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Abstract

In this thesis, the visible resonance fluorescence spectrum for heavy titaniumlike
ions (e.g. 29Bi%!'") with nonvanishing nuclear spin is investigated theoretically.
The research of such highly charged ions is motivated by potential applications
related to the analysis of visible emission or absorption spectra obtained from
measurements with electron beam ion traps (EBITs), tokamak and astronomical
plasmas. Such studies may also assist future testing of the magnetic sector of
quantum electrodynamics (QED) in strong fields and the determination of nuclear
electromagnetic moments. We perform multiconfiguration Dirac-Fock calculations
with additional QED corrections. Interactions between the electronic and nuclear
multipole moments or an external magnetic field are treated within first-order
perturbation theory, yielding the hyperfine or Zeeman energy splittings, respec-
tively. The energy levels and magnetic dipole decay rates have been calculated for
2098461+ A formula for the resonance fluorescence cross section has been derived
within a relativistic transition operator formalism. The energy-dependent absorp-
tion cross section has been given and analyzed for a range of external magnetic
field strengths, such as for 0, 1 and 8T, and assuming different values for the
Doppler broadening of the spectral lines. These theoretical spectra are intended
to guide ongoing experimental activities. We have shown that the perturbative
ansatz applies for the case of low magnetic fields in the vicinity of 1T and needs
to be improved for higher fields such as 8'T.
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Zusammenfassung

In dieser Arbeit wird das sichtbare Resonanzfluoreszenzspektrum von schweren
titanartigen Tonen (z.B.2?%Bi®*) mit nichtverschwindendem Kernspin theoretisch
behandelt. Die Untersuchung von solchen hochgeladenen Ionen wird motiviert
durch potentielle Anwendungen in der Analyse von sichtbaren Emissions- oder Ab-
sorptionsspektren aus Messungen in EBITs (Electron Beam Ion Traps), Tokamak-
oder astronomischen Plasmas. Solche Untersuchungen konnten in Zukunft zu
der Uberpriifung der Quantenelektrodynamik (QED) in starken Feldern und zu
der Bestimmung von kernmagnetischen Momenten beitragen. Eine Multikonfi-
gurations-Dirac-Hartree-Fock Rechnung mit zusatzlichen QED Korrekturen wird
durchgefiihrt. Die Wechselwirkungen zwischen den elektronischen und den nuk-
learen Multipolmomenten oder einem aufleren Magnetfeld werden in Storungsthe-
orie erster Ordnung behandelt, was jeweils zu der Hyperfein- oder Zeeman Auf-
spaltung der Energien fithrt. Die Energieniveaus und magnetische-Dipol Zerfall-
sraten wurden fiir 2°?Bi®'* ausgerechnet. Eine Formel fiir den Wirkungsquerschnitt
der Resonanzfluoreszenz wurde in einem relativistischen Ubergangsoperatorforma-
lismus hergeleitet. Der energieabhangige Absorptionswirkungsquerschnitt wurde
angegeben und fiir einen Bereich von Magnetfeldstiarken, wie 0, 1 und 8 T, unter
verschiedenen Werten der Dopplerverbreiterung analysiert. Diese theoretische
Spektren sind als Leitfaden fiir aktuell ablaufende Experimente gedacht. Es wurde
gezeigt, dass der storungstheoretische Ansatz im Falle von niedrigen dufleren Mag-
netfeldern in der Nahe von 1T zutrifft und dass er bei hoheren Magnetfeldstarken,
wie 8 T, verbessert werden sollte.
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Chapter 1

Introduction

1.1 Highly Charged Ions

The investigation of highly charged ions (HCIs) provides new insight into a broad
range of physical phenomena.! These ions with massively reduced number of
electrons, in comparison to their neutral counterparts, are abundant in outer space,
especially in stars, such as our Sun, however, they are rare on Earth. The reason
therefore lies in the large amount of energy needed to extract most bound electrons
by ionizing the atoms. A very hot environment, such as a star can provide such
energy and can thus lead to the creation of HCIs as part of a natural process,
fusion. As opposed to that, on Earth technically challenging devices, like electron
beam ion traps (EBITSs), storage rings and tokamaks have been developed for their
creation, storage and examination.

One source of interest in the analysis of HCIs lies in astrophysics, where they
are responsible for the intensive part of the electromagnetic spectrum of stars.
This happens because they are both heavy elements and highly charged at the
same time, thereby radiating more intensively than lighter elements and neutral
atoms. By examining their emission or absorption spectra, conclusions about their
building mechanisms in galactic objects can be carried out.

Another motivation of the study of highly charged ions relates to basic research
in quantum electrodynamics (QED), which ultimately describes the structure of
atoms and their dynamics. To illustrate this, let us consider the following simple
scaling law for one-electron ions relating the orbital radius R of an atomic electron
to the Bohr radius ag and the nuclear charge Z:

Qo

RocZ

(1.1.1)

!Some information contained in this introduction is based on the articles [6, 15].
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For a heavy system such as bismuth with Z=83, R falls below the Compton wave-
length of the electron (Ac = hm.c = 2pm). Below this cutoff length quantum field
theory takes over for the description of quantum mechanical systems, where the
structure of vacuum and its influence by strong fields become significant. So far,
QED is a successful field theory, since it has passed many reliability tests in weak
electric and magnetic fields. However, open questions under strong field conditions
persist, which motivate the testing of QED in strong electromagnetic fields with
ever improving precision. In this concept HCIs offer ideal experimental conditions
for obtaining strong static electric fields.

Moreover, testing the QED of bound systems, relativistic atomic structure
theory, parity violation effects and nuclear contributions can be examined experi-
mentally. One significant nuclear effect arises from the magnetic dipole and electric
quadrupole moment of a nucleus with nonvanishing spin, which gives rise to the
hyperfine splitting of spectral lines.

HCIs may not only be employed in basic research, but have also numerous
applications. Microelectronics and nanotechnology, quantum computing, fusion
energy technology, medicine and biotechnology are all fields to which HCIs con-
tribute with their unique features.

1.2 Titaniumlike Ions

In this work the atomic structure of titaniumlike ions is calculated in a relativistic
manner. Ti-like ions have a similar electronic configuration as the neutral titanium
atom. They have 22 bound electrons, arranged in a [Ar]3d* configuration, which
denotes a configuration identical to that of the noble gas argon with 4 additional
electrons in the 3d subshell. The scaling of the fine structure splitting energies (o<
emitted photon energies) is in general proportional to Z4 due to relativistic effects
and spin-orbit interaction [17], shifting thereby the visible-light spectrum rapidly
into the x-ray regime with increasing Z. However, the 3d* D3 <+ ®D, magnetic
dipole (M1) tranistion? in Ti-like ions is an exception to this rule, due to crossing
of energy levels leading to an almost Z-independent variation of wavelength over
a large portion of the isoelectronic sequence [4]. At the same time, a Z3-scaling
of the hyperfine interaction magnifies its effect to an observable level for high-Z
elements. This is the case despite the fact that even though 3d electrons, which are
generally weakly sensitive to nuclear effects, are involved in the transition. Thus,
high-resolution spectroscopy can lead to the observation of hyperfine splitting in
the optical regime.

2Notation: "2St1L;” : L, S,J are the many-electron orbital angular momentum, spin and
total angular momentum quantum numbers, respectively.
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Another particularity of HCIs lies in the coupling scheme of the orbital an-
gular momentum and spin of the electrons. The spin-orbit interaction grows as
Z* along the isoelectronic sequence. It is thus preferable to treat each electron
individually, coupling first its spin and angular momenta 5 and [ to ] and then
coupling the electronic j—s subsequently, rather than coupling the total electron
angular momentum L with the total electron spin S (Eg —coupling). In this work
the first coupling scheme has been used. This also implies that a fully relativis-
tic treatment employing 4-component Dirac wavefunctions is highly desirable to
accurately describe electrons bound in strong nuclear fields.

1.3 The Present Work

The aim of this thesis is to provide a theoretical prediction of the hyperfine-split
optical absorption spectrum of heavy titaniumlike ions, which may be tested by an
experiment planned to be conducted by the EBIT experimental group at the Max
Planck Institute for Nuclear Physics in Heidelberg. The calculation of an electro-
magnetic spectrum for the so-called resonance fluorescence process is intended to
assist the experimentalists in localizing and identifying the resonance lines char-
acterized by hyperfine and Zeeman splittings, as far as these are expected to be
seen, given the actual experimental resolution.
The theoretical work consists of the following steps:

1. the derivation of a formula for the total cross section of resonant photon
scattering by applying a relativistic transition operator formalism,

2. the numerical MCDF (Multiconfiguration Dirac-Hartree-Fock) calculation
of level energies, hyperfine and Zeeman splitting intervals and transition

rates between atomic energy levels using the ”General Relativistic Atomic
Structure Program” (GRASP),

3. the generation of possible transitions due to the interaction with the electro-
magnetic field and, finally, the analysis of the calculated spectra.
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Chapter 2

The Multiconfiguration
Dirac-Fock Method

In this chapter the multiconfiguration Dirac-Fock (MCDF) procedure is ex-
plained, which is needed for obtaining an explicit representation of the wave
functions of bound states of an N-electron atom. It is an extension of the
Dirac-Hartree-Fock method (DF), which in turn generalizes the Hartree-
Fock-Procedure according to the relativistic Dirac theory of electrons. The
description follows Ref. [2].

2.1 The Dirac-Coulomb Hamiltonian for an
N-Electron Atom

The Hamilton operator for an N-electron atom is given by

N N o2
HPC =N "', 2.1.1
D BULD Dl (211)
=1 1<j
where
hi = cdip; + (B; — 1)mec® 4 Vie(r) (2.1.2)

is the one-particle Dirac operator. The «; and (; are the 4 x 4 Dirac matrices
and the subtraction of the unity matrix ensures that the one-particle energies
are measured with respect to the rest energy m.c*. The form of V,,.(r) is
described below.

11
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In the usual, non-relativistic Hartree-Fock procedure, the atomic state with
the lowest energy is found in a space of N-electron wave functions. This
is achieved by variation of test functions in an iterative procedure. In the
relativistic variant, i.e. the DF procedure, only the Hamiltonian and the
wave functions (now four-component bispinors) differ. However, in our case,
eigenstates of the Hamiltonian in the negative continuum are neglected, since
the energy spectrum of the one-particle Dirac operators h; is not bounded.
The test functions are built from antisymmetrized product functions of one-
particle wave functions, the Slater determinants. In MCDF theory, the eigen-
states of the many-particle Hamilton operator (2.1.1) and therefore the final
atomic states are constructed from linear combinations of configuration state
functions, that is, of a combination of Slater determinants with different elec-
tron population and inner symmetry. This construction will be described in
detail in Section 2.3 and 2.4.

2.2 Relativistic one-particle orbitals

A Dirac orbital or Dirac one-particle wave function |nkmy) is an eigenfunction
of the total angular momentum operators j2, j., and of the relativistic parity
operator P:

Plnkm) = (54 1)|nkm), (2.2.1)
J:lnkm) = m|nkm), (2.2.2)
Plnkm) = (—1)nxm). (2.2.3)

Here, [ stands for the orbital angular momentum of the large component of
the wave function and n stands for the principal quantum number. For the
Dirac angular momentum quantum number k holds:

; 1. . .
= (=" G+g),  I=i+5 = j=Isl—-5. (224)

An explicit representation of the one-particle wave function |nkm) is the

following:
. . 1 P (r)Q7 (1)

nem\T") = (T |MKM) = — . ’;n ~ 5 2.2.5

an) = (i) = 7 (0RO 225)

where 7 denotes the direction of 7, P,.(r) and Q,.(r) represent the radial

wave functions of the large and small components of the Dirac bispinor,

respectively, so that ¢y, (7) is a 4-component bispinor as demanded by the

Dirac theory. They are chosen in such a way that the one-particle states
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form an orthonormal set. This means that for two bound orbitals a and b
the following integral relation holds:

(nakama|npryme) = /0 0 (Pa (1) Payy (1) 4 Qs (1) Qe (1) = b1

(2.2.6)
The spin- and angle-dependent part of the wave function is given by the
spherical spinor functions:

QF(F) =Y C( 5 jim —mg,mg m)Y™ "™ (F)Xom, . (2.2.7)
where C(...;...) is a Clebsch-Gordan coefficient [14], Y;""™*(7) a spherical

harmonic and Y,,, a spinor basis function.

2.3 Configuration State Functions

In this section it is outlined how a wave function that describes an N-electron
system (CSF) is built from one-particle orbital wave functions.

According to Pauli’s rule, a CSF must be totally antisymmetric with respect
to the coordinates of the electrons. The simplest way of obtaining such a
wave function is using Slater determinants of the one-particle wave functions.
Since the Hamilton operator (2.1.1) commutes with the operators of the to-
tal angular momentum of the N electrons, J 2 and its z-component, J,, it
is handy to use eigenstates of these operators as the consisting elements of
the CSFs. Therefore, the relativistic one-particle orbitals will be used. One
CSF |yPJM) is a linear combination of Slater determinants of relativistic
one-particle orbitals, that are coupled to the same well-defined total angular
momentum J. Clebsch-Gordan coefficients are used successively in the com-
bination of the Slater determinants. A CSF is uniquely defined — with the
exception of the phase — by the quantum numbers P of the parity, J of the
angular momentum, the magnetic quantum number M, the configuration of
the electrons and the way their angular momenta j; are coupled to a total
angular momentum J. The index ~ describes the latter two.

2.3.1 Coupling of angular momenta in subshells

In the following the coupling scheme of the j; of a given electron configuration
will be presented on the example of the electronic states of helium, boron,
carbon, and, finally, of titanium, which is of main interest along this work.
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Starting with helium, we have two 1s-electrons that possess j = % each, since
[=0and s = % . Following the coupling rule

1 — Jol < J < i1+ ol (2.3.1)

incorporated in the Clebsch-Gordan coefficients and Pauli’s exclusion princi-
ple, we get [1s? Jolo+ where “0+” denotes the total angular momentum of the
subshell along with its parity. The latter is derived from the fact that one
electron has the parity 7 = (—1)!, with “/” being its orbit angular momentum
quantum number and a many-electron system has m = H T .

Let us assume one has electrons that are distributed among more than one
subshell, like, for example, in boron. In this case the coupling scheme will
be as follows:

2 2 2 2
[15%]0[25%]0 2p1/2 s or [[13 Jo[25%]0 2p3/2] 4
Now, 1/2— and 3/2— denote the total angular momentum and parity of
the total atomic electron shell. They result from the successive coupling of
the subshell angular momenta. The second possibility represents an excited
state, since according to the Dirac theory, the states with same n but higher
J possess higher energy.

The situation gets slightly more complicated with carbon. Here, the possible
configurations are:

[[152} J[257],[202 ) 0} o

[[152}0 [232}0 [2p1/2 2p3/2}0] 1,2+

(12257, [258 0],

In the second one |% — % < J <L |% + %| and in the third one |% — %| <

J < |% + %| so that we get two excited states in each case. In the latter the
J =1, 3 values are not permitted due to the Fermi exclusion principle [2].

0,24+

When dealing with much larger electron occupations, one needs to refer to
tables such as that in Ref. [2], p.429. There the possible values of the subshell
angular momenta can be read out from the list and then easily be coupled to
form the total angular momentum of the atomic electron shell. The electron
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Table 2.1: Electron configuration in the peel shell 3d* of the titaniumlike charge
state and corresponding atomic electron shell total angular momenta J.

configuration J
[3d35]0 0
[Sdg/z]g/g Sdé/2 1,2,3,4
[3d§/2]2 [3d§/2]0 2

[3d§/2]2 0,1,3,4
[3d§/2]4 273747576
[3d§/2]0 [3d§/2]0 0
[3d§/2]2 2
[3d2 )4 4
[3d§/2]5/2 1727374
[3d§/2]9/2 3747576
3d3 0,2,4

configurations together with their values resulting from this procedure are
summarized in Table 2.3.1 for the last and most complicated of our examples,
titanium. This element has an electron configuration [[Ar]y [3d"],] ;, where
[Ar]o denotes the configuration of argon, which has a total atomic electron
shell angular momentum J = 0.
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2.4 Atomic State Functions

We are now finally able to introduce the construction of the Atomic State
Functions (ASFs), the eigenstates of the many-particle Hamilton operator
(2.1.1) and therefore the final atomic states we are looking for. One ASF
is nothing more than a finite linear combination of different CSFs with the
same quantum numbers P, J and M!:

TPJM) = cr |y PJIM) . (2.4.1)
r=1

Here, n. is the number of the CSFs that are included in the calculation.
An example for an ASF for titanium could be:

[P=1,J=2M) = «|Bdj;)(38d2,)0;P=1,]=2M)+
Ca|(3d3)5)ay2 B3y s P =1,J =2, M) +
cs|(3d5)0)2 (Bd2))s ; P =1,J =2, M)+

. (2.4.2)

« 2

where the represent the remaining configurations in Table 2.3.1. No-
tice that all the terms have the same total atomic electron shell angular
momentum and that the order of the terms is chosen according to specu-
lated dominance of the CSF's in the final atomic state: it is expected that ¢;
will have a significantly greater value than the rest of the coefficients.

The set of mixing coefficients cp, may be combined in a column vector
Cri
Cr = )
Crn,

which gives the representation of the atomic state |['PJM) with respect to
the CSF basis set {|y, PJM) }Te{l . The ASFs are chosen to be orthonor-

mal, so that

..... Ne

<FZPJM|FJPJM> = (5@‘ for Z,j S {]., ce ,na} (243)
&> e, (W PIM|y,PIM) = 6 (2.4.4)
r=1 T
= ZC;HCFW = (Ei‘iyr(grj) = 6”' . (245)
r=1

!Capital M refers to one of the 2J + 1 values of the magnetic quantum number of the total

atomic electron shell angular momentum.
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n, with n, < n. is the number of ASFs and the dagger denotes hermitian
conjugation.

This requirement of orthonormalization implies that only after the action of
an operator, such as, e.g. the dipole operator, the matrix element between
two ASFs — that is, between two atomic states — cannot vanish. Otherwise
the ASFs remain eigenstates of the many-particle Hamilton operator (2.1.1).

In summary it is left to note that expression (2.4.1) is nothing but an ansatz
in the MCDF procedure, which expresses the idea that the final ASF will
be a combination of many possible configurations, including excited states,
where each one is more or less dominant according to the value of its mixing
coefficient. It is these ASFs that will be used as the test functions mentioned
in section 2.1.

2.5 The Self-Consistency Procedure

2.5.1 The eigenvalue problem

Having introduced the ASFs it will now be explained how the exact values
of the mixing coefficients are obtained. The expectation value of the energy
with respect to one ASF is

EPY = (PPIM|HPC[CPIM) = ) ¢hepn (7. PIM|HPC |y, PIM) .
r,s=1
(2.5.1)
We demand that, for a given set of CSFs, the expectation value EPC is
minimal with respect to variation of the coefficients. This leads after some
calculation to the following eigenvalue problem:

Ne

3 <<7TPJM|H6DC|%PJM) - EFDC(STS>CSF ~0. (2.5.2)

s=1

If the Dirac orbital wave functions |nkm) described in Section 2.2 are held
constant, one refers to the Configuration Interaction Procedure (CI). Here
only the c,.-s are varied. However, in the MCDF procedure the orbital wave
functions are varied in addition. In this case there two options are available:

(a) Optimized Level (OL) procedure
The expectation value of the energy (2.5.1) is varied. This method
is suitable for the calculation of the energy level and wave function
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of a single atomic state. The rest of the configurations (orbitals) in
(2.4.1) that are not optimized are called correlation configurations. It
is expected that the quality of those atomic states is poorer than the
optimized ones. It is precisely this issue that is treated in the second
option below.

(b) Average Level (AL) procedure
A weighted mean value over all configurations

S (2, + 1){y, PJM|HPC |, P.JM)
r=1

Wwrhe = (2.5.3)

e

Yo(2J5+1)

s=1

is minimized.

2.5.2 The Dirac-Fock equations

In general, the one-particle orbital wave functions are varied under their
constraint of orthonormality (2.2.6) such that (2.5.1) or (2.5.3) become sta-
tionary. In both cases, this leads to the radial Dirac-Fock equations for a
specific orbital with index a [2]:

(&5 P~ (2= 2+ 2 gy = X1 25

(-5 Quntr)+ (- : Y”) Prowa(r) = X“ng . (@255)

The so-called potential energy function Y,(r) includes both the interaction
with the nucleus, as well as the static potential that is produced by the charge
distribution of the surrounding electrons via the electrostatic Coulomb inter-
action. A rather simple approximation to this function could be the Coulomb
potential with an effective nuclear charge aimed to mimic the screening ef-
fect of the other electrons. However, a significantly better approximation is
a potential based on the Thomas-Fermi theory, which provides an estimate
of the radial variation of screening of the nuclear field.

Generally, in Y,(r) integrations over Q,,.,(r) and P, ., (r) are included.
Therefore, equations (2.5.4) and (2.5.5) are integro-differential equations,
a fact which complicates their solution. Moreover €, is a Lagrange multi-
plier that ensures the boundary conditions for @Q,, ., (r) and P, ., (r) while
c stands for the speed of light and 7 (r) and x%(r) are the exchange po-
tentials. These arise from the exchangeability of the electrons, that is, from
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the usage of Slater determinants. Consequently, when treating a one-particle
problem like, e.g. one electron in interaction with an infinite-mass nucleus,
these inhomogeneous terms vanish.

The simultaneous solution of the eigenvalue problem (2.5.2) for the mixing
coefficients and of the coupled DF equations (2.5.4) & (2.5.5) for the ra-
dial wave functions is achieved through the self-consistency procedure. One
begins with a set of given approximate functions. With these the Hamilto-
nian matrix is calculated and diagonalized and the mixing coefficients cr, are
obtained. With those new coefficients and the original wave functions, the
potentials Y,(r), xF'(r) and x2(r) are computed and, finally, the DF equa-
tions are numerically integrated. After this, one gets new wave functions
with which the next iteration step begins. These steps are to be repeated
until convergence is achieved, that is, until the variation of the mixing co-
efficients, the radial wave functions or energy eigenvalues remain under a
pre-specified tolerance limit. A complete description of this procedure along
with the exact expressions of Y,(7), xZ(r) and x?(r) can be found in [2].

2.6 The nucleus

2.6.1 Nuclear volume effect

The treatment of the nucleus as an extended object instead of a point charge
is explained in the present subsection.

In atoms with high values of the atomic number, such as the case of this
work, the energy eigenvalues of atomic states exhibit great dependence on
the charge distribution of the nucleus. The following extended distributions
exist:

(a) Simple spherical ball distribution

_ Po, if Térnuca
Pruc(T) = { 0, otherwise . (2.6.1)

Here, 7,4 is the nuclear radius, which can be specified. GRASP? deter-
mines it according to the semi-empirical relation r,,. = (1.0793A1/ 34
0.73587) fm, given in [11], if no other value is provided.

(b) Fermi two-parameter distribution

Po

- m . (262)

pnua(r)

2See more in appendix A.
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The parameter c is the so-called half-charge radius, the value of r for
which ppuc(r) = 0.5p9. Thus it provides a measure for the nuclear
radius. Parameter a is connected to ¢ through the relation a =¢41n3,
where ¢ is the skin thickness parameter, the interval across which py,.(r)
falls from 0.9 py to 0.1 py.

The parameters ¢ and a can be chosen freely in GRASP; alternatively,
the root-mean-square radius can be calculated from the semi-empirical
formula given above and ¢ is set automatically to 2.30 fm.

In all cases, the nuclear potential is calculated from the charge distribution
Pruc(r) using the integral relation

_TVnuc(T) = 4m (/ 0(8)82 ds + 7’/ p(S)S dS) . (263)
0 T
The calculated V,,,.(r) is the solution of the Poisson equation
V2 Vue(r) = —4mp(r) (2.6.4)

with the condition V' — 0 for r — oo. The parameter py is determined in
such a way that the integral over the whole charge distribution corresponds
to the total electrical charge Z of the nucleus. The influence of py,.(r) is
most significant on the energy of the 1s;,, state, since its wave function
overlaps primarily with the nucleus.

2.6.2 Nuclear finite mass effects

Nuclear finite mass effects on the energy fall into two categories [12]:

(a) Reduced mass correction
Named also normal mass shift, it is accounted for by the replacement

of the electron mass m, by the reduced mass u = %

(b) Corrections due to correlated motions of the electrons
or specific mass shift.

2.7 QED Corrections to the MCDF Energies

In this section two types of additional interactions that have to be considered
apart from the above-described MCDF procedure are presented: the Breit
interaction and the fluctuations of the electromagnetic and electron-positron
field.
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2.7.1 The transverse electromagnetic interaction

In atoms with large atomic numbers, the frequency-dependent Breit interac-
tion between electrons due to the exchange of a transverse photon has to be
taken into account [2]. It represents a relativistic correction of the Coulomb
interaction and describes retardation effects and the magnetic interaction
between two Dirac currents in the Coulomb gauge.

The Breit interaction operator can be derived from the S-matrix element of
the electron-electron scattering. It is given by

_, cos(wr L= = cos(wryp) —1

VB(T12,U)) = —OélOéQM + (&1V1)(@2V2)(2# , (271)
T12 w12

with 79 = |7} — 75|, w being the frequency of the exchanged photon and

a being the Dirac a-matrix vector. In the context of MCDF theory, this
contributes the matrix elements

H} = (% PIM|VE (W) |y, PJIM), (2.7.2)

out of which the diagonal ones can simply be added to the MCDF energies.
Alternatively, all the matrix elements (2.7.2) are added to the Dirac-Coulomb
Hamiltonian matrix elements

HRC = (3, PIM|H [y, PTM), (2.7.3)

where HPC is the operator (2.1.1). The resulting matrix is then diagonalized.

2.7.2 Radiative Corrections

Two effects are included here:

(a) electron self-energy (SE)

This is the dominant radiative correction to the energy. It arises from
the lowest-order modification of electronic interaction with the quan-
tized ambient electromagnetic field of the nucleus and the other atomic
electrons. The self-energy in a hydrogenlike system in lowest order of
perturbation theory is given by [18]:

SE z"

AE>" = ——F,.(Z). 2.7.4

nK Te3n3 ( ) ( )
The functions F,,;(Z) vary slowly with respect to the nuclear charge Z
and are tabulated for a range of states in the literature. In the GRASP
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package, the self-energy of a one-particle state with quantum numbers
Ngke 1S approximated by

(Zefy4 Frona(ZET), for 1s1/9, 212, 2p1/2 and 2p3)s,
=3 Fo. (Z1),  for ns1/2, npij2 and npgje with n > 2,
T Mg 0 otherwise .

AESE

Ngka

(2.7.5)
For the many-particle states, these one-electron contributions are summed.
By the use of the effective atomic number Z°f, electron screening ef-

fects are roughly included. The latter approximation is likely to be
increasingly less realistic as the principle quantum number n increases.

vacuum polarization (VP)

In order of importance the next effect is the vacuum polarization correc-
tion. To lowest order, this is the short-range modification of the nuclear
field due to screening by virtual electron-positron pairs. Also here, the
corrections to the orbitals n,k, are calculated by means of perturbation
theory:

AEY, = (nakalVVlnare) = / dr VOr) (P2 (r) + @ (1)

0
(2.7.6)
with the Uehling potential VV(r). In analogy to the self energy, contri-
butions of individual electrons are additively superimposed.



Chapter 3

Resonant Photon Scattering
Cross Section

In this chapter an expression for the total cross section of resonance fluores-
cence, i.e. the process consisting of atomic excitation by photon absorption
and the subsequent de-excitation by photon emission, is derived. If, as in our
case, the excited state cannot decay by other means, e.g. by autoionization,
the resonance fluorescence cross section determines the total optical absorp-
tion cross section. We consider the case of a low-intensity exciting photon
field, i.e. neglect multiphoton processes. We apply a transition operator
formalism. As mentioned in Ref. [3], this method can be applied in a wide
range of phenomena occurring in atomic and nuclear reactions and provides
their intuitive understanding.

In order to obtain the required pseudo-spectrum, the total cross section of
the resonance fluorescence process of the system has to be determined. The
differential cross section is related to the T-matrix element by Fermi’s golden

rule:
——————— = — (D, Ak |T(E)| Dy, Nik; . 3.0.1

0, hE (Of, Arky|T(E) ) pr (3.0.1)
Here F; stands for the flux density of the incoming photons and p; for the
density of final photonic states. ®;, ®; refer to the initial and final bound
electronic states of the system, respectively; A and k to the polarization and
wave vector of the photons. df2;, represents the solid angle element for the
direction of the emitted photon with wave number k;. T refers to the tran-
sition operator, for which en expression will be derived in Section 3.3. The

see [17] p.807, 836

23
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basic ideas of the calculations are extracted from the theoretical formalism
of Haan and Jacobs [§].

3.1 Total Hamiltonian of the System

First of all, the relativistic Hamilton operator that describes our system
composed of an atom or atomic ion of n, electrons and the photon continuum
is given by

H=HPY+H +H,, (3.1.1)

where the Coulomb-Dirac Hamiltonian is given as
HPC =S p, * Hypo(7) — 1B 3.1.2
e Z +;|n_r|+; 0o(79) = b (3.12)
h; is the one-particle Dirac Hamilton operator:
hi = cdip; + (B; — 1)me* + Vie(r) (3.1.3)

e is the electron charge?, m is its mass, and Hj, s is the one-particle Hamilton
operator for the hyperfine interaction [12]:

Hyz4(7) = eg(7) — ecd - A(F), (3.1.4)
with L2 w7
T ur X'r

A = 575 (3.1.5)

being the magnetic vector potential corresponding to the nuclear magnetic
moment fir, at position 7 relative to the nucleus and

. ;T
o) =D, 55 (3.1.6)

i7j
the scalar potential with the nuclear quadrupole moment tensor @;; . The
last term in HPC describes the Hamiltonian of the Zeeman interaction of the

magnetic moment of the atom [ir with an external magnetic field B. More
about this term and Hj s will be described in Section 4.2.

2
HT = Z Z hw,;a%}\a,;)\ (3.1.7)
kA=l

2e has here the unit Coulomb; it has been chosen 1/(4meg) = 1, for reasons that will later
become clear to the reader.
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is the Hamiltonian of the free radiation (electromagnetic) field given in
second-quantized form with a%}\, ag, describing the creation and annihila-

tion operator for a photon of momentum k and polarization A € {1,2},
respectively. Note that the radiation field can be in general linearly as well
as circularly polarized; we consider here real transverse photons. Finally,

27rh02 o .
Z Z Z (EE/\ezk”aE)\ + E']-:f)\e*lk”a%)\) (3.1.8)
=1 g

describes the interaction between the electrons and the radiation field.
As usual, ¢ represents the speed of light in vacuum. V is the quantization
volume for the photon modes. The vector of the 4x4 a-matrices is

- : 0 o
a; = ozz with o = <O’k 0) (3.1.9)
@/
B 0/0x
and the o* are the 2x2 Pauli matrices. p; = —ihV; = —ih | 0/0y | is the
0/0z

momentum operator of the i*" particle. w; = ck = C|E\ is the frequency of
a photon of the radiation field in the mode IZ, €\ e_z)\ are the normalized
polarization vectors in direction of propagation of the plane wave and V,,,.(7)
is the nuclear potential of the atom, given in Section 2.6.

3.2 Projection Operators

Before introducing the expressions of the projection operators that will help
us calculate the transition matrix element in equation (3.0.1), one should
clarify that the system makes a transition through the following two types of
states: the initial state is composed of bound electrons of the ion and n + 1
incoming photons {Ag”/g;”}”*l from the radiation field, whereas the final state
contains bound electrons and n emitted photons {/\’J?k‘?1 » _;. The operator

that projects onto the subspace of states containing one active photon A
(the other n photons that are always present will not be considered for now)
and bound electrons is given by [20]:

R=Y" |0 M) (e, AE| | (3.2.1)
£ Nk
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where € is a collective index that summarizes all the relevant quantum num-
bers needed to specify the bound electronic state®. The states given above
are product states of the eigenstates of H, and H,. The summation goes
over a complete set of atomic and photonic states.

The system however goes through an intermediate, discrete state as well.
The operator that projects on the subspace of discrete bound states of the
atom, where the active photon has been absorbed is:

Q=>_[Pa,0)(P4,0| (3.2.2)

Here, again, d stands for all the quantum numbers of the discrete atomic
state, and in the definition of the projection operator one sums over all such
possible states. The 0 representing that there is not a single active photon
in this state has been used only once and for clarity will be omitted in the
rest of this chapter.

The eigenstates of the above subspaces fulfill the orthonormalization condi-
tions

(B, NE|DL, NE) = GeerOandi (3.2.3)

(Pa|Py) = Gaa - (3.2.4)

As projection operators, R and @) respect the following orthogonality condi-
tions

R*=R,
Q*=Q,
RQ=QR=0. (3.2.5)

Furthermore we assume that the completeness relation
R+Q=1 (3.2.6)

is fulfilled. Equation (3.2.6) expresses actually an approximation, since (i)
we work in the one-photon continuum (only one photon can be absorbed or
emitted at a time), (ii) we do not consider ionization of the atom by the
radiation field nor (iii) autoionization is possible (we consider transitions
between deeply-bound hyperfine-structure states).

31t is actually the product state |®¢) @ IAK) that is meant by |De, AE).
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Applying perturbation theory, we decompose the total Hamiltonian into an
unperturbed part and a perturbation:

H=Hy+V (3.2.7)

Hj is not explicitly time dependent and possesses the known discrete eigen-
states |®4) with energy Fy:

Ho|®g) = Ey|®y) (3.2.8)

as well as the eigenstates | ; )\/;), which are product states of a photon and
bound discrete atomic states?

Ho| @y, \k) = (Ef + hw) [@5, N) . (3.2.9)
Additionally, Hy commutes with the previously defined projection operators:
H()R = RHO and H()Q = QH()

Now considering the completeness relation (3.2.6), one can rewrite the Hamil-
tonian:

H=(R+QHR+Q), (3.2.10)
and identify the Hy and V' as

H,=RHR+QHQ, (3.2.11)
V = QHR + RHQ. (3.2.12)

Here the discrete excited intermediate states are eigenstates of QH(@) and
RHR describes the Hamiltonian with the photonic continuum.

The interaction V is also assumed not to be explicitly time-dependent and
its diagonal projections are equal to zero

RVR=0, QVQ=0. (3.2.13)

The operator V' describes transitions between different subspaces, thus sum-
ming all the possible interactions. It is the one that couples the discrete
states to the photon continuum (radiative excitation and decay). QH R de-
scribes therefore the excitation by photon absorption and RH () the radiative
decay.

4Compare with [17], p. 983, 984.
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3.3 The Transition Operator T’

We will now determine the transition operator 7' corresponding to our process
of interest by a perturbative expansion. T depends on the total energy of
the initial state £. It is given by®

T(z) =V +VG(2)V, (3.3.1)

where

G(z)=[z—H]! (3.3.2)

is the Green operator of the total Hamiltonian and z denotes the complex
energy variable used to specify the appropriate scattering boundary condi-
tions on the asymptotic continuum states. G(z) can be formally calculated
from the Lippmann-Schwinger equation

G(2) = Gol2) + Go(2)VG(2) | (3.3.3)

or, equivalently,

(z — Hp)G(2) =1+ VG(2), (3.3.4)

with Go(z) = [z — Hy] ™! being the Green operator of the unperturbed Hamil-
tonian. Using the closure relation R + ) = 1 one can express T'(z) as

T(z)=V+V(R+Q)G(2)(R+ Q)V
— V 4+ VRG(2)RV + VRG(2)QV+VQG(2)RV + VQG(2)QV.

(3.3.5)
After defining the continuum propagator
®(2) = R[R(z — Hy — V)R] ! (3.3.6)

and taking into account that R commutes with H, the following useful
relations can be obtained from multiplication of (3.3.4) with R and @ from
the left /right

RG(2)R = R®(2)R[1+ VQG(2)R], (3.3.7)
RG(2)Q = [RB(2)R]V[QG(2)Q] (3.338)
QG(2)R = QG(2)Q[VR®(2)R] . (3.3.9)

5See for example [22], chapter 8.



3.3. THE TRANSITION OPERATOR T 29

Defining the Level-Shift-Operator as
A(z) =V +VR®(2)RV , (3.3.10)

and inserting equations (3.3.7)-(3.3.9) into (3.3.5), the transition operator is
reduced to

T(z) = Az) + A(2) QG (2) QA(2). (3.3.11)

The first term, A(z), describes scattering in the absence of the set of the @
states.

Now for calculating the matrix element (®;|RT (E)R|®;) in equation® (3.0.1)
we have to find an expression for RT'(z)R, which describes the evolution of

our system from an initial photon continuum state into a final one. Using
(3.3.11) we get

RT(z)R = RA(2)R + RA(2)QG(2)QA(2)R . (3.3.12)

We will now continue evaluating the terms
RA(2)Q = RVQ + RVR®(2)RVQ = RVQ = RH,,.Q . (3.3.13)

Since H., is the only part of the Hamiltonian (3.1.1) that accounts for the
transition from the discrete to the one-photon states, it is V = H,.. In
analogy:

QA(2)R = QVR + QVR®(2)RVR = QVR = QH.. R (3.3.14)
With (3.3.13) and (3.3.14), (3.3.12) becomes
RT(2)R = RA(2)R + RH,,QG(2)QH..R. (3.3.15)

We must now find an expression for QG(2)Q. For this, one can start from

QG(2)Q = Q(Qlz — Hy — A(2)]Q)
— Q(Q[z — H— VR®(2)RV]Q) . (3.3.16)

-1

The equality in the first line comes from substitution of (3.3.8) into an equiva-
lent form? of (3.3.4) and for the second merely the definition of A(z) has been
used. Then the so-called isolated resonances approrimation is performed, in
which the non-diagonal matrix elements

(P4|Q[z — H— VRO(2)RV]Q|®y), d#d,

SR|®,;) = |®;) = |®;, \k) ; accordingly for R|®y). Also Q|®q) = |Pq) = |Pq,0).
"See [8], p.82.
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are neglected. Using the approximation®
R®(2)R ~ R[R(z — Hy)R|™' = RGER | (3.3.17)

with the Green operator G{¥(z) = [R(z — Hy)R]™!, the diagonal elements of
the operator Q[z — H — VR®(z)RV]Q can be expressed as follows’:

(04|Q[z — H — VRO(2)RV]Q|Pa)

~ (2 — Ey) — (®4]QVRGE(2)RV Q| D) (3.3.18)

The second term of the latter can be split into a real and an imaginary part!:
i

(®4|QVRGE(2)RVQ|®y) = AEY — §P§, (3.3.19)

where AET describes self-energy and transverse-photon exchange corrections
to the energy Ey for the intermediate state d [22]. The latter correction can
be identified as the Breit interaction [16]. In the imaginary part, I'} stands
for the radiative width of the state.

Employing equation (3.3.16), this brings us to the result:

_ |QP4) (P4l
QG(:)Q = ; z— Ey— AEF + Dk

(3.3.20)

since ), |QPq) (Pq4] = Q.

Finally, by inserting (3.3.20) into our main relation (3.3.15), the desired
matrix element (O ;| RT(E)R|®;), under the approximations discussed above,
has the final form

(®f|RT(E)R|®;) =)
d
The term RA(z)R in (3.3.12) describes the case, where the atom does not
interact at all with the radiation field, which is not of interest to us; therefore
it has been neglected. In the following, we will omit for clarity the energy
correction AEJ i.e. we assume that it is included in the level energy E;.

(O RH e, Q[P g) (Py|QH., R|D;) '

- 3.3.21

We note that a similar calculation that introduced the complex energy shift
(3.3.19) to the energy of level d may be done to yield the same correction to
the energies of the initial and final ionic levels. These corrections are real,
since those states are assumed to be stable, i.e. their radiative widths are
(practically) zero.

8See appendix B.1.
9See appendix B.2.

108ee [17], p.994-1001.
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3.4 The Total Cross Section for Dipole Tran-
sition
Inserting (3.3.21) into (3.0.1) yields

do’iﬁf(E> _ 2_7T Z <(Df’RHerQ|(I)d> <(I)d|QH6TR’q)Z>
A,  BF 4 E—E,— AEF+ %
> <(I)f|‘RI{67"CQ|<I>d’>*<(1)0l’|62-[{er}%|q)i>>k
E—Ey — AER — iTX

(3.4.1)

Here, the complex energy variable z has been replaced by the total energy
E of the system, which is given by the sum of the photon energy and the
energy of the initial state of the ion

E - h(,d + Ez - Ephot + El . (342)

Applying once again the isolated resonances approximation, we neglect the
non-diagonal elements of the double sum

oy (Bphor) _ 27 5 (& FH QIO (LalQHr RI®F o o)

kof th d (Ephot - Ed + Ez)Q + %

Equation (3.4.2) has been used in the above formula.

We now proceed to calculate explicit expressions for the two squared matrix
elements in the numerator. We start first with [(®;|RH,,Q|®4)[*, which
describes spontaneous emission of a photon as the system evolves from the
bound atomic, zero-photon state |94, 0) to the bound atomic, 1-photon state
|Dy, )\lg) Now we give explicitly the total number of photons present in the
field and write

|QPa) = |Pa) = |d, Ja, My,)|n),
|R®y) = |Pf) = [f, Jp, My, )[n+ 1) (3.4.4)

Following the calculation in [1], for simplicity we give the 1l-electron, 1-
polarization, single-mode form of (3.1.8):

€ 2 h = L= N ik
H], = EV % [a(p e al(p- e | (3.4.5)

because when applying Fermi’s Golden Rule we will see that the sum over
relevant modes k and the extension to a many-electron atom can be carried
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out with a sum ), over all electrons. The polarization A of the emitted
photon will be treated later on. In H/ , the term with the annihilation
operator a is not relevant, since we consider an emission event. Furthermore,
first we apply the electric dipole (E1) approximation, e.g. we keep only
the first term of the multipole expansion of e/
Heisenberg equation of motion

, namely, 1. By using the

dr I
r, Hy| = ih— = ih— 3.4.6
[T7 0] ¢ dt ? m7 ( )
introducing the electric dipole operator d = —ei in the spherical basis with

the index ¢ = —1,0,1 and applying the Wigner-Eckart theorem, one obtains

O hicres(n + 1) (f, J¢||d||d, J4)

O RH' Q| :'\/
< f| erQl d> ? Vv \/m

X > (Jas My, 1,q|Jp, My, e, (3.4.7)

q

Here, d is the dipole operator!! and wyes = Eg; /h with the energy separation
of the two states Fy;. Note the v/n + 1 factor following from the definitions
(3.4.4).2 (f, Js||d||d, J4) is the so-called reduced matrix element, free of any
dependence on the quantum numbers M; and is real, like the rest of the
terms except i. Now we take the modulus square of expression (3.4.7):

2 2mhwres(n + 1) |(f, Jylldl|d. Ja)|”
B v 2Jr+ 1

2
X (Z(Jd, My, 1,qlJ;, Mjf>eq> , (3.4.8)

q

(| RH,,Q|®a)]

then multiply by 2 for the two polarizations available and choose € along the
quantization axis z, e.g. e;—0 = 1, ;=41 = 0 (spherical basis). Additionally,
for spontaneous emission, n = 0, since there is no active photon in the state
|@4). We also sum over all possible ground states M, and average over the
excited state sublevels M,. The two sums ) My, and > My, apply then only

to the squared M j;-dependent matrix element

>N (Ja My, 1,010, My, (3.4.9)

My, My,

Uidis a vector, i.e. a rank-1 tensor, which accounts for the 1 in the last matrix element of
(3.4.7).
2in+1aln) =vn+In+1n+1)=vn+1.
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which is equal to (2J+1)/3, expressing the isotropy of space (equally prob-
able photon emission in every direction). Thus finally'3:

A hawyes |, J¢l|d]|d, Ja)|”
| RH' O|d,)|* = 4.1

If one inserts this result into Fermi’s Golden Rule for emission and integrates
over the solid angle df2, one obtains the radiative decay rate between fine
structure levels'4

46 |, Jlldl\d, Ja) |

A%, = 3.4.11
I 3R 2y+ 1 ( )
We can thereby express |(f, Jf||ci||d7 Ja) ‘2 in terms of Agif:
5 2 3hc?
\(f, Jrlld||d, Jo)|” = 1 (2J4+ 1AL, (3.4.12)

TES

The purpose of this will soon become clear to the reader. We now proceed
in a similar way for [(®4|QH,,R|®;)|?, the squared matrix element for the
resonant absorption of only one photon. This time the a'-term in (3.4.5)
does not contribute and the electric dipole approximation still holds. After
the use of the Wigner-Eckart theorem and, say, for z-polarized light (¢ = 0),

we have
- [2mhwren (d, Jalldl)i, J;)
O |QH! R|D;) = — L ’ Jiy My, 1,0|Jg, Mj,) .
(BalQH,, BI7) = —iy| T o M 1,010, M)
(3.4.13)
One can express the number n of photons in the mode by the electric field
amplitude®®:
VES
= 3.4.14
" 87Thwres ( )

so that after summation over M, , averaging over M, and due to isotropy:

L |(d. Talldlli. 7)€
12 2J; +1 '

(4| QH., R|®;)|* = (3.4.15)

FSmn
i—d

The absorption rate for n photons A is related to the stimulated decay

¥In case of a dimension check of the formula, note that |(f, Jl|d||d, Jd>‘2 has the dimension

energy-volume due to choice of 1/(4meg) =1 in the definition of Hy, [1], p. 138

AL has the dimension 1/time.

5The time-averaged magnitude of the Poynting vector for an electromagnetic plane wave is
sgi;c under the convention 1/(4mep) = 1.
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AFS,n,st

ai " according to the principle of detailed balance

rate for n photons

FSn 2Jd +1 FSn,st
i—d T 2Jz 41 d—1

(3.4.16)

FS

For the moment however let us consider the spontaneous decay rate A;=>,

and write in analogy to (3.4.12):

. 3hc? 3hc?
(d, JdeHz,Ji>|2:87r4 —(2J,+1)ALS, = 8 — (2J;4+1)AFS, | (3.4.17)

with the absorption rate per photon AS,. The above equality is another
manifestation of the principle of detailed balance in the case of one photon,
e.g. n = 1. The factor 87 is present, because for absorption the rate has to
be averaged rather than integrated over the solid angle df2 and the 2 possible
polarizations A.

Before we insert (3.4.10) and (3.4.15) into (3.4.3), we give the expressions for
the density of states of the final states py and the flux of incoming photons
F;. py in this case is the density of the photon states:

dN V. El
P Epno) = 4 = amp o

(3.4.18)

dN is the number of photons of energy E,;, in a given differential volume
of phase space

Az d®p

The flux!® is related to the electric field amplitude

1 &

F = .
hwres 8

(3.4.20)

We finally insert (3.4.10), (3.4.15), (3.4.18) and (3.4.20) into (3.4.3) and

consider the transition to one specific level d:

9 2 - 2
do—iﬁd%f(Ephot) :ﬁEZWQ }<fa ‘]f||d||d7 Jd>‘ ‘<d7 Jd||d||za‘]l>‘

di*“res
du, 0 R 271+ 1)(27; + 1)
L(-Ephot; Edia Ffl%)
3.4.21

16Dimension: photons/(area-time).
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with E4 = hw,es having been introduced as the argument of ps(Epp) and
the energy-normalized Lorentzian line shape function

/2
FR2 )

(Ephot - Edi>2 + %

L(Ephot; Egi, T = (3.4.22)

where Ey; = Eq — E;. We now make use of (3.4.12) and (3.4.17) in (3.4.21)
and proceed to the total cross section by averaging over the incoming photon
directions, polarizations and magnetic quantum numbers M, as well as
integrating over the directions of the outgoing photons, summing over their
polarizations and summing over M;,. Note however that all these have been
already carried out implicitly in the derivation of (3.4.12) and (3.4.17), thus

2 ﬁ3
Edi

hAd% f

AszL< phots Edza FR) FR
d

Oisdsf(Ephot) = (3.4.23)

FS

hA . , : S . :

The last term —<z* is the so-called branching ratio, which in this case is
d

equal'” unity, since there is only one possible transition channel, the one

between the degenerate states |d, J;) and |f, J¢).

In the actual presence of n photons in the mode, the total emission rate is
given by ADSMTL — ASmst L AFS - Degpite this fact, the branching ratio

d—1 d—1i d—i °
remains still the same as in the one-photon case of spontaneous decay.

We note here that even though the above final formula has been derived
in the case of electric dipole transitions, one may get the same result for
magnetic dipole (M1) transitions. This is due to the fact that the radiative
rates in the M1 case have the same form as their E1 counterparts, with the
exception that the electric dipole operator needs to be substituted by the
electronic magnetic dipole operator.

"Due to the notation in [1], it is in this special case: T' = hA.
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Chapter 4

Hyperfine Structure

Formula (3.4.23) has been derived in a general way for the transitions be-
tween states with (2J + 1) degeneration characterized by the total angular
momentum quantum number J. However, in the framework of this thesis the
calculation of the total cross section for transitions between levels belonging
to the Zeeman-split hyperfine levels is aimed for. Therefore, some modifi-
cations concerning the level energies and transition rates are undertaken in
the above-mentioned formula. Furthermore, the energy levels E; and E; are
given in explicit form.

4.1 Transition Rates

The transition rates A"S, and A% s for the fine-structure splitting, which
have been used so far, have to be replaced by the decay rates A?fji and AZiS f
between two Zeeman-split levels of the hyperfine structure. Additionally,
the energy levels are not considered degenerate anymore; the principle of
detailed balance reduces to

Als = Al (4.1.1)
We obtain thus from (3.4.23)
122 . hfs
Tisds f(Ephot) = E—QAZiiL(EPhOt; Eq4, T fi—zf : (4.1.2)
di d

Note that for the radiative width T'#f holds:

Ti=h> A, (4.1.3)
!
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since ¢ = f does not hold necessarily, so that all possible final states of the
decay have to be considered. As opposed to the relation T'F = hAFS, of
Section 3.4, here it is summed over all possible decay rates Afo ; between
Zeeman components of the hyperfine splitting with quantum numbers F' and

M, which is given by [14]

<
-~ - I r 2
his f phot d
Ay = (2F 4+ 1)(2F; + 1) <_MFf Mg, — Mg, MFd)
Jp By 1
o {Fd ; Jphot} Ad—>f (4.1.4)

U
Here, I is the nuclear spin quantum number and AZ® 5 1s the fine-structure
decay rate between electronic states with quantum number J introduced in
Section 3.4. This value is delivered by the OSCL program of GRASP. The
factors ¢ and 71 denote the square of the Wigner 3j-symbol and Wigner 67-
symbol respectively!. The quantum numbers involved fulfill among others
the triangular inequalities

|Fr—1| < Fy < Fr+1 (4.1.5)
and
— Jphot S MFf - MFd S Jphot . (416)
Since Jpnet, the photon angular momentum, is equal to 1, the above relations
express the selection rules
AF =0,%1,
AMp=0,=£1. (4.1.7)
If these are not satisfied, the 3j- and 6j-symbols are equal to 0, i.e. the M1
transition between those states is forbidden.

Oid—s is the total cross section for exactly one transition channel from
state 7 to d and finally to state f. However, since we aim to obtain the cross
section for all possible transitions, we have to sum over all possible states
1,d,f. We perform first the summation over f, since there is only one term
that depends on it, namely, Asff - This gives the result?

r
hfs FS d
E Al =57 1Ad == (4.1.8)

1See [17], p. 1054, 1061.
2See Appendix C.
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This leads from formula (4.1.2) to the final expression for the total cross
section of a transition under photon absorption from an initial state i to
an excited, intermediate state d, followed by a radiative decay towards all
possible final states f

nted A
Ui%d(EphOQ =2 E2 Adisz‘L(EphoB Edi7 FdR) ) (4'1'9>
di
with ,
I ALS. (4.1.10)

d:2Jd+1 d—1

When plotting the spectrum for transitions involving different initial and
excited states, i.e. a superposition of peaks, the remaining summation over
1 and d can be done numerically, e.g. by a Mathematica code.

4.2 Level Energies

The level energies include the interaction energies of the hyperfine splitting
and the Zeeman splitting of the components of the hyperfine structure.

4.2.1 Hyperfine interaction

The term Y ¢, Hpzs(7;) in (3.1.2) describing the hyperfine interaction be-
tween the electrons and the electromagnetic multipole moments of the nu-
cleus may be represented as a multipole expansion [10, 12]:

> 1® . p® (4.2.1)

k>1

where T®) and M) are spherical tensor operators of rank k in the electronic
and nuclear spaces, respectively. The multipolarity & = 1 corresponds to the
magnetic dipole interaction and k = 2 to the electric quadrupole interaction.
Higher-order terms are small enough to be neglected. The nuclear tensor
operators are related to the conventional nuclear magnetic dipole moment
pur and electric quadrupole moment (); in the following way:

pur = (T IM; | MV | I M), (4.2.2)
1
5 @r = (LI M| Mg?|UrIM;), (4.23)
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where the state of the nucleus is denoted by |I';IM;) in analogy to the atomic
state function notation in Chapter 2 and is assumed to be independent of
the electronic states. The nuclear and electronic angular momenta, I and
f, respectively, are coupled to a total angular momentum F=1T+J The
matrix elements of the magnetic dipole and electrical quadrupole interactions
are

Wi (J, J') = (T s IJF Mp|T® - MW|T T ,J' FMp) (4.2.4)
Wise(J,J') = (T T IJFMp|T® - MP DT ,0 FMp), (4.2.5)
where
DT, IJFMp) = > C(IJF; M;M;Mp) D IMp)|TyJMy)  (4.2.6)
M Mj

denotes the coupled wave function of the total system composed of the nu-
cleus and the electrons. After the factorization of the nuclear and electronic
terms, the diagonal matrix elements can be given by [10, 12]

IVMAJgD-—%AJC, (4.2.7)
Was(J.J) = By 3C(C+1)—I(I+1)J(J+1) (428)

21(21 —1)J(2J — 1)

Here, C = F(F+1)— J(J+1)—I(I +1) and A;, By are the hyperfine
interaction constants, which are calculated by the HFS92 program written
as an extension to GRASP after empirical values of the nuclear magnetic
moments have been inserted by the user. Since both constants have the
dimension 1/time, the resulting hyperfine energy splitting due to magnetic
dipole and electrical quadrupole interaction considering only diagonal ele-
ments is given by AWy (J, J) and hWgo(J, J), respectively.

4.2.2 Zeeman splitting of the hyperfine structure com-
ponents

The energy shift due to the Zeeman interaction —pfpé in first-order pertur-
bation theory is given by [14]

AEZ™ = |ipgp BMp (4.2.9)

where pup = 2;1 is the Bohr magneton and ¢gr the g factor for a hyperfine

niveau F'. The latter is given by the expression [14]:
F(F+ 1)+ J(J +1) — I(I+1)
2F(F +1) ’

(4.2.10)

gr = 4J
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with ¢g; being the g factor for a fine-structure level, defined by the magnetic
moment ji; of an atom in state |JM;) as

ﬂJ = —gJ,lJ,Bj. (4211)

g, as computed by the GFACTOR2001 program [13], comprises one impor-
tant QED correction: the interaction of the free electron with the quantized
electromagnetic vacuum. In principle, this is still an approximation since
further corrections for bound electrons should be taken into consideration.
However, the latter would extend beyond the precision of the actual exper-
iments and our intended theoretical accuracy, and will not be taken into
account.

Finally, the overall expression for the energy level Ej,; up to the Zeeman
splitting of the hyperfine structure results to

Eija = EJ,,, + Wi (Jija, Jija) + BWe2(Jija, Jija) + AEZ™. (4.2.12)

This means that the quantity Ey in the Lorentzian function of expression
(4.1.9) is given by

Ey=E;, — Ej, +hWyn(Ja, Ja) — Wi (Ji, J;)
+ MW (Ja, Ja) — hWe2(Ji, J;) + AESE™ — A", (4.2.13)

Note that the fine-structure energies E,, , are calculated according to the
MCDF theory described in Chapter 2.

An overview of the energy levels, splittings and transition rates is given in
figures 4.1 and 4.2. Transitions within one group of the 2Mp+1 Zeeman-split
levels or even between two hyperfine levels that belong to the same J have
not been taken into account, as those have frequencies in the microwave- or
radio frequency-range with negligible transition rates. This is justified by
the A}/? ; o w’-dependence of transition rates [12].
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Fine structure Hyperfine structure  Fy4 Zeeman splitting
15/2

13/2

3=3 AF~250Hz -

11/2

9/2

712

5/2

312
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13/2

11/2

912

712
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Figure 4.1: Schematic diagram of the J = 2,3 energy levels of the peel sub-
shell configuration 3d* illustrating the fine, hyperfine and Zeeman splitting (not to
scale). 410 transitions between Zeeman states with different J are allowed accord-
ing to the selection rules (4.1.7), out of which only 2 have been depicted. The 12
transitions between |Jg = 3, Fy = 3/2, Mp,) and |J; = 2, F; = 5/2, Mp,) are given
explicitly in Figure 4.2.
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J,=3

d
h'WMl(Jd"]d)

+h'WEz(Jd’Jd)

------ , -312
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Figure 4.2: Allowed magnetic dipole transitions between |J; = 3, F; = 3/2) and
|J; = 2,F; = 5/2). Note the inversion of the Zeeman levels is caused by the
negative sign of gr. o and 7 refer to the orthogonal (to the direction defined by the
magnetic field) and parallel polarization of the emitted photon. The proportions
of the Zeeman splittings in the figure correspond to the real values.
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Chapter 5

Results

This chapter is composed of two parts. In the first, a series of multiconfigu-
ration Dirac-Fock calculation results are presented. These have been crucial
in determining the accuracy of the numerical codes employed as well as the
magnitude of several contributions such as QED and nuclear corrections.
Furthermore, a comparison of results carried out with two different types of
configuration expansions point out the necessary adjustments of the calcula-
tion. In the second part, a formula for the Doppler-broadened cross section
oP is derived, in order to obtain predictions with respect to the experiment,
which is bound with line broadening. