additional errors. Therefore,
our values for Mmin are less than the corresponding results in
[45] that are based on the comparison of EOBNR and the phe-
nomenological model of [40].

The obvious message from Table I is that in general ex-
tremely long NR simulations would be needed to overcome
the intrinsic uncertainty in standard PN formulations for given
physical parameters. For NR waveforms containing so many
cycles our assumption that their intrinsic error can be ne-
glected is possibly no longer valid, which would lead to even
higher modeling errors. Anyway, the numbers presented are
only an ‘order of magnitude’ estimate in this most conserva-
tive approach. The reader should always keep in mind that
our notion of error is based on comparing different, at high-
est available order, consistent PN descriptions and especially
concrete statements for particular points in parameter space
may be spoiled by an (un)fortunate choice of approximants
(see a similar discussion in [42]). More importantly, as we
shall show in the next section, fixing the physical parameters
of the waveforms from the outset greatly overestimates the
uncertainty for signal detection.

V. FITTING FACTORS

A. General

The accuracy assessment presented in Section IV only al-
lows for very limited conclusions about the actual utility of
hybrid waveforms in various applications. Apart from the re-
strictions coming from our limited understanding of the PN er-
ror there is also an important fact we have neglected so far: in
astrophysically relevant applications the knowledge of physi-
cal parameters like total mass, mass-ratio and spin is never ex-
act. If a set of hybrid waveforms constitutes a waveform fam-
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ily which is used to extract information from an unknown sig-
nal, then the standard matched-filter procedures rely on vary-
ing (and maximizing with respect to) such parameters. The
accuracy of the predicted ‘best-fit’ parameters is once again
limited by the detector noise and the modeling error and even
if the latter exceeds the first, one may still argue that a tol-
erated bias does not significantly reduce the scientific output
from GW detections.

In this section we shall therefore consider combinations of
NR data with a particular PN approximant as the ingredients
of an entire manifold of waveforms, parameterized by an ab-
solute time and phase scale (t0 and φ0) as well as the physical
parameters introduced before: M (total mass), η [symmetric
mass-ratio (13)] and χ [spin combination (12)]. The efficiency
of detecting a signal defined by t0,φ0,M,η and χ is properly
quantified through the fitting factor

FF = max
M′,η ′,χ ′

O
[
h1(M′,η ′,χ ′),h2(M,η ,χ)

]
. (14)

Note that the maximization with respect to t0 and φ0 is already
included in the definition of the overlap O , see (9).

The accuracy threshold for detection we quoted before is
indeed defined including this additional maximization, i.e., in
terms of

MFF = 1−FF . (15)

If a waveform family {h1} satisfies MFF(h1,h2)<Mmax then
it is said to be effectual in the detection of h2 [5]. The results
in Sec. IV are only a lower bound on this effectualness.

The accuracy requirements for parameter estimation are
naturally more demanding than those for detection. In the re-
cent literature [41, 43, 45, 46] the faithfulness of waveforms
was usually defined by the criterion (5) (without optimiza-
tion with respect to physical parameters), thereby demanding
that the maximal information can be extracted from the data
without being restricted by the model itself. Here, however,
we want to understand faithfulness in the original sense in-
troduced in [5] that is based on the difference of the target
waveform parameter λ with the recovered model parameter λ̄

for which (14) is maximal. If this bias ∆λ = λ̄ −λ is small
enough, we can still accept the waveform model family as
accurate enough, even for parameter estimation. Therefore,
by analyzing MFF and the corresponding parameters we can
sensibly make analogous conclusion as before, but based on
the actual optimization strategy that is employed in current
template-based GW searches.

Due to the additional freedom of varying physical parame-
ters we now have to calculate the ambiguity function

A (λλλ ′,λλλ ) = O
[
h1(λλλ

′),h2(λλλ )
]

(16)

between hybrids constructed from the same set of NR wave-
forms but members of different PN approximants. It depends
on the parameters of the waveforms, λλλ

′ and λλλ , as well as the
waveform models themselves.

Since the phase difference above Mωm in the overlap in-
tegral (9) does not vanish generally for λλλ

′ 6= λλλ , we have to
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FIG. 4. The ambiguity function (16) between two phenomenological
waveforms [41], where h2 is fixed with η = 0.2, χ = 0.3 and the
total mass as indicated in the plots. The parameters of h1 are varied
individually while the others are kept constant at the values of h2,
respectively.

slightly modify the algorithm presented in Sec. IV A. In par-
ticular, we now need an estimate of how small changes in
physical parameters affect the phase difference in the assumed
NR regime. (The PN regime is affected as well, but there is no
qualitative difference to the PN comparison incorporated be-
fore.) One possible strategy to quantify phase changes along
variable physical parameters is to perform a number of nu-
merical simulations and interpolate between the data obtained.
Depending on the density of samples in the η and χ directions
(the scaling with M is given trivially by a single simulation),
such a procedure can be very time- and resource-consuming.
However, the phenomenological fittings performed in [38–41]
have utilized exactly this type of interpolation, and we conve-
niently use the result of [41] here because the fitting there is
localized to frequencies close to and in the NR regime.

Finally, to ensure the proper relative alignment, our algo-
rithm to calculate A for arbitrary (in practice small) varia-
tions in all parameters is to match different PN approximants
to a phenomenological waveform (phase and amplitude) that
is used above Mωm resulting in a hybrid h̃( f ;M,η ,χ, t0,φ0).

Let us highlight that although we are now building
PN+phenomenological hybrids our analysis is not assessing
how accurate individual waveforms describe the entire coa-
lescence process. Note for instance that we could have in-
troduced this hybridization concept already in the previous
section, but, as we have shown, the phase above the match-
ing frequency did not enter the overlap calculation. Similarly
now, we use the phenomenological phase description merely
to model the M-, η- and χ-dependence at higher frequencies.
Fig. 4 illustrates what kind of information we are using by
plotting slices of the ambiguity function of the phenomeno-
logical model with itself for the case η = 0.2 (mass-ratio
≈ 2.6), χ = 0.3 and M/M� ∈ {10,50,100}. In Sec. IV we
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FIG. 5. The mass-optimized mismatch between equal-mass, non-
spinning TaylorT1/TaylorT4+NR hybrids (black solid lines) com-
pared to our NR-free estimate (dashed lines). The matching frequen-
cies are Mωm ∈ {0.04,0.06,0.08} from bottom to top. The gray lines
show the results of non-optimized mismatches for comparison, see
also Fig. 2. The inset illustrates the relative bias in the total mass
(matching frequencies in reverse order).

only exploited A = 1 for λλλ
′ = λλλ whereas now we need an es-

timate of the shape of A also for λλλ
′ 6= λλλ (although for small

|λλλ ′−λλλ |).
We can make two immediate observations from Fig. 4. Es-

pecially for small masses we see that relatively small changes
in, for instance, symmetric mass-ratio or total mass (the other
parameters are kept constant, respectively) modify the wave-
form considerably, so that the high mismatches for equal pa-
rameters (reported, e.g., in Fig. 2) could potentially be reduced
drastically by only small variations in the physical parame-
ters of one model waveform. Although the formal criterion
(5) for faithfulness (or better indistinguishability) failed, the
fitting factor could still be extremely close to unity with a
minimal bias in the parameters. The second interesting ob-
servation from Fig. 4 is that the width around the maximum
of the ambiguity function increases towards higher masses so
that a comparison of two waveforms is increasingly insensi-
tive to parameter changes at higher frequencies. This in turn
endorses our assumption that the fitting factors and biases we
shall calculate are dominated by PN effects (and not the choice
of data above Mωm) for small masses, where the accuracy re-
quirements turned out to be hardest to satisfy.

B. Comparison with previous results

Before exploring fitting factors across the parameter space,
let us present two examples that illustrate the general con-
clusions we shall draw in this paper. We first come back
to the canonical equal-mass, nonspinning case and the Tay-
lorT1/TaylorT4 comparison that was employed before (see
Fig. 2 and [42]). To test the validity of our approach we
again compare our estimate to hybrids constructed with ac-
tual NR data (matched at Mωm ∈ {0.04,0.06,0.08}, respec-
tively). Due to the unavailability of NR data with arbitrary
η and χ , we for now only maximize with respect to the total

mass M. Note that the results shown in Fig. 5 fully agree with
the analysis of [42] (see Fig. 6 therein). They not only con-
firm that our combination of PN and phenomenological data
accurately predicts the disagreement of the ‘true’ PN+NR hy-
brids, one can also observe the striking improvement when the
additional maximization with respect to M is taken into ac-
count. The peak-mismatch without optimization was approx-
imately 8.8%, 4.5% or 2.2%, depending on Mωm. With mass-
optimization we instead find MFF < 3.2%, 2.0% and 1.5%,
respectively. The relative bias in the total mass, (M̄−M)/M,
is always less than 0.8% and the earlier the matching is per-
formed the smaller the bias becomes.

A subsequent question that has not been answered so far is
to what extent further optimizations, say along the symmetric
mass-ratio and the spin(s) of the model system, improve the
agreement between the waveform families even more. Ref-
erence [42] applied a crude estimation of the effect an addi-
tional mass-ratio optimization has, and concluded that a (to-
tal) mass-optimization alone serves as a sufficient assessment
of the full fitting factor. We now find that this conclusion
was incorrect. We illustrate the effect of further optimizations
through the comparison of TaylorT1- and TaylorF2-based
waveforms (matched at Mωm = 0.06) in Fig. 6. The Tay-
lorT1 target signal is fixed as a system with mass-ratio 4:1 and
spin χ = 0.5, a point in parameter space that clearly fails all
accuracy requirements when looking at Fig. 3. By maximiz-
ing with respect to M, however, the maximal mismatch drops
from 32.2% to 10.4%. Varying all three considered physical
parameters finally yields a curve with MFF ≈ 1.6% at maxi-
mum, making the TaylorF2-based family accurate enough for
detection. The relative bias in the parameters are less than 1%
for M, of the order of 1% for η and . 10% for χ .

Note that a faithfulness analysis, as in Sec. IV and [43, 44],
would conclude that NR waveforms with many hundreds of
cycles are necessary to produce hybrids (and consequently
waveform models) that are sufficient for parameter estimation
purposes. Here we see that waveforms that we might as first
sight regard as far too inaccurate, in fact may yield relatively
small parameter biases when embedded in a waveform family.

The optimization algorithm with respect to physical param-
eters is computationally more challenging than maximizing
the inner product with respect to t0 and φ0 only. For each set of
test parameters (η ,χ) we have to construct a new waveform.
Since TaylorF2 is an analytical closed-form PN description
that is fast to evaluate and our matching to the phenomenolog-
ical model is performed directly in Fourier space [41] we only
consider TaylorF2-hybrids as test waveforms h1. For the fixed
target waveforms h2 we chose to employ the TaylorT1 approx-
imant, because it was shown in [57] that its (dis)agreement to
pre-merger NR data is most robust over the considered param-
eter space and [44] noted that a maximal uncertainty estimate
involves comparing to TaylorT1-inspirals.

Starting with equal parameters λλλ
′ = λλλ , we search for the

nearest local maximum of the overlap O(h1,h2) by varying λλλ
′

along the gradient of the overlap. Thus, we ensure a quickly
converging improvement after a relatively small number of
iterations. The results we present, however, do not take into
account the entire distribution of the ambiguity function and
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FIG. 7. The maximum of the optimized mismatch (in %) for hybrids
constructed either with TaylorT1 (target signal) or TaylorF2 (tem-
plate signal) and a matching frequency of Mωm = 0.06.

are still only a lower bound on the fitting factor. Given the
tremendous decrease in mismatch for relatively small changes
in physical parameters we argue nevertheless that this local
extremum should serve as a reasonable estimate of the error
one has to assume in terms of the fitting factor.

We repeated the exploration of the parameter space with a
study similar to the one presented in Fig. 3. The matching
frequency is again fixed at Mω = 0.06 and we calculate MFF,
Eq. (15), for masses 5M� ≤ M ≤ 20M�. We checked that
the mismatch decreases towards the boundaries of this inter-
val, so that the enclosed maximum can indeed be regarded as
the global extremum. After performing this maximization of
the mismatch with respect to M for fixed (η ,χ), we present
our results as a contour plot in Fig. 7. The structure is very
similar to the pattern of the non-optimized mismatch, cf. the
right panel of Fig. 3. The obvious difference is, however, that
calculating the detection-relevant quantity MFF instead of the

diagonal mismatch 1−A (λλλ ,λλλ ) results in numbers that are
∼ 10 times less than what was considered before as error esti-
mates.

This allows for very different conclusions: Even a moder-
ate matching frequency like the one considered here leads to
hybrids that are accurate enough for detection in a large por-
tion of the parameter space. Simulating NR waveforms with
few (< 10) orbits should hence be good enough for many ap-
plications considering systems with moderate spins and mass-
ratios. Although this is a very broad statement, it is clearly
distinct from previous analyses [43–45] that concluded much
longer NR waveforms are needed to sensibly connect them to
standard PN approximants.

Of course, Fig. 7 only shows the optimal agreement be-
tween the two considered waveform families and one might
fear that the difference between simulated and recovered pa-
rameters is large in some parts of the parameter space. How-
ever, as anticipated by Fig. 6, the bias in total mass and sym-
metric mass-ratio are small, approximately ±1% and ±1.5%
at most, respectively. The spin parameter χ is uncertain by
−0.15 ≤ ∆χ ≤ 0.05. A deeper analysis of these biases is be-
yond the scope of this paper and results are likely more model-
dependent than the general conclusions we present here.

For completeness, we note that for increasing values of
the simulated spin, ∆η and ∆χ generally decrease from pos-
itive to negative values, ∆M increases at the same time. This
correlation is expected from the form of the PN expansion,
where modifications of M can be compensated at lowest or-
der by changing η inversely. Studies of PN approximants
in [8] show similar tendencies, although the biases reported
there are considerably higher due to the absence of a common
NR part at high frequencies. The modeling biases we find
should be compared to statistical errors of full waveform fam-
ilies. In the case of the nonspinning phenomenological model
[39] a Fisher matrix study as well as Monte-Carlo simulations
were presented in [58], and the uncertainties found for Ad-
vanced LIGO and signals of SNR 10 are ∆M/M . 3% and
∆η/η . 8% (M < 100M�). These values are of the same or-
der of magnitude than our results, and we take this as an indi-
cation that modeling errors do not vastly dominate the param-
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mass-ratio 4:1 (dashed lines). The considered spins in each case are
χ ∈ {0,0.2,0.4,0.6,0.8} from bottom to top.

eter estimation uncertainty. However, further studies are un-
derway [59] to determine statistical errors for spinning wave-
form models.

C. Model accuracy for spinning systems

These new results constitute much brighter prospects for
currently feasible NR simulations than the conclusions drawn
in Sec. IV and [42–45]. In certain parts of the parameter space,
however, the mismatch error presented in Fig. 7 is still too
high, particularly if one keeps in mind that gaining sensitiv-
ity of GW detectors is extremely difficult on the hardware
side and theoretical considerations should reduce this sensi-
tivity as little as possible [45]. Therefore, MFF > 3% for
highly spinning systems should be improved by considering
lower matching frequencies. Equally important is the ques-
tion of whether numerical simulations for systems with mod-
erate spins and mass-ratios can be considerably shorter than
Mωm = 0.06 which we assumed so far.

In Fig. 8 we analyze the dependence of the mismatch er-
ror by showing the maximum of MFF as a function of Mωm.
We consider equal masses and mass-ratio 4:1 with spins χ ∈
{0,0.2,0.4,0.6,0.8} in each case. Note that we do not include
negative values of χ here, because the fact that the mismatch
error for χ < 0 is smaller and not monotonic in χ (see Fig. 7) is
likely an artifact of our choice of PN approximants (recall the
obvious differences in Fig. 3). As expected, Fig. 8 illustrates
that reducing the matching frequency, e.g., from Mωm = 0.08
to Mωm = 0.02, leads to an improvement in mismatch by a
factor of 2 to 10, depending on the spin.

Larger values of the spin generally yield larger mismatches
which in turn leads to stronger requirements for Mωm, assum-
ing a given accuracy goal. This is unfortunate because the
orbital hangup configuration of positive aligned spins deceler-
ates the frequency evolution in the inspiral of the binary, de-
manding even longer simulations for a given frequency range.

As such extremely long NR waveforms may not be avail-
able in the near future (including the Advanced LIGO era),

orbits equal-mass mass-ratio 4:1

5 1.5%: −0.76 < χ < 0.60 3.0%: −0.95 < χ < 0.55
0.5%: −0.37 < χ < 0.31 1.5%: −0.52 < χ < 0.39

10 1.5%: −1.00≤ χ < 0.70 3.0%: −1.00≤ χ < 0.68
0.5%: −0.45 < χ < 0.39 1.5%: −0.56 < χ < 0.48

20 0.5%: −0.97 < χ < 0.57 3.0%: −1.00≤ χ < 0.79
0.2%: −0.28 < χ < 0.22 1.5%: −0.92 < χ < 0.55

TABLE II. Range in spin parameter χ where a given accuracy re-
quirement (MFF < 3%,1.5%,0.5% or 0.2%) is fulfilled. Each row
specifies the assumed number of orbits before merger for the NR
waveform (= number of GW cycles divided by 2).

we continue with a slightly different application of our re-
sults: How reliable is a set of complete waveforms constructed
with standard PN approximants and NR simulations covering
5 (10, 20) orbits before merger (i.e., 10, 20 or 40 GW cycles
prior to the maximum of |h(t)|)? To quantify these uncertain-
ties we have to combine an estimate of the minimal matching
frequency allowed by such NR waveforms with the resulting
mismatch error from Fig. 8. We calculate the first from the in-
verse Fourier transform of the phenomenological model [41]
and the time-derivative of the phase, Mωm ≈ d argh(tn)/dt,
where arg(tn) = argh(tmax)− n2π (n = 10,20,40, respec-
tively), and tmax is the time of the maximum amplitude |h|.
This spin- and η-dependent value is then taken into the results
presented with Fig. 8 to estimate MFF for each configuration.
Note that we use a more pessimistic error estimate for anti-
aligned spins (χ < 0) by assuming the mismatches of |χ| due
to the reasons discussed above.

One kind of possible conclusion one can then draw is sum-
marized in Table II for equal masses and mass-ratio 4:1. Given
an accuracy goal (which we take as either 3%, 1.5%, 0.5% or
0.2%) we provide the range of spins in which hybrids with
the specified number of NR orbits fulfill this goal. Note that
the asymmetry in the spin parameter is only caused by the dif-
ferent matching frequencies waveforms with constant length
permit. Again, we can very clearly see that even relatively
short waveform are good enough for detection. In fact, mis-
matches of 0.5% are below the noise level for SNR 10, and
differences of 0.2% are indistinguishable for SNR . 16 ac-
cording to Eq. (6). However, one can also see from Table II
that doubling the number of orbits does not enlarge the accu-
racy range dramatically in many cases, although such simula-
tions would take far more computer power and time.

D. Nonspinning unequal-mass systems

So far, we refrained from explicitly calculating mismatches
for mass-ratios > 4:1 here because our underlying phe-
nomenological model was only calibrated to numerical sim-
ulations with mass-ratios ≤ 4:1. Pushing the model beyond
these values would add another uncertainty in addition to the
way we estimate PN errors already, and more elaborate studies
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FIG. 9. The fully optimized mismatch of nonspinning target sig-
nals employing either the TaylorT1 or TaylorT4 approximant with
model waveforms constructed with TaylorF2 inspirals. The assumed
matching frequency is always Mωm = 0.06. The bias in parameters
is |∆M|/M̄ . 0.6% (0.16%), |∆η |/η̄ . 1.0% (0.3%), |∆χ| < 0.04
(0.017), where the values in brackets indicate the restriction to q≤ 4.

(possible including different models such as [40] and variants
of EOBNR) are needed to reach sound conclusions.

Nevertheless, numerical simulations of higher mass-ratios
are potentially interesting, and we shall try to estimate their
reliability on the basis of our (extrapolated) knowledge here.
We restrict this study, however, to nonspinning target signals.
These are the systems where we do not expect the PN errors
to drop significantly on the timescale of Advanced LIGO (in
contrast to spinning binaries, where higher order PN terms
may well be calculated in the next few years). We find that
the agreement between TaylorT1- and TaylorF2-based hybrids
is exceptionally good along χ = 0 (see Figs. 7 and 9). In
contrast, the TaylorT4/TaylorF2 uncertainty increases towards
higher mass-ratios (smaller values of η) as we would expect
from the form of the PN expansion. Therefore, we shall con-
servatively base our statements on comparing TaylorT4 and
F2 approximants in this section.

To illustrate our argument, we plot in Fig. 9 the maximum
of the fully optimized (i.e., with respect to M, η and χ) mis-
matches between TaylorF2 and either TaylorT1 or TaylorT4
hybrids, all matched to fictitious NR data at Mωm = 0.06. The
fixed target parameters are chosen as χ = 0 with the mass-
ratio q varying from 1 to 4 in steps of 0.5 as well as q= 10 and
q = 20. While the comparison with TaylorT1 yields weakly
η-dependent mismatches below 0.3%, TaylorT4 target signals
exhibit a steeply increasing divergence from the model signals
towards higher mass-ratios. Its approximately exponential be-
havior is well described by the following fitting formula

log10 MFF ≈−0.29−14.1η (17)

which is included as a straight line in Fig. 9. A conservative
estimate of the general model uncertainty would be the maxi-
mum of both data series for each η , i.e., (17) for small η and
roughly constant MFF ≈ 0.12% for η > 0.1866 (q < 3).

Evidently, a matching frequency of Mωm = 0.06 is only
good enough for η > 0.081 (q < 10.2) if a mismatch of at
most 3% is tolerated. Again, reducing the matching frequency
helps to increase the accuracy of the final waveform, and we

orbits mass-ratio q = 20

5 3.0%: q < 8.9 maxM MFF ≈ 15% (19M�)
1.5%: q < 6.8 21M� : 12%, 63M� : 0.3%

10 3.0%: q < 11.4 maxM MFF ≈ 8.2% (13M�)
1.5%: q < 8.6 21M� : 3.0%, 63M� : 1.6×10−5

20 3.0%: q < 14.8 maxM MFF ≈ 5.7% (11M�)
1.5%: q < 10.7 21M� : 0.8%, 63M� : 6.4×10−6

TABLE III. Accuracy of nonspinning hybrid waveforms, based
on combining PN TaylorT4 or TaylorF2 data with NR waveforms
of specified length (defined by the number of orbits before merge
= number of GW cycles divided by 2). Left column: Range in
mass-ratio where a given accuracy requirement (maxM MFF < 3%
or 1.5%) is fulfilled. Right column: Mismatch error for q = 20, both
at maximum of all masses (location indicated in parentheses) and at
astrophysically motivated minimal values of the total mass (see text).

systematically analyze how useful numerical simulations of 5,
10 or 20 orbits before merger are in the nonspinning unequal-
mass regime. For that, we calculate maxM MFF as a function
of the matching frequency and the symmetric mass-ratio, sim-
ilar to what was done for Fig. 8. The matching frequency is
then converted to orbits before merger as explained in the pre-
vious section.

In Table III we present our results in analogy to Table II,
where we provided the range of the spin parameter χ in which
the waveform model meets certain accuracy requirements.
Now we complement the picture by restricting ourselves to
the nonspinning case; our error estimates are based on opti-
mized TaylorT4/TaylorF2 hybrid mismatches, and we present
the accuracy range in terms of the mass-ratio. Note that, al-
though only five orbits of NR data before merger are sufficient
for detection for most of today’s standard simulations (q . 6),
even the computationally very challenging goal of 20 orbits
before merger is not enough to reliably model mass-ratios as
high as 15 or more for arbitrary total masses of the binary.

It should be pointed out, however, that we report the worst
disagreement between the considered hybrids in the left col-
umn of Table III, i.e., we demand that the assumed accuracy
requirement is satisfied for all values of the total mass. As
discussed in [44] already, one should rather understand the
mismatch error and the accuracy requirement as functions
of the total mass. After all, binaries with larger total mass
have higher SNR in the detector (for constant distance of the
source). More important for us here is that some of the con-
sidered astrophysical scenarios may not even exist or be ex-
tremely unlikely, and if the modeling error exceeds accuracy
thresholds in these regions, we do not have to bother.

We illustrate this argument with a concrete example: The
(fictitious) waveform of a binary with mass-ratio 20:1 exhibits
the largest uncertainty at total masses less than 20M�, depend-
ing on the matching frequency (the values for NR simulations
covering 5, 10 or 20 orbits before merger are given in paren-
thesis in the right column of Table III). If we only consider
black holes as objects in the binary and follow observational
[60] and theoretical [61] evidence that their individual masses
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are > 3M�, then the lowest total mass to consider in our er-
ror analysis is instead 63M�. With our idealized assumptions,
this is a regime where the mismatch drops monotonically with
increasing total mass (due to the dominating amount of exact
high frequency data), and the maximal uncertainty at 63M�
proves to be more than sufficient for detection purposes, even
with only a few NR orbits; see Table III. In this sense, mod-
eling higher mass-ratios is more accurate than comparable
masses, as [44] noted already for diagonal (non-optimized)
mismatches.

One the other hand, one could argue that the smaller object
in the 20:1-binary could also be a neutron star. If the compan-
ion is a much heavier black hole, tidal effects are extremely
weak [27] and the plunge is hardly affected from finite size
effects of the neutron star [62]. Thus, we may hope to accu-
rately capture these systems with a BBH template family as
well, and smaller total masses have to be considered. Accord-
ing to [63], (proto)neutron stars are expected to have masses
> 1M�, which is in agreement with current observations (see
[64] for an overview). Assuming the lower bound of 1M� for
the mass of a single compact object, we consequently have to
consider total masses down to 21M� (for q = 20) which leads
to higher modeling uncertainties in the waveform. However,
as Table III shows, 10 NR orbits before merger would be vir-
tually good enough for detection purposes, 20 orbits already
yield a mismatch of only 0.8% at 21M�. Hence, even the the-
oretically and numerically difficult unequal-mass regime may
well be modeled with only a few NR orbits, given the astro-
physical expected properties of such systems.

Of course, these astrophysical limitations are highly uncer-
tain, and the conservative error analyses are the ones presented
in Table II and the left column of Table III. However, given
that caveat, we conclude that currently feasible numerical sim-
ulations are potentially good enough to model in combination
with PN approximants an important fraction of the parameter
space.

VI. DISCUSSION

Predicting the GW signature of an inspiraling and merging
BBH in General Relativity is inevitably associated with ana-
lytical or numerical approximations to the full theory, which
introduce errors in the final result h(t) or h̃( f ). In this pa-
per we estimated these errors by the distance between two
approximte solutions for each physical configuration. While
neglecting uncertainties on the NR side, we assumed differ-
ent standard PN approximants in a frequency range up to the
point where the waveform is matched to an NR-based merger
and ringdown model.

We quantified the uncertainties by comparing the currently
available 3.5PN (spinning contributions up to 2.5PN) versions
of TaylorT1, TaylorT4 and TaylorF2 approximants. Introduc-
ing a simple algorithm that only requires amplitude informa-
tion beyond the matching frequency, we first confirmed pre-
vious studies [42–44] that found that the mismatch error for
fixed physical parameters greatly exceeds reasonable accuracy
requirements, assuming typical NR waveform lengths.

Instead of demanding extremely long numerical simula-
tions to overcome this uncertainty in the modeling process,
we refined the understanding of the waveform error by adopt-
ing the actual data analysis strategy of detecting an unknown
signal in noise-dominated interferometer data. In particular,
assuming waveform families instead of individual waveforms
naturally redefines the concept of distance by allowing physi-
cal parameters to be varied in the mismatch calculation.

The results presented in Sec. V indicate then that the GW
signatures for many astrophysically relevant systems can in
fact be well modeled by straightforward combinations of stan-
dard PN approximants and currently feasible NR simulations,
covering < 10 orbits before merger. Although the accuracy
has not yet reached a level such that detection and param-
eter estimation errors are limited only by the detector noise
for high SNR events, the reported disagreement among differ-
ent models and biases in the parameters are certainly tolerable
for the first GW detections that are likely to have low SNRs
(∼ 10). While this is true for systems with moderate spins, one
has to keep in mind that even our idealized setting yields mis-
match errors for high values of spins that are of the order of a
few percent, which increase for higher mass ratios. Reducing
the matching frequency poses unrealistic challenges for cur-
rent NR codes, and either fundamentally different numerical
approaches or advances in PN are needed to fully control the
entire parameter space.

While the next spin-contributions in PN theory may become
available in the near future to further improve the modeling of
spinning systems (see the recent calculations of next-to-next-
to-leading order spin-orbit contributions [65, 66]), unequal-
mass nonspinning contributions at 4PN order are unlikely to
be calculated with established techniques soon. However, as
we discussed for a binary with mass-ratio 20:1, astrophysical
expectations are that such systems only form with a high total
mass, thereby reducing the impact of PN uncertainties. Even
for 20:1 binaries, our results suggest that NR simulations of
less than 10 orbits are sufficient.

In summary, we found that not single hybrid waveforms,
but rather the embedding in the waveform manifold, results
in templates accurate enough for detection, even with today’s
limited number of NR orbits. The uncertainty in physical
parameters we had to accept for this tremendous increase in
overlap is rather small, ∼ 1% in mass and symmetric mass-
ratio, and ∼ 0.1 at most for the spin parameter χ . For nearly
equal-mass systems, the individual masses of the constituents
are then only reliable to

∆mi

mi
≈ ∆M

M
+

√
∆η

η
∼ 10% , (18)

and it has to be decided whether this is good enough for astro-
physical studies.

Of course, our analyses are meant to provide a general con-
cept of how to deal with modeling errors, instead of giving
final answers. Especially, as we emphasized throughout the
paper, we do not address the question of how accurate a partic-
ular waveform model is. The statements formulated here are
based on selecting PN approximants that are compared with
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each other, and our choices were made to result in conserva-
tive estimates illustrating the order of magnitude one generally
has to assume for our notion of error. One should neverthe-
less keep in mind that a particular PN+NR combination can be
much closer to the real waveform than estimated here, as well
as the possibility that the PN ambiguity at consistent 3.5PN
order generally underestimates the true error in the signal de-
scription.

It should be noted further that the numbers we find rely
on two essential assumptions: We neglect both the error of
the hybridization procedure and any uncertainties beyond the
matching frequency. Both assumptions are well motivated by
previous studies [21, 41–43], but care has to be taken when
generalizing their validity. For instance, from Fig. 7 or Ta-
ble II one might be tempted to conclude that actually very
short NR waveforms are enough for modeling equal-mass,
hardly spinning systems. This is certainly true from our re-
sults if the matching to PN can be done unambiguously. How-
ever, if there are too few cycles to align PN and NR sig-
nals properly, different matching procedures may lead to very
different results. This aspect was not treated here as it can
be checked separately, and it should only affect the resulting
waveform for very short (< 5 orbits) NR simulations.

The other key assumption, the presence of exact high fre-
quency data, must also be put into the correct perspective. Not
only do we say that the error of the NR part of the wave is neg-
ligible (an assumption that could easily be dropped if the NR
mismatch becomes significant) we also use waveform fami-
lies that directly resemble PN/NR hybrids. In other words, the
additional error that is introduced in the phenomenological fit-
ting and interpolation process is not taken into account here.
Again, this is an error that can be quantified separately, but it
has to be taken into account when interpreting the comparison
of different complete waveform models, as was done in [45].
We merely state the fact here that in principle PN+NR com-
binations constitute sufficiently accurate target waveforms for
the construction of template families.

This work can be complemented in many different ways.
One obvious, yet involved extension is the completion of the
parameter space by allowing arbitrary spin orientations that
cause additional precession dynamics. Some steps towards
building such hybrids have been taken place already [67, 68],
but a deeper understanding of the waveform structure has to be
gained before an extensive error analysis like the present one
can be performed. Similarly, this study was restricted to the
dominant spherical harmonic mode as it is crucial to under-
stand and quantify the errors here first. Nevertheless, a final

waveform model would have to include higher modes as well,
and the algorithm we presented should be easily adaptable to
these cases.

Implementing more PN approximants and repeating our
analysis with pairwise comparisons of various flavors of PN
and EOB will help to fully understand the spread of equiva-
lent descriptions of the inspiral process. When more contribu-
tions to PN expansions become available the present analysis
has to be repeated, hopefully reflecting the enhanced knowl-
edge of the analytical approximation. This is especially true
for spinning binaries, where calculations of higher-order PN
contributions are expected in the next few years.

Also, work is already underway [59] to extend previous
work [58] and relate the parameter uncertainties found in this
study to statistical errors that are inevitably present for sig-
nals with a given SNR in the detector. Only these results will
allow for statements about how useful current waveform con-
structions are for parameter estimation and if the uncertainty
in recovered parameters is dominated by the detector noise or
the waveform model itself.

Finally and most interestingly, one should address the ques-
tion of what kind of physics can be achieved given a certain
performance of complete waveform models and, of course,
given real GW detections with the upcoming generation of
interferometers. It will be particularly important to analyze
whether a certain disagreement between signal and model can
be entirely explained by model uncertainties or if possibly un-
known physical effects are the cause. This study serves as a
first step to prepare for those kinds of questions.
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