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Abstract. We study in detail the power spectra of scalar and tensor perturbations generated
during inflation in loop quantum cosmology (LQC). After clarifying in a novel quantitative
way how inverse-volume corrections arise in inhomogeneous settings, we show that they can
generate large running spectral indices, which generally lead to an enhancement of power at
large scales. We provide explicit formula for the scalar/tensor power spectra under the slow-
roll approximation, by taking into account corrections of order higher than the runnings. Via
a standard analysis, we place observational bounds on the inverse-volume quantum correction
d x a7 (o >0, ais the scale factor) and the slow-roll parameter ¢, for power-law potentials
as well as exponential potentials by using the data of WMAP Tyr combined with other
observations. We derive the constraints on ¢ for two pivot wavenumbers kg for several values
of 6. The quadratic potential can be compatible with the data even in the presence of the
LQC corrections, but the quartic potential is in tension with observations. We also find that
the upper bounds on §(kgy) for given o and kg are insensitive to the choice of the inflaton
potentials.
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1 Introduction

Both the construction of quantum gravity and the question of its observational tests are
beset by a host of problems. On the one hand, quantum gravity, in whatever approach, must
face many mathematical obstacles before it can be completed to a consistent theory. On the
other hand, assuming that a consistent theory of quantum gravity does exist, dimensional
arguments suggest that its observational implications are of small importance. In the realm
of cosmology, for instance, they are estimated to be of the tiny size of the Planck length
divided by the Hubble distance.

Between the two extremes of conceptual inconsistency and observational irrelevance lies
a window of opportunity in which quantum gravity is likely to fall. It is true that we do
not yet know how to make quantum gravity fully consistent, and it is true that its effects
for early-universe cosmology should be expected to be small. But in trying to make some
quantum-gravity modified cosmological equations consistent, it has been found that there can
be stronger effects than dimensional arguments suggest. Consistency requirements, especially
of loop quantum gravity, lead to modified spacetime structures that depart from the usual
continuum, implying unexpected effects.



To partially bridge the gap between fundamental developments and loop quantum grav-
ity phenomenology and observations, one considers effective dynamics coming from constraint
functions evaluated on a particular background and on a large class of semiclassical states.
In generally-covariant systems, the dynamics is fully constrained, and the constraint func-
tionals on phase space generate gauge transformations obeying an algebra that reveals the
structure of spacetime deformations. The algebra of these gauge generators thus shows what
underlying notion of spacetime covariance is realized, or whether covariance might be broken
by quantum effects, making the theory inconsistent. If a consistent version with an unbroken
(but perhaps deformed) gauge algebra exists, it can be evaluated for potential observational
implications.

These effective constraints and their algebra, at the present stage of developments, can
be evaluated for perturbative inhomogeneities around a cosmological background. While loop
quantum gravity is background independent in the sense that no spacetime metric is assumed
before the theory is quantized, a background and the associated perturbation theory can be
introduced at the effective level. In the case of interest here, the background is cosmological, a
flat Friedmann-Robertson-Walker (FRW) spacetime with a rolling scalar field and perturbed
by linear inhomogeneous fluctuations of the metric-matter degrees of freedom. The idea
is to implement as many quantum corrections as possible, and study how the inflationary
dynamics is modified. In this context, it is important that no gauge fixing be used before
quantization, as such a step would invariably eliminate important consistency conditions by
fiat, not by solving them. The result would be a framework whose “predictions” depend on
how the gauge was fixed in the first place.

This program, challenging as it is, has been carried out only partially so far, and in grad-
ual steps. First, the full set of constraints was derived for vector [1], tensor [2], and scalar
modes [4, 5] in the presence of small inverse-volume corrections. The gravitational wave
spectra have been studied in [6, 7], where the effect of inverse-volume corrections and their
observability were discussed. The scalar inflationary spectra and the full set of linear-order
cosmological observables was then derived in [8], thus making it possible to place observa-
tional bounds on the quantum corrections themselves [9] (see also refs. [10] for early related
works). The reason why these studies concentrate on inverse-volume corrections is mainly
technical; in fact, the closure of the constraint algebra has been verified only in this case (and
only in the limit of small corrections). A class of consistent constraints with a closed algebra
is known also for vector and tensor modes in the presence of holonomy corrections [1-3], and
since recently also for the scalar sector, where anomaly cancellation is more difficult to work
out [11]. Inspections of cosmological holonomy effects have so far been limited to the tensor
sector [6, 12-15].

Exactly isotropic minisuperspace models, where the situation is reversed and holonomy
corrections are easier to implement than inverse-volume corrections, provide another reason
why it is interesting to focus attention on inverse-volume corrections. Effective equations
available for certain matter contents with a dominating kinetic energy [16, 17] suggest that
holonomy corrections are significant only in regimes of near-Planckian densities [18] but
not during the timespan relevant for early-universe cosmology, including inflation. Inverse-
volume corrections, on the other hand, do not directly react to the density but rather to
the discreteness scale of quantum gravity, which is not determined immediately by the usual
cosmological parameters. The question of whether they are small or can play a significant
role must be answered by a self-consistent treatment.



Such a treatment shows that inverse-volume corrections present an example of quantum-
gravity effects that can be larger than what dimensional arguments suggest [9]. Here we
present the full details of the analysis briefly reported in [9] for a quadratic inflationary
potential, enriching it with new constraints on other potentials. From a cosmological per-
spective, we shall provide the complete set of slow-roll equations as functions of the potential,
extend the likelihood analysis to quartic and exponential potentials, and discuss how the ex-
perimental pivot scale and cosmic variance affect the results.

Before examining the details and experimental bounds of the model, from a quantum-
gravity perspective we will clarify some conceptual issues which must be taken into account for
a consistent treatment of inverse-volume corrections. In particular, we justify for the first time
why inverse-volume corrections depend only on triad variables, and not also on connections.
Until now, this was regarded as a technical assumption devoid of physical motivations. Here
we show it as a consequence of general but precise semiclassical arguments. Further, we spell
the reason why inverse-volume corrections are not suppressed at the inflationary density
scale.

The plan of the paper is as follows. We begin in section 2 by discussing inverse-volume
corrections in LQC and their justification in inhomogeneous models, providing the first imple-
mentation for a class of semiclassical states sufficiently large to be used in effective equations.
The lattice refinement picture has been introduced and developed in a number of papers, but
a major twofold open issue remains. On one hand, there is the need to justify why inverse-
volume corrections depend only on triad variables and not on holonomies. On the other hand,
it is not clear how the fundamental discreteness scale, previously introduced in media res,
arises in the lattice refinement framework. Section 2 does both systematically for the first
time. The relation between (the size of) inverse-volume and holonomy quantum corrections is
clarified in section 2.3, while section 2.4 is a recapitulation of past criticism and a discussion
of how it is addressed by the present arguments. After that, we turn to an application for ob-
servational cosmology. In section 3.1 we review the formulae of the cosmological observables
in the Hubble slow-roll tower [8]. In section 3.2 we reexpress these quantities in the slow-roll
parameters as functions of the inflationary potential. In section 4 the observables are recast
as functions of the momentum pivot scale for a ready use in numerical programs. The effect of
cosmic variance on the scalar power spectrum is also discussed therein. In section 5 we shall
carry out the likelihood analysis to constrain the inverse-volume corrections in the presence
of several different inflaton potentials by using the observational data of Cosmic Microwave
Background (CMB) combined with other datasets.

2 Cosmology with a discrete scale

One of the main features of loop quantum gravity (LQG), shared with other approaches
to quantum gravity, is the appearance of discrete spatial structures replacing the classical
continuum of general relativity. It is often expected that the scale of the discreteness is
determined by the Planck length ¢p; = v/Gh, but if discreteness is fundamental, its scale must
be set by a dynamical parameter of some underlying state, just as the lattice spacing of a
crystal is determined by the interaction of atoms. In this section, we develop the cosmological
picture of dynamics of discrete space, highlighting the form of quantum corrections to be
expected. Readers more interested in potentially observable consequences may skip this
technical part, but those acquainted with LQC will find a fresh discussion and justification
of inverse-volume corrections and the lattice refinement picture.



In loop quantum gravity, such states are represented by spin networks, graphs in an
embedding space whose edges e are labeled by spin quantum numbers j.. The quantum
number determines the area of an elementary plaquette intersecting only one edge e, given
by A = v03,\/je(je +1). As the plaquette is enlarged, its geometrical size changes only
when it begins to intersect another edge, increasing in quantum jumps. In the area formula,
7 is the Barbero-Immirzi parameter, whose size (slightly less than one) can be inferred from
computations of black-hole entropy [19, 20]. As expected, the scale is set by the Planck
length for dimensional reasons, but the actual size is given by the spin quantum number. Its
values in a specific physical situation have to be derived from the LQG dynamical equations,
a task which remains extremely difficult. However, given the form in which j. appears in
the dynamical equations, its implications for physics can be traced and parametrized in
sufficiently general form so as to analyze effects phenomenologically.

2.1 Scales

In order to model this situation in general terms, we begin with a nearly isotropic spacetime
and a chunk of space of some comoving size 1y, as measured by the extensions in some set
of coordinates. The geometrical size is then V = Vya®, where a is the scale factor. We
complement this classical picture with a discrete quantum picture, in which the same chunk
of space is made up from nearly-isotropic discrete building blocks, all of the same size v.
If there are N discrete blocks in a region of size V, we have the relationship v = Vya®/N.
The elementary volume v, or the linear scale L = v/3, will be our main parameter, related
to the quantum state via its labels j.. The elementary quantum-gravity scale L need not
be exactly the Planck length, depending on what j. are realized. Instead of using the j.,
which are subject to complicated dynamics, it turns out to be more useful to refer to L in
phenomenological parametrizations. Similarly, we define the quantum-gravity density scale

3

P = gL 21)

which equals 3/87 times the Planck density for L = /p.

In loop quantum gravity, the discreteness is mathematically seen as a rather direct con-
sequence of the fact that the fundamental operators are holonomies along curves e, computed
for a certain form of gravitational connection, the Ashtekar-Barbero connection A%,! while
the connection itself is not a well-defined operator. For a nearly isotropic spacetime, there
is only one nontrivial connection component, given by ¢ = va in terms of the proper-time
derivative of the scale factor. The classical holonomies are he = Pexp( [, dAe*Al7;), with
7; = i0;/2 proportional to Pauli matrices and path ordering indicated by P. Every h,. takes
values in the compact group SU(2), whose representations appear as the spin labels of edges
Je, giving rise to discrete conjugate variables.

Another consequence of one being able to represent only holonomies, not connection
components, is that the usual polynomial terms in connection-dependent Hamiltonians are
replaced by the whole series obtained by expanding the exponential expression for an holon-
omy. In this way, higher-order corrections are implemented in the dynamics. Corrections
become significant when the argument of holonomies, given by line integrals of A% along the
spin-network edges, is of order one. For a nearly isotropic connection A% = ¢d?, the integral
along straight lines reduces to fyc, where ¢y is the coordinate (i.e., comoving) length of the

ndices a,b,--- = 1,2,3 run over space directions, while 4,7, --- = 1,2, 3 are internal indices in the su(2)
algebra.



edge. If the edge is elementary and of the discreteness size of our underlying state, we have
lo = L/a = v'/3/a, and the condition for holonomy corrections becoming large is v'/3¢/a ~ 1.
More intuitively, holonomy corrections become large when the Hubble scale H~! = a/a ~ vL
is of the size of the discreteness scale, certainly an extreme regime in cosmology. Yet another
intuitive way of expressing this regime is via densities: holonomy corrections are large when
the matter density is of the order of the quantum-gravity density. By the classical Friedmann
equation, this happens when

?,Hggc2 3

)
= ~ = ) 2.2
87G 87G a2y?2  8wGH2L2 T Pas (2:2)

We introduce the parameter oo := p/poc = 8rGv?/ 3p/3 in order to quantify holonomy
corrections. These are small when ) < 1.

The discreteness of loop quantum gravity manifests itself in different ways, some of which
require more details to be derived. In addition to holonomy corrections, the most important
one arises when one considers the inverse of the elementary lattice areas. Classically, the
areas correspond to the densitized triad Ef, which determines the spatial metric gq, via
E?Ef = ¢ det ¢ and is canonically conjugate to the connection A%. The inverse of E¢ or
its determinant appears in the Hamiltonian constraint of gravity as well as in all the usual
matter Hamiltonians, especially in kinetic terms, and is thus crucial for the dynamics.

Upon quantization, however, the densitized triad is represented in terms of the spin
labels that also determine the lattice areas, and those labels can take the value zero. No
densely defined inverses of the area operators exist, and therefore there is no direct way
to quantize inverse triads or inverse volumes as they appear in Hamiltonians. However, as
with holonomies replacing connection components, there is an indirect way of constructing
well-defined inverse-volume operators, which imply further quantum corrections.

2.2 Derivation of inverse-volume corrections

The quantization of different kinds of inverse volumes or the co-triad e, obtained from the
inverse of Ef, begins with Poisson identities such as [21, 22]

. y EYE¢ .
{AZ, / d®z+/| det E|} = 2W7Gezjkeabcﬁ sgn(det £) = 4myGe;, , (2.3)
e

stemming from the basic Poisson brackets { A’ (z), Ejb(y)} = 87rny<5§-53(5(:U, y). On the right-
hand side of eq. (2.3), there is an inverse of the determinant of Ef, but on the left-hand
side no such inverse is required. Classically, the inverse arises from derivatives contained in
the Poisson bracket, but after quantization the Poisson bracket is replaced by a commutator
and no derivative or inverse appears. In this way, one obtains well-defined operators for the
inverse volume, implementing an automatic ultraviolet cutoff at small length scales.

The volume [ d®z+/| det E| of some region, containing the point v where we want to
evaluate the co-triad, is quantized by well-defined volume operators, and the connection can
be represented in terms of holonomies. For holonomies with edges of comoving length £, we
can write

) ~ 1 —
tr (7' hy e [hy e, Vo) ~ Filo{ A, Vier. (2.4)

v,er 'V

Here, 77 = io7 /2 are Pauli matrices, hy e is a holonomy starting at a lattice vertex v in some
direction e, and V4 is the volume of some region around v, with V; its quantization. As long



as v is included in the region integrated over to obtain the volume, it does not matter how
far the region extends beyond v. One could even use the volume of the whole space.

To quantize, loop quantum gravity provides the holonomy-flux representation of the
basic operators hV ¢ (holonomies along edges e) and FS = f S d2y Efn,, fluxes of the densitized
triad through surfaces S with co-normal n,. These variables are SU(2)-valued, but one can
devise a regular lattice for a simple implementation of inhomogeneity, setting edges with
tangent vectors ¢} = 0%, I = 1,2,3 in Cartesian coordinates. Then, holonomies are given by
hy.e; = exp(borrc) = cos(Loc/2) + 2711 sin(loc/2) € SU(2), where ¢ is the connection evaluated
somewhere on the edge. All connection-dependent matrix elements can thus be expressed in
the complete set of functions 7 := exp(ifpc/2) € U(1), and the flux through an elementary
lattice site in a nearly isotropic geometry is simply F = ¢2p with |p| ~ a?, and p carrying a
sign amounting to the orientation of space. Isotropy thus allows a reduction from SU(2) to
U(1), with certain technical simplifications.

For a nearly isotropic configuration, we assign a copy of the isotropic quantum theory
to every (oriented) link I of a regular graph, making the theory inhomogeneous. By this step
we certainly do not reach the full theory of loop quantum gravity, which is based on irregular
graphs with SU(2)-theories on its links. But we will be able to capture the main effects which
have appeared in approximate considerations of loop quantum gravity with simpler graphs
and reduced gauge groups. The basic operators are then a copy of 7, ; and Fv, 7 for each
lattice link with

[iie.1s For g) = —Amy 017 10170y o1 (2.5)

if the edge of the holonomy and the surface of the flux intersect.
When we insert holonomies for nearly isotropic connections in eq. (2.4) and evaluate
the trace, inverse-volume operators resulting from commutators have the form

- 1
By =
o 4tvGh

(ﬁI,IVVﬁvJ - ﬁV,IVVﬁiJ) . (26)

The volume at vertex v is obtained from components of the densitized triad, quantized
by a flux operator Fy ;, with v an endpoint of the link I. If (I,I’,1"”) denotes the triple
of independent links emanating from a given vertex, we can write the volume as V, =

|FV,IFV,I/FV7[” |. Thus,

A 1 ~ N ~ ~ N A
_ N N N AT
Bv,] = 47T")/Gh <77V7[ |FV,IFV,I’FV,I” |77V,I — v, |FV,IFV,I’FV,I” |77V7]) . (27)

As in the general representation, the basic operators FV, 1 and 7, ; satisfy the commutator

identity (2.5) while 7}, ; commutes with Fv, 1 and Fv, 1. Moreover, 1), 1 satisfies the reality
condition 7y, 177:[, ; = 1. It turns out that these identities are sufficient to derive the form
of inverse-triad corrections in a semiclassical expansion, irrespective of what state is used
beyond general requirements of semiclassicality.

We consider the two operators 77\,’1|Fv7[|1/2ﬁ3:,1 and ﬁi71\ﬁ'\,,1|1/2ﬁv71 separately.? They
can be simplified using the basic commutators (2.5) and [ﬁi [:Fw 1l = 47r’y€1231ﬁi7 ;- We can

thus reorder terms so as to bring 7, s right next to ﬁi 7» and then cancel them using the

2The factors of \/|Fy /| and y/|Fy ;| quantize positive powers of the densitized triad and do not give rise

to inverse-volume corrections.



reality condition. Reordering according to ﬁV,IFvJ = (F 47T’y€p1)77v 7 and 77 IFV ;=
(B + 4777%1)"?\]:,1 leads to

77 I = ’FV I— 477}’6 ‘1/27 ﬁi,I‘FVJ‘l/QﬁVJ = ’FV,I + 4”76%1‘1/2' (2.8)

In the classical limit A — 0, these expressions in Bw 7 result in a derivative by Fy 1, as required
by the Poisson bracket relationship (2.3). For inverse-volume effects we are interested in the
leading quantum corrections with A # 0, which arise in different forms. First, because the
operator is nonlinear in the basic ones FV’ 1 and 7)1, classical expressions will be corrected by
terms involving the moments of a state: As always in quantum physics, the expectation value
<BV 1) does not have the classically expected relationship with expectation values of the basic
operators. We can compute these corrections by followmg the principles of canonical effective
dynamics, substituting (Fy. 1)+ (Ey.; — (Ey 1)) for Fy ; and performing a formal expansion by

FV,I - <FV,I>:

Aot | Bt 208 ;= By p — dmy 3|1/

CWE ) — A2 12 1/2\ (For— (Fyn)*
(o= a3 () S o)

ﬁl,]’Fv,I\l/Qﬁv,f = \ij + 47r’y£ \1/2

_ ‘< >+47T'7€ 1’1/22 (1/2> < vI_< vI>)k (2.10)

v I> + 47r'y€21\k

(This expansion can be made well-defined and analyzed in the context of Poisson geometry
of algebraic state spaces [23-25].)

All terms in Fv, I— (FV 1) will either vanish upon taking an expectation value (k = 1 in the
expansion) or give rise to moments of the quantum state used to compute the expectation
value (k > 2, with fluctuations and correlations arising for k& = 2). The precise values
of the moments and their dynamics depend on the state used and in fact encode the state
dependence of the theory, but for a semiclassical state they satisfy, by definition, the hierarchy
((FV I — (FV )¥) ~ K¥/2. This notion of semiclassicality is a very general one; it does not
require us to choose a particular shape of the state, such as a Gaussian.

The moment terms imply an important form of quantum corrections in the context of
quantum back-reaction. Such corrections arise from different sources in the Hamiltonians,
which will all have to be combined and analyzed. We will not enter such an analysis here,
but rather note that even if we disregard quantum back-reaction, quantum corrections do
remain: we have

1
d7vGh

(] 1B M i s = g | B g 200 )

_ |<Fv71> + 477%%31‘1/2 - |<Fv,1> - 4”76%’1\1/2

= . T (2.11)
Ayl

where the dots indicate moment terms dropped. This expression includes inverse-volume
corrections, computed for general semiclassical states. It matches with expressions derived
directly from triad eigenstates [26, 27], which are not semiclassical but, as proven here,
provide reliable information about inverse-volume corrections. More general semiclassical



states do not introduce additional dependence of inverse-volume corrections on connection
components or curvature, they just introduce moment terms which contribute to quantum
back-reaction. (Such an extra dependence may arise from non-Abelian properties of the
theory [28], which are not strong for perturbative inhomogeneities.)

2.3 Correction functions

Corrections to classical Hamiltonians in which inverse triad components appear can be cap-
tured by introducing correction functions such as

|L(a)2 + 4W7€%I|1/2 — |L(a)2 — 471'*%%1]1/2
47775%1

ala) == L(a), (2.12)
obtained by identifying
(Fy 1) = L*(a) (2.13)

with the discreteness scale (depending on the scale factor in the presence of lattice refine-
ment [8]). The multiplication of inverse-volume corrections by L(a) ensures that a(a) ~ 1 in
the classical limit, but strong corrections can arise for small L. Our derivations apply to small
deviations from the classical value, for which consistent implementations in the dynamics are
available. We can thus expand

afa) =1+ agdpr + -+, (2.14)

with dp) := (¢p1/L)™ for m = 4 in the above derivation, and the dots indicating powers
higher than m.
For (Fy 1) > 51291 inverse-volume corrections become very small, but they are significant

if (Fy 1) is about as large as a Planck area or smaller. Bringing in our discreteness scale,
leading inverse-volume corrections can be expressed in terms of the quantity

4
e\ B \?
dp1 (L) ( ’ (2.15)

(using m = 4 from now on). If L or v is constant, dp; is constant and inverse-volume
corrections merely amount to rescaling some expressions in Hamiltonians. More generally,
however, the dynamical nature of a discrete state suggests that L and v change in time or,
in cosmology, with respect to the scale factor a. We parameterize this dependence as

oprxa? (2.16)

with o > 0; see [8] for a discussion of possible values of o and its relation to quantization
parameters.
In order to compare inverse-volume with holonomy corrections, we write

8rG 2 8T p 2 8t p 2
Opr = —poal? ) = (=20 = (=61 . 2.17
o B ) B

The second equality shows that inverse-volume corrections are considerable and of the order
one when the quantum-gravity density is close to the Planck density. Inverse-volume cor-
rections thus behave very differently from what is normally expected for quantum gravity,



where the Planck density is often presupposed as the quantum-gravity scale. In loop quan-
tum gravity, this scale must be sufficiently small compared to the Planck density in order to
be consistent with inverse-volume corrections.

The last expression in eq. (2.17) is useful in order to compare holonomy with inverse-
volume corrections. Inverse-volume corrections are usually suppressed by a factor of p/ppi,
as expected for quantum-gravity effects, but there is an extra factor of 5}:011. For small
densities, holonomy corrections are small, but inverse-volume corrections may still be large
because they are magnified by the inverse of . As the energy density decreases in an
expanding universe, holonomy corrections fall to small values, and in this way begin to
magnify inverse-volume corrections. For instance, in an inflationary regime with a typical
energy scale of p ~ 1071%p|, we can use (2.17) to write dpo ~ 10_9/\/ﬂ. Having small
holonomy corrections of size dpo; < 107% then requires inverse-volume correction larger than
dp1 > 1076, This interplay of holonomy and inverse-volume corrections makes loop quantum
gravity testable because it leaves only a finite window for consistent parameter values, rather
than just providing Planckian upper bounds. It also shows that inverse-volume corrections
become dominant for sufficiently small densities, as they are realized even in high-energy
scenarios of inflation.

In this context, it is worthwhile to comment on a comparison of the corrections derived
here, assuming a nearly isotropic but explicitly inhomogeneous discrete state, with their
form in pure minisuperspace quantizations. In inverse-volume as well as holonomy correc-
tions, we referred to elementary building blocks of a discrete state, the plaquette areas in
inverse-volume corrections and edge lengths in holonomy corrections. A pure minisuperspace
quantization would primarily make use of macroscopic parameters such as the volume of some
region (or the scale factor). The number of discrete blocks, such as N introduced above, is
not available, and thus it is more difficult to refer to local microscopic quantities such as Fy ;.

For curvature or the Hubble parameter, local quantities are easier to introduce and
to use in holonomy corrections, but inverse-volume expressions must refer to quantities of
size, which cannot be expressed microscopically in a pure minisuperspace context. As a
consequence, inverse-volume corrections have often been misrepresented in loop quantum
cosmology. Without referring to N, as it is introduced in the lattice-refinement formulation
of loop quantum cosmology, one can only use the macroscopic volume of some region instead
of the microscopic F\, 1.3 Inverse-volume corrections become smaller for larger F 1, and thus
substituting this quantity by a macroscopic size suppresses the corrections. Any such sup-
pression is merely an artifact of using the wrong expressions for the corrections based solely
on minisuperspace considerations. Using a macroscopic volume also makes the corrections
dependent on the size of the chosen region, which is another artificial dependence on extra
parameters; because of this, LQC inverse-volume corrections have been often interpreted as
problematic or even unphysical. The derivation shown here solves these problems; see also
the following subsection.

As already seen, inverse-volume corrections show unexpected properties in terms of
their dependence on the density, and regimes in which they are strong. Another unexpected
property is seen in their influence on spacetime structure, with important consequences for

3As mentioned earlier, in the inhomogeneous theory we can use the full volume or the size of any region
in inverse-volume corrections because most plaquette contributions, which do not intersect the edge of the
holonomies used, drop out. In homogeneous models, on the other hand, all plaquettes are equivalent and
correspond to the same degree of freedom. The choices must thus be specified carefully in order to avoid
minisuperspace artifacts.



cosmological perturbation theory. Inverse-volume corrections are not just of higher-curvature
type in an effective action, but they deform the usual gauge algebra of generally covariant
systems, generating spacetime diffeomorphisms. This deformation, as discussed in more detail
in the following calculations, leads to characteristic cosmological effects. In a conceptual
context, moreover, it allows us to distinguish inverse-volume corrections from the other types
encountered in loop quantum gravity: holonomy corrections and quantum back-reaction.

A closer look at the algebra of constraints generating the gauge transformations reveals
that deformations of the algebra introduced by inverse-volume corrections cannot be undone
by including holonomy corrections or quantum back-reaction [8]. Holonomy corrections imply
higher-order terms in the constraints depending on the connection nonpolynomially, or at
least on the background connection if an expansion by inhomogeneities is done. No such
terms arise for inverse-volume corrections, and no cancellation is possible. Quantum back-
reaction, on the other hand, comes from terms including moments of a state, as alluded to
in our derivation of inverse-volume corrections. The dependence on the moments remains
if one computes the constraint algebra, in such a way that corrections from quantum back-
reaction cannot cancel deformations implied by inverse-volume corrections, either. Since
the characteristic effects analyzed here are a consequence of nontrivial deformations of the
algebra, we can safely conclude that including only inverse-volume corrections does give a
reliable picture, because they cannot be cancelled by the other, more complicated corrections.
Of course, it remains of interest to study the inclusion of other effects such as the curvature of
the universe, and the simultaneous competition between inverse-volume and other quantum
corrections in a more complete dynamical analysis.

2.4 Consistency

Most of the properties and consequences of inverse-volume corrections are unexpected and
unfamiliar. It is then perhaps not surprising that there are at least four main objections to
the physical significance of effective LQC dynamics with inverse-volume corrections, which
are popularly encountered in the literature and in scientific debates. It is claimed that
(i) these corrections are ill-defined in a pure minisuperspace context and a flat universe,
(ii) no rigorous derivation in the more involved inhomogeneous context (taking into account
lattice refinement) has been provided so far, (iii) even if a derivation were possible, the
inflationary energy scale would be too low for volume/curvature corrections to be sizable,
and (iv) even setting aside the issue of their size, the analysis would remain incomplete
because we do not know how these corrections compete with holonomy modifications of the
dynamics. As an example for the claimed incompleteness of correction functions used, the
independence of inverse-volume corrections of the connection or curvature has been criticized
as physically unjustified.

We had already partially answered some of these objections elsewhere [8]. First, let us
summarize the main arguments advanced there:

(i) In a realistic cosmological scenario, there is no conformal invariance of the scale factor
and the correct way to implement the quantum dynamics is to consider the natural cell
subdivision of space and how these cells evolve in time: this is the lattice refinement
picture. In this perspective, interpretational difficulties regarding quantum corrections
appear to be just an artifact of the idealized homogeneous and isotropic setting of pure
minisuperspace models.

,10,



(i)

(i)

Although a rigorous derivation is desirable, the motivations of lattice refinement are
natural in the perspective of the full quantum theory and there is no conceptual obstacle
in relaxing the parametrization obtained in a pure minisuperspace.* Moreover, one
cannot simply suppress inverse-volume corrections by a regularization procedure, as
occasionally suggested by taking the limit of Vy — oo in cases where these corrections
are Vy-dependent. Inverse-volume corrections do appear in the full quantum theory
and play an important role for well-defined Hamiltonians. If they disappeared by
a regularization procedure in minisuperspace models, one should explain why they
are absent in a cosmological setting but not otherwise. Furthermore, there is tension
between the requirement of closure of the inhomogeneous constraint algebra and the
minisuperspace parametrization [8], which demands clarifications; although the lattice
parametrization is so far implemented semi-heuristically in calculations of effective
constraint algebras, it does accommodate anomaly cancellation.

Since the gauge symmetry of the model is deformed by quantum corrections, the very
structure of spacetime is modified locally but everywhere; thus, one expects effects
larger than in traditional scenarios of standard general relativity with higher-order cur-
vature terms. In [8] we found qualitative theoretical estimates of these effects which are
several orders of magnitude larger than minisuperspace estimates (and, interestingly,
rather close to experimental bounds [9] in terms of orders of magnitude). However, the
lack of control over the putative quantum gravity characteristic scale (hidden in the
quantum corrections) makes it difficult to assess its importance within inflation.

We argued that other quantum corrections would not cancel inverse-volume effect be-
cause of the radically different way in which they affect the dynamics. Of course, the
issue of comparing inverse-volume and holonomy corrections remains of interest for the
community, but one does not expect that miraculous cancellations happen between
the two.

The results of the present section serve to further address the above objections and

provide final clarifications for several of them. For the first time, we have embedded inverse-
volume corrections in inhomogeneous models, using the lattice refinement picture and working
at the kinematical level, thus giving fresh insight to these issues. In particular:

(i)~ (i1)

(iii)

When the phase space volume is associated with an individual homogeneous cell rather
than a fiducial volume (as done in pure minisuperspace), the lattice parametrization
emerges naturally and a quantum-gravity scale replaces unphysical quantities in inverse-
volume corrections. Correction functions are completely independent of comoving vol-
umes such as Vy and there is no regularization needed to make them disappear.

Surprisingly, the magnitude of these corrections can be argued to be large at mesoscopic
scales, even when densities are far away from Planckian values such as during inflation.
In cosmological models, quantum corrections are relevant not just near a bounce at
Planckian density.

4Sometimes, the argument is advanced that the minisuperspace parametrization (in particular, the so-
called improved dynamics) is the only one producing a constant critical density and a robust bounce picture.
This argument is invalid for two reasons. On one hand, even the improved dynamics parametrization does
not give a constant critical density unless quantization ambiguities are tuned to certain specific values [7];
the time-dependent modification comes from inverse-volume corrections in the gravitational sector, which
are nonzero in general. On the other hand, within the lattice parametrization a constant critical density, if
desired, can be obtained, indeed.
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(iv) The basic noncancellation between inverse-volume effects and other, presently uncon-
trolled quantum corrections is reiterated with novel arguments. Modifications of the
classical constraint algebra by inverse-volume corrections cannot cancel with those from
holonomy corrections, nor with terms from quantum back-reaction. Holonomy cor-
rections provide an additional connection dependence of almost-periodic type in the
constraints, while inverse-volume corrections as shown here have only weak connection
dependence. Inverse-triad corrections are also independent of moments of a state, as
they would determine quantum back-reaction. The structure of the Poisson algebra
on the quantum phase space, including expectation values and moments, shows that
neither the connection-dependent terms of the form of holonomy corrections nor mo-
ment terms describing quantum back-reaction can cancel the terms of inverse-volume
corrections. If the constraint algebra is modified by inverse-volume corrections, it must
remain modified when all corrections are included. Thus, also the presence of effects
larger than usually expected in quantum gravity is general.

To summarize, loop quantum cosmology implies the presence of inverse-volume corrections
in its cosmological perturbation equations. In their general parametrization, the corrections
depend only on triad variables simply because they depend on a quantum scale whose dy-
namical nature is encoded by the background scale factor. This conclusion is a result of the
derivations presented here, not an assumption. Also, their power-law form as a function of
the scale factor is suggested by very general semiclassical considerations which do not further
restrict the class of states.

3 Inflationary observables

With a consistent implementation of inverse-volume corrections at hand, a complete set of cos-
mological perturbation equations follows. These equations have been derived elsewhere [1]—
[5], starting with a constraint analysis. Here we continue to prepare these equations for a
convenient cosmological investigation, which we then exploit to find observational bounds on
some parameters.

The slow roll approximation is assumed precisely for the same reasons as in standard
inflation: it is an Ansatz, it is the definition itself of inflation. In LQC there exists also a
super-inflationary regime where the universe super-accelerates because of purely geometric
effects, and the background attractor is not de Sitter. However, in that regime the constraint
algebra has not been shown to close, and we have no rigorous control over the ensuing physics.
Here, we simply assume that (i) inflation takes place thanks to a scalar field slowly rolling
down its potential, and (ii) that this happens completely in the large-volume regime, where
quantum corrections are small (and the algebra closes).

3.1 Hubble slow-roll tower

The slow-roll parameters as functions of the Hubble rate are defined starting from the back-

ground equations of motion, which also determine the coefficients of the linear perturbation

equations. In the presence of inverse-volume corrections, the effective Friedmann and Klein-
Gordon equations read

2

K

H: = —

3

a! [(glj + pV(ap)} (3.1)
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and

dlnv
"oH(1— ! V=0 3.2
respectively, where primes denote derivatives with respect to conformal time 7 := [ dt/a,

H:=d /a=aH, k* = 871G, p=a? G is Newton’s constant, and ¢ is a real scalar field with
potential V(). Following section 2, the LQC correction functions are of the form

a = 1+ agdp, (33)
v =14 1ydp], (3'4)

where o and vy are constants and
opp x a ? (3.5)

is a quantum correction (2.16) whose time dependence is modelled as a power of the scale
factor (here o > 0 is another constant). The proportionality factor will never enter the
analysis explicitly but, in the derivation of the perturbation equations, it is assumed that
op; < 1. Consistently, throughout the paper we use the equality symbol = for expressions
valid up to O(dp;) terms, while we employ ~ for relations where the slow-roll approximation
has been used. The latter holds when the following slow-roll parameters are small:

Hl
€e:=1-— @
/€2 S0/2 o oQ
=S 1+ |ag+ 1 s 1) |dp1p + 751317 (3.6)
S0//
1 . 3.7
A (3.7

The conformal-time derivatives of € and 7 are

¢ = 2He(e —n) — oHEdp, (3.8)
W= Hen—¢), (3.9)

€::0z0<;+26—n>+u@<g—1>e. (3.10)

The inflationary spectra were computed in [8]. The scalar power spectrum is

where

GH>
Ps = o (14 ~s0p1) , (3.11)
where
o o X ovy (o Qg o
= —+1 — = =—=+1 —(5—-=. 3.12
7 ”0(6+)+26 s+1 X 3<6+>+2< 3) (312)
Equation (3.11) is evaluated at the time k& = H when the perturbation with comoving

wavenumber k crosses the Hubble horizon. Using the fact that

§pp = —oHdp) (3.13)
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and ' ~ H d/dIn k, the scalar spectral index ng — 1 := dInPs/dIn k reads
ng — 1 = 2n — 4e + 0y, 0p1 , (3.14)

where

€ X
vnszze—ag(l—Z)—vszao—QVO—l—U_'_l, (3.15)

while the running oy := dng/dInk is

s = 2(5en — 4e® — £2) 4 0(4€ — oy, )Op1 - (3.16)
This shows that, for 0 = O(1), the running can be as large as dp;. In this case, the terms
higher than the running can give rise to the contribution of the order of dp;. In section 4.1

we shall address this issue properly.
The tensor power spectrum is

2
Py = 1673? (L +wdp), = Z:r 10107 (3.17)
while its index ny := dInP;/dInk and running oy := dny/dInk are, respectively,
ny = —2€ — 0y0p1 , (3.18)
and
ay = —4e(e —n) + 0(2€ + o) dp - (3.19)
The tensor-to-scalar ratio r := P;/Ps combines with the tensor index into a consistency
relation:

r = 166[1 + (1 — ’Ys)‘SPl]
— —8{7% + [nt(% — ) + 07‘3]5})1} ) (3:20)

When dp; = 0, all the above formulas agree with the standard classical scenario [29].

3.2 Potential slow-roll tower

To constrain the inflationary potential against observations, it is convenient to recast the
cosmological observables in terms of the tower of slow-roll parameters written as functions
of V and its derivatives. From egs. (3.1) and (3.6) we have

ﬁ;ig = e—{gm)-ke[ao%—m(g—l)]}(;m, (3:21)
- ‘?;(1 g + {Vo + ao<g - 1) + % [Oéo + m(% - 1)]}5131) . (3.22)
v, = - (1 1y f’g%pl) | (3.23)

N 52} ~ g}apl> , (3.25)
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The first three elements of the tower are

1 V<p 2 1 Vgogo 2 VSDVWWP
P ’ = — ) = [ERL SRR . 2
VT o2 ( Vv ) ' WeEETY S kAV?2 (3:26)

On using egs. (3.23)—(3.25), we have the following technical expressions:
ooy oQg 20 o
11— — ——1 2
5 3 [040< 3 ) +1/0<2 >]6}5P1, (3.27a)
o o 20
1-Z g
) el §) e )
2

+ [ag (1 - g) +u <(; - 1)] e}épl, (3.27h)

5\2/ ~ §2 + 3en + [aff(€7 77) + gf(ev n, 52)} op1 (327C)

2
ool ) 3]

o o2

_[a0<6+1> +V0<1—o'—+—9>:|7]7
2
N A
2 ) 5

+[040(6—730—09> —1/0<6—3U—5108+2207>]677
- [a0<1 - g) +”°<2:;7 - 1)] &, (3.27d)

which give the inversion formulas

€y

%
™
4

|

|
4
3
4

l
(@)
+
3
_I_
—
q
S
/T\
|
—_

Ny =~

(6] (0%
€~ ey + {‘720 - [ao(l — o)+ 1/0<g . 1)] v — "30%}5131, (3.28a)

n=ny— €y

« oy To o2
—{a<20+ ?U _,,0> + [ao(a— 1)+u0<1 - 6+9>]ev

n [ao (1 - ;) T (2; . 1)} nv}(spl, (3.28b)

52%5\2/"“36‘2/_36\/77\/
2 o Qg 2 ap 3 o
1— =) - =2 i c_Z
Hotn(1-5) -2+ T (55l
col( ) hu(1- o+ T\ + 20+ 0 (Z <1 )|on?
o|l—[ = — Y —0+ — — |l vyl = — o
5\ 3 0 9 v 3 0 0 3 v
r 52 72 53
+ ao<630+0)+1/0(640+00>]63,

18 27

[ 7o o2 350 1302 20°
+log| 6 — 4+ — | —v(6—— + — == |levnv

6 18 27

+ -Oé() (g — 2) + 219 <1 — 230—>1| 5‘2,}5131 . (328C)
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We can now rewrite the cosmological observables.
running (3.16) become

The scalar index (3.14) and its

ng — 1 = —6ey + 21y — ¢ 0p1, (3.29)
a5 = —24€% + 16ey 1y — 262 + co,0p1 (3.30)
where
130 202
Cne = fs— [6@0(1 —0)— W (6 _ 27 U)} €y
3 9
7 2
— [ao (U - 2> + 219 (1 - U)] v, (3.31a)
3 3
170 202
Ca, = Ofs+ [aoa(o —6)+ I/()U<6 — TU + g)} €y
[ o o?
+ _a00(2 — 3> — 21/00<1 -0+ 9)} Ny
[ 502 980 1702  100%\] ,
48 — 42 — | = 48 — —
—i—_ozo( o+ 9> 1/0< 3 + 9 57 )}ev
[ 1400y 4oy a\] o
— 1=
o (g
[ 460 o2 700 1302 403
2a0( — 16 + —= — 2 32— =7 -7
[ 2
+12a0 (2 - ‘;) + 4y (; - 1)] €2 (3.31b)
3a0(130 — 3 6+ 11
fs — U[ Oé()( o )+ VOU( + U)] ' (3310)
18(c + 1)
The tensor index (3.18) and its running (3.19) are
ng = —2€y — Cp,O0p1, 3.32
ay = —4ey(2ey — ny) + Co,dp1, 3.33)
where
20c
tn, = fu = [200(1—0) + (0~ 2)]er — =5 v, (3.34)
8 2
Cop = Oft+ U[(Z — o)y — 20(0]6‘/ + [16@0(1 — o) — 4w <4 — ?J + 09)} e?,
4 7
_ 03a0 77\2/ + |2a0(50 — 4) + 219 (4 — ;)] vy, (3.35)
202a0
= . 3.36
fim (3.36)
Finally, the tensor-to-scalar ratio (3.20) is
r = 16€y + ¢:.0p1, (3.37)
e 300 2) — (6 + 110)]
813ag(3 + 50 + 60°) —vyo(6 + 110 160
= — . 3.38
o 9o +1) O (3:38)
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4 Power spectra and cosmic variance

In this section, we cast the power spectra as nonperturbative functions of the wavenumber k
and a pivot scale kg (section 4.1). The parameter space of the numerical analysis is introduced
in section 4.2, while a theoretical prior on the size of the quantum correction is discussed
in section 4.3. An important question to address is whether a possible LQC signal at large
scales would be stronger than cosmic variance, which is the dominant effect at low multipoles.
This issue is considered in section 4.4, where a positive answer is given for a certain range in
the parameter space.

4.1 Power spectra and pivot scales

Because of eq. (3.13), terms higher than the runnings a5 and ay can give rise to a nonnegligible
contribution to the power spectra Ps(k) and Pi(k). Let us expand the scalar power spectrum
to all orders in the perturbation wavenumber about a pivot scale ky:

oo (m)
k:
0) 2 4 yo 0) ym (4.1)

m=3

In Ps(k) = InPs(ko) + [ns(ko) — 1] + 2

where x := In(k/kg), and al™ = d™2a,/(dInk)™ 2. When O(e,) and O(ny) terms are
ignored, ¢, ~ fs in eq. (3.29), while the dominant contribution to the scalar running can be

estimated as
dng

dink |, _,
(m)

Similarly, we can derive the m-th order terms ag ~ as

al™ (ko) ~ (—1)™o™ ! fsdpi (ko) - (4.3)

as(ko) = ~ o fsop1(ko) - (4.2)

In this case, the last term in eq. (4.1) converges to the exponential series,

i agm)(ko)
ml

m=3

2™ = £ (ko) {x<1 _ ;m) b 1)} . (4.4)

Thus, the scalar power spectrum (4.1) can be written in the form

Ps(k) = Ps(k()) exp {[ns(ko) _ 1].%’ + 045(2]{:0){1:2

+ fsopi(ko) [ZE (1 - ;JZE> + l(e_” - 1)]} . (4.5)

o

We stress that the power spectrum (4.5) is nonperturbative in the wavenumber k, while
ordinary inflationary analyses take a truncation of (4.1). The expression (4.5) is valid for
any value of ¢ and of the pivot wavenumber, provided the latter lies within the observational
range of the experiment. Note that kg is not fixed observationally, except from the fact that
we can choose any value on the scales relevant to CMB (with the multipoles ¢ ranging in
the region 2 < ¢ < 1000). The CMB multipoles are related to the wavenumber k by the

approximate relation
k~10"*h ¢ Mpc™!, (4.6)
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where we take the value h = 0.7 for the reduced Hubble constant. The default pivot value
of cMBFAST [30] and CAMB [32] codes is kg = 0.05Mpc™! (¢y ~ 730). For the WMAP
pivot scale kg = 0.002Mpc~! (¢ ~ 29) [33, 34], the maximum value of x relevant to the
CMB anisotropies is Tmax ~ 3.6. Intermediate values of kg are also possible, for instance
ko = 0.01 Mpc~! [35]. In general, the constraints on the parameter space, and in particular
the likelihood contours, depend (even strongly) on the choice of the pivot scale [36], and it
is interesting to compare results with different kg also in LQC.

The fact that we can resum the whole series is of utmost importance for the consistency
of the numerical analysis. In standard inflation, higher-order terms do not contribute to the
power spectrum because they are higher-order in the slow-roll parameters. Then, one can
truncate eq. (4.1) to the first three terms and ignore the others. Here, on the other hand,
all the terms (4.3) are linear in dp) and they contribute equally if the parameter o is large
enough, ¢ 2 1. This fact might naively suggest that small values of o are preferred for a
consistent analysis of a quasi-scale-invariant spectrum [8]. In that case, one would have to
impose conditions such as |[ng(ko) —1]z| > |[as(ko)/2]2?|, which depend on the pivot scale kg.

For o > 1, however, different choices of ky would result in different convergence prop-
erties of the Taylor expansion of Ps. The point is that dpj(k) changes fast for o > 1 and the
running of the spectral index can be sizable; dropping higher-order terms would eventually
lead to inconsistent results. On the other hand, eq. (4.5) does not suffer from any of the above
limitations and problems, and it will be the basis of our analysis, where ng(ko) and ag(ko)
are given by egs. (3.29) and (3.30). The last term in eq. (4.5), usually negative, tends to
compensate the large positive running, thus providing a natural scale-invariance mechanism
without putting any numerical priors.

Assuming that ¢, ~ f;, same considerations hold for the tensor spectrum, which can
be written as

Qg (ko) 2

Pi(k) = Py(ko) exp {nt(ko) T+
oo (i) el an

where ny (ko) and ay (ko) are given by egs. (3.32) and (3.33), respectively. Finally, the tensor-
to-scalar ratio is given by eqs. (3.37) and (3.38), with the slow-roll parameters evaluated at
the pivot scale k = k.

4.2 Parameter space

The CMB likelihood analysis can be carried out by using egs. (4.5), (4.7), and (3.37). Let us
take the power-law potential [37]
Vip) = Vo™ (4.8)

In this case, it follows that (kg dependence implicit)

n? 2(n —1) s 4n—-1)(n-2),

W? nv = T6V7 & = n2 €y - (4.9)

€y =

This allows us to reduce the slow-roll parameters to one (i.e., €y ).
For the exponential potential [3§]

V(g) = Voe ™%, (4.10)
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the relation between the slow-roll parameters is given by

)\2
v =5, Ny = 2y, €2 =4é% (4.11)
which are again written in terms of the single parameter e, .

Between the model parameters 1y and ap we can also impose the following relation [8],
valid for o # 3:

3(c —6)
= __qp. 4.12
T+ 6) (-3 (4.12)
Introducing the variable

(ko) := aodpi(ko), (4.13)

we can write fsdpi(ko) and fidp(ko) in the form

o (803 — 802 — 930 + 18) 202

s = R = — . 4.14
f 5P1(k0) 2(0_ — 3)(0_ + 1)(0’ + 6) 5(k0) ft(sPl(kO) o+ 1(5(1’60) ( )

For 0 = 3 one has oy = 0 identically, in which case eq. (4.13) is replaced by d(ko) := vodp1(ko).

To summarize, using the relation (4.12), all the other observables can be written in
terms of d(ko) and ey (ko). Hence, for given o and kg, one can perform the CMB likelihood
analysis by varying the two parameters (ko) and ey (ko).

4.3 Theoretical upper bound on the quantum correction

For the validity of the linear expansion of the correction functions (3.3) and (3.4)° and all
the perturbation formulas where the O(dp;) truncation has been systematically implemented,
we require that 6(k) = apdpi(k) < 1 for all wavenumbers relevant to the CMB anisotropies.
Since dp; x a~?, the quantity d(k) appearing in inflationary observables is approximately
given by

Ko\~
d(k) = (ko) <k> ; (4.15)
where we have used k = H at Hubble exit with H/a ~ const. As k o ¢, the same expression
can be written in terms of the multipoles ¢. Since o > 0, one has d(k) > d(ko) for k < kg
and d(k) < d(ko) for k > kg. This means that the larger the pivot scale kg, the smaller the
upper bound on § (ko).

Let us consider two pivot scales: (i) kg = 0.002Mpc~! (multipole 9 ~ 29) and
(i) ko = 0.05Mpc~! (multipole 5 ~ 730). Since the largest scale in CMB corresponds
to the quadrupole ¢ = 2, the condition §(k) < 1 at £ = 2 gives the following bounds dyax On
the values of d(kg) with two pivot scales:

(i)
(ii)
Values of dax for some choices of o are reported in table 1. The suppression of dp,,x for larger
ko and o can be also seen in the power spectra (4.5) and (4.7). The term e~ 7% = (ko/k)? can

be very large for large ko: for instance, if ¢ = 6 and kg = 0.05 Mpc™!, one has e~ 7% ~ 1019
at £ = 2. Then we require that 6(ko) is suppressed as §(kg) < 10716,

max = 14.577  (for ko = 0.002Mpc™1), (4.16)

5
Smax = 36577 (for ko =0.05Mpc™!). (4.17)

5Using the relation (4.12), one sees that 1o is of the same order as ao, so a bound on ¢ is sufficient.
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o 0.5 1 1.5 2 3 6
ko = 0.002 Mpc™!
Smax 0.26 6.9x1072 | 1.8x1072 | 4.7x103 | 32x107* | 1.0x 1077
5 0.27 3.5x1072 | 1.7x 1073 | 6.8 x 107° | 4.3 x 107" —
ko = 0.05 Mpc~!
Omax | 52x1072 [ 27x1073 [ 1.4x 1074 | 75x 1070 | 21 x 1078 | 4.3 x 10716
5 |16.7x1072]9.0x107%|1.3x107°|1.2x1077 | 27x 10" -

Table 1. Theoretical priors on the upper bound of § (= dmax) and 95% CL upper limits of § con-
strained by observations for the potential V (p) = Vop? with different values of o and for two pivot
scales. The likelihood analysis has not been performed for ¢ = 6 since the signal is below the cosmic
variance threshold already when o = 2. For ¢ = 3, the parameter § = vydp; has been used.

4.4 Cosmic variance

At large scales, the failure of the ergodic theorem for the CMB multipole spectrum manifests
itself in the phenomenon of cosmic variance, an intrinsic uncertainty on observations due to
the small samples at low multipoles. For a power spectrum P(¢), cosmic variance is given
by [39)
2 2
Varp(¢) = mP (). (4.18)
A natural question, which is often overlooked in the literature of exotic cosmologies, is how
effects coming from new physics compete with cosmic variance. In our particular case, we
would like to find which values of o give rise to a theoretical upper bound dyax of inverse-
volume LQC quantum corrections larger than the error bars due to cosmic variance with
respect to the classical spectrum.
Consider the scalar spectrum Pg(¢), eq. (4.5) with k/kg replaced by £/4y. It is determined
up to the normalization Py(¢p), so that the region in the (¢,Ps(¢)/Ps(fy)) plane affected by
cosmic variance is roughly delimited by the two curves

:<1i [ 2 )Ps(f)
5p1=0 20+ 1 ) Ps(4o)
where we take the classical spectrum as reference.

The power spectrum (4.5), together with the cosmic variance effect (4.19), is shown in
figure 1 for n = 2 and the pivot scale ¢y = 29. Ignoring the solid lines for the moment, the
dashed curves correspond to 6 = 0max. The exponential term e~ % = (ko/k)? in eq. (4.5)
gives rise to an enhancement of the power spectra on large scales, as we see in the figures.%
For o = 3, the growth of this term is so significant that §(¢) must be very much smaller than 1
for most of the scales observed in the CMB, in order to satisfy the bound 6(¢ = 2) < 1. LQC
inverse-volume corrections are well within the cosmic variance region for ¢ > 2. However,
already at ¢ = 2 quantum corrections strongly affect multipoles ¢ < 6. For o ~ 1, the
spectrum is appreciably modified also at multipoles ¢ = 500. Changing the pivot scale to
ly = 730, one sees that the quantum effect is generally greater than cosmic variance at
sufficiently low multipoles (figure 2). The plots for n = 4 are very similar and we shall
omit them.

Ps(£) £ /Varp, (¢)
Ps(lo)

, (4.19)
5p1:0

5This feature is similar to results for tensor modes [31].
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Figure 1. Primordial scalar power spectrum Ps(¢) for the case n = 2, with ey (ko) = 0.009 and the
pivot wavenumber kg = 0.002 Mpc ™!, corresponding to £y = 29. The values of o are o = 2 (top panel)
o = 1.5 (center panel), and ¢ = 1 (bottom panel), while we choose three different values of §(¢p), as
given in table 1: 0 (classical case, dotted lines), the observational upper bound from the numerical
analysis (solid lines), and dax (a-priori upper bound, dashed lines). Shaded regions are affected by

cosmic variance.

5 Likelihood analysis

We carry out the CMB likelihood analysis for the power-law potential (4.8) as well as the
exponential potential (4.10). We run the Cosmological Monte Carlo (CosmoMC) code [32]
with the data of WMAP Tyr [34] combined with large-scale structure (LSS) [40] (including
BAO), HST [41], Supernovae type Ia (SN Ia) [42], and Big Bang Nucleosynthesis (BBN) [43],
by assuming a ACDM model.
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Figure 2. Primordial scalar power spectrum Ps(¢) for the case n = 2, with ey (ko) = 0.009 and the
pivot wavenumber ko = 0.05Mpc~!, corresponding to £y = 730. The values of o are ¢ = 2 (top
panel), 0 = 1.5 (center panel), and ¢ = 1 (bottom panel), while we choose three different values of
d(fo), as given in table 1: 0 (classical case, dotted lines), the observational upper bound from the
numerical analysis (solid lines), and d,ax (a-priori upper bound, dashed lines). Shaded regions are

affected by cosmic variance.

In the Monte Carlo routine we vary two inflationary parameters 6(kg) and ey (ko) as
well as other cosmological parameters. Note that §(kg) and e, (ko) are constrained at the
chosen pivot scale kgp. While the bound on ¢ depends on kg (and it tends to be smaller for
larger ko), that on (ko)?0(ko) does not [see eq. (4.15)].

Under the conditions ¢, < 1 and § < 1, the slow-roll parameter €, is approximately
given by e, ~ (k2/2)(¢’/H)?. Then the number of e-foldings during inflation can be esti-
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mated as

T 12 1
T or 2ev(9)

where ¢y is the field value at the end of inflation determined by the condition €,, ~ O(1). For
the power-law potential (4.8) one has ¢; ~ n/v2k? and N ~ n/(4e,) — n/4, which gives

n

VEUIN+R

45 < N < 65. (5.2)

The typical values of N for the perturbations relevant to the CMB anisotropies are actually
around 50 < N < 60, but we have taken the wider range above. The comparison of this
estimate with the experimental range of €, will determine the acceptance or exclusion of an
inflationary model for a given n.

For the exponential potential (4.10) the slow-roll parameter €, is constant, which means
that inflation does not end unless the shape of the potential changes after some epoch. In
this case, we do not have constraints on €, coming from the information of the number of
e-foldings in the observational range.

5.1 Quadratic potential

Let us study observational constraints in the case of the quadratic potential V (¢) = Vo@?.

5.1.1 kg = 0.002 Mpc—?!

We first take the pivot wavenumber kg = 0.002Mpc™! (fp ~ 29) used by the WMAP
team [34]. In figure 3, the 2D posterior distributions of the parameters d(ko) and e (ko)
are plotted for n = 2 and ¢ = 2,1.5,0.5. We have also run the code for other values of ¢ such
as 1 and 3. The observational upper bounds on ¢ are given in table 1 for several different
values of .

For o < 1, the exponential factor e™?* does not change rapidly with smaller values of
fs,t, so that the LQC effect on the power spectra would not be very significant even if (ko)
was as large as €, (ko). As we see in figure 1 (solid curve), if o = 0.5 the LQC correction is
constrained to be §(kg) < 0.27 (95% CL), which exceeds the theoretical prior dmax = 0.26.
Since (ko) is as large as 1 in such cases, the validity of the approximation d(kg) < €y (ko) to
derive the power spectra is no longer reliable for o < 0.5.

Looking at table 1, when o = 1, the observational upper bound on §(kg) becomes of
the same order as dmax. For o < 1.5 the effect of the LQC correction to the power spectrum
becomes important on large scales relative to cosmic variance. For smaller o the observational
upper bound on d(kg) = agdpi(ko) tends to be larger. When o = 1.5 the LQC correction
is constrained to be d(kg) < 1.7 x 1073 (95% CL), see figure 3. This is smaller than the
theoretical prior dpax = 1.8 x 1072 by one order of magnitude.

The effect of cosmic variance is significant for o = 1.5. When o = 3, the LQC correction
is constrained to be (ko) = vodpi(ko) < 4.3 x 1077 (95% CL). With respect to the prior
Smax = 3.3 x 1074, the observational bound is smaller by three orders of magnitude. For
o 2 3 the power spectra grow very sharply for low multipoles, so that the upper bounds on
d(ko) become smaller. Numerically it is difficult to deal with such rapidly changing power
spectra.

For the sake of completeness, we should notice that the bounds plotted in figures 1 and 2
include input from several datasets, but the cosmic variance belt comes only from the CMB.
Therefore, the medium-scale part of the cosmic-variance plots might not give the full picture
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Figure 3. 2-dimensional marginalized distribution for the quantum-gravity parameter §(ko) and the
slow-roll parameter ey (ko) with the pivot kg = 0.002 Mpc~! for n = 2, constrained by the joint data
analysis of WMAP 7yr, LSS (including BAO), HST, SN Ia, and BBN. The values of o are 0 = 2 (top
left panel), o = 1.5 (top right panel), and 0 = 0.5 (bottom panel). The internal and external lines
correspond to the 68% and 95% confidence levels, respectively.

of the statistical limitations in this range, but we do not expect appreciable modifications
from large-scale structure observations.

For n = 2, the theoretically constrained region (5.2) corresponds to 0.008 < €, < 0.011.
As we see in figure 3, for o 2 0.5, the probability distributions of €, are consistent with
this range even in the presence of the LQC corrections. Hence, for the pivot wavenumber
ko = 0.002Mpc—!, the quadratic potential is compatible with observations as in standard

cosmology.

5.1.2 kg = 0.05Mpc—?!

We proceed to the case of the pivot wavenumber ky = 0.05 Mpc ™! (£y ~ 730). From eq. (4.17),
the theoretical priors on dyax for given o are smaller than those corresponding to kg =
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Figure 4. 2-dimensional marginalized distribution for n = 2 with the pivot kg = 0.05 Mpc~'. The
values of o are o = 2 (left panel) and o =1 (right panel).

0.002 Mpc~!. In figure 4 we plot the 2-dimensional posterior distribution of d(kg) and ey (ko)
forn = 2 and 0 = 2,1. When o = 2, the observational upper limit is found to be §(kg) < 1.2x
10~7 (95% CL), which is two orders of magnitude smaller than the bound (ko) < 6.8 x 107°
obtained for the pivot ko = 0.002 Mpc~!. This comes from the fact that the choice of larger
ko leads to more enhancement of power on large scales.

When o = 1, we find the constraint §(kg) < 9.0 x 10=% (95% CL), which is about 1/3 of
the theoretical prior dmax = 2.7 x 1073, From table 1, we see that the observational limit of §
for 0 = 0.5 exceeds dmax. Hence, our combined slow-roll/dp; truncation is no longer trustable
for o < 0.5, as it happens for kg = 0.002 Mpc 1.

From figure 4 we find that the theoretically allowed range of €, (0.008 < €, < 0.011)
is consistent with its observational constraints. The different choice of kg affects the upper
bounds on 6(kg), but the basic property of the LQC effect on the power spectra is similar. The
quadratic inflaton potential can be consistent with the combined observational constraints
even in the presence of the LQC corrections, independent of the values of kg relevant to the
CMB anisotropies.

5.2 Quartic potential

Let us proceed to the case of the quartic potential V (¢) = Vop?. Numerically, we find that
the observational upper bounds on §(kg) for given o and ko are similar to those for the
quadratic potential. In the top panel of figure 5 we show the 2-dimensional distribution for
o = 1 with the pivot wavenumber ky = 0.002Mpc~—!. The LQC correction is constrained to
be 6(ko) < 3.4 x 1072 (95% CL), which is similar to the bound &(kg) < 3.5 x 1072 for n = 2
(see table 1). The bottom panel of figure 5 corresponds to the posterior distribution for o = 2
with ko = 0.05 Mpc ™!, in which case (ko) < 1.1 x 1077 (95% CL). Since the LQC correction
given in eq. (4.15) does not depend on the values of n, the above property of n-independence
can be expected. For larger o and kg the upper bounds on (ko) tend to be smaller.

From eq. (5.2), the values of €, related with the CMB anisotropies fall in the range
0.015 < €y, < 0.022. For o = 1 and kg = 0.002 Mpc~!, this range is outside the 1o likelihood
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Figure 5. 2-dimensional marginalized distribution for n = 4 in the two cases: (i) ¢ = 1 and

ko = 0.002Mpc~! (left panel) and (ii) o = 2 and kg = 0.05 Mpc~! (right panel).

contour. In particular, for N < 58, this model is excluded at the 95% confidence level. For
o = 2 the observationally allowed region of ¢, is slightly wider than that for 0 = 1. However,
as we see in the lower panel of figure 5, this model is still under an observational pressure.
Numerically we have confirmed that the bounds on €, (ko) are insensitive to the choice of k.
Hence the quartic potential is in tension with observations even in the presence of the LQC
corrections.

5.3 Exponential potentials

Finally, we study the case of exponential potentials. In figure 6 we show the 2-dimensional
posterior distribution for (i) ¢ = 2 and kg = 0.002Mpc~! and (ii) ¢ = 1.5 and kg =
0.05Mpc~!. The observational upper limits on the LQC corrections for the cases (i) and (ii)
are §(kg) < 6.8 x 107° and 6(ko) < 1.3 x 107°, respectively, which are similar to those
for n = 2 with same values of 0. Hence, for given values of o and kg, the effect of the
LQC corrections to the power spectra is practically independent of the choice of the inflaton
potentials.

On the other hand, the observational constraints on the slow-roll parameter depend on
the potential. In figure 6 we find that the observationally allowed values of €, (k) are in the
range 0.005 < ey (ko) < 0.27 (95% CL) for two different choices of ky. The maximum value of
ev (ko) is larger than that for n = 2 and n = 4. Since inflation does not end for exponential
potentials, one cannot estimate the range of the slow-roll parameter relevant to the CMB
anisotropies. Hence one needs to find a mechanism of a graceful exit from inflation in order
to address this issue properly.

6 Conclusions

In the presence of the inverse-volume corrections in LQC, we have provided the explicit forms
of the scalar and tensor spectra convenient to confront inflationary models with observations.
Even if the LQC corrections are small at the background level, they can significantly affect
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Figure 6. 2-dimensional marginalized distribution for the exponential potential V' (¢) = Ve "¢ in
the two cases: (i) ¢ = 2 and ko = 0.002Mpc~! (left panel) and (ii) ¢ = 1.5 and kg = 0.05 Mpc~!
(right panel).

the runnings of spectral indices. We have consistently included the terms of order higher than
the scalar/tensor runnings. Inverse-volume corrections generally lead to an enhancement of
the power spectra at large scales.

Using the recent observational data of WMAP 7yr combined with LSS, HST, SN Ia,
and BBN, and analyzing them with techniques routinely used also in standard inflation, we
have placed constraints on the power-law potentials V() = Voo™ (n = 2,4) as well as the
exponential potentials V() = Voe "¢, The inflationary observables (the scalar and tensor
power spectra Py, Py and the tensor-to-scalar ratio r) can be written in terms of the slow-
roll parameter ¢, = (V,/V)?/(2x%) and the normalized LQC correction term §. We have
carried out a likelihood analysis by varying these two parameters as well as other cosmological
parameters for two pivot wavenumbers kg (0.002 Mpc~! and 0.05 Mpc™1).

The observational upper bounds on §(ky) tend to be smaller for larger values of ky. In
table 1 we listed the observational upper limits on §(kg) as well as the theoretical priors dpax
for the quadratic potential V() = Vpp? with a number of different values of the quantum
gravity parameter o (which is related to 0 as 0 o a=7). For larger o, we find that d(kg) needs
to be suppressed more strongly to avoid the significant enhancement of the power spectra
at large scales. When o < 0.5 the observational upper limits of §(kg) exceed the theoretical
prior dmax, which means that the expansion in terms of the inverse-volume corrections can
be trustable for o 2 0.5.

As we see in figures 3-6 and in table 1, the observational upper bounds on (kg) for given
ko and o are practically independent of the choice of the inflaton potentials. This property
comes from the fact that the LQC correction for the wavenumber k is approximately given by
d(k) = 6(ko)(ko/k)?, which only depends on ky and o. On the other hand the constraints on
the slow-roll parameter ¢, are different depending on the choice of the inflaton potentials. We
have found that the quadratic potential is consistent with the current observational data even
in the presence of the LQC corrections, but the quartic potential is under an observational
pressure. For the exponential potentials the larger values of €, are favored compared to the
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power-law potentials. However, the exponential potentials are not regarded as a realistic
scenario unless there is a graceful exit from inflation.

The exponential term e~ 7% = (ko/k)? in eq. (4.5) is responsible for the enhancement
of the power spectrum at large scales. This feature is characteristic of the model and is
not reproduced by other sources. For instance, non-commutative geometry or string correc-
tions [44] predict a suppression, rather than an enhancement, of the spectra. Also some old
papers on LQC advertized a suppression of power (e.g., the second reference of [10]), but
the quantum corrections were not under full control at the level of perturbation theory; the
present results supersede those early discussions. Moreover, the signatures of the LQC spec-
tra cannot be mimicked by any standard scalar potential. The enhancement of power is due
to a scale-dependent correction in the spectral amplitudes, while exotic potentials would not
affect the perturbed dynamical equations (compare with the LQC Mukhanov equations [8]).
In particular, the consistency relation (3.20) is notably different with respect to the standard
relation r = —8ny. Finally, also Wheeler-DeWitt quantum cosmology predicts an enhance-
ment of power at large scales [45], but the effect is qualitatively different from the structure
of dp; and its size is much smaller. The main reason is that it is governed by the energy scale
of inflation, contrary to what happens in LQC.

If we compare the observational upper bounds with the theoretical lower bounds dis-
cussed in section 2, we can see that estimates of these parameters are separated by at most
a few orders of magnitude, much less than is usually expected for quantum gravity. By
accounting for fundamental spacetime effects that go beyond the usual higher-curvature cor-
rections, quantum gravity thus comes much closer to falsifiability than often granted. It is
of interest to see how the future high-precision observations such as PLANCK will constrain
the LQC correction as well as the slow-roll parameters. Even in the case where the quadratic
potential were not favored in future observations, it would be possible that the small-field
inflationary models be consistent with the data. For these general inflaton potentials, the ef-
fect of inverse-volume corrections on the CMB anisotropies should be similar to that studied
in this paper.
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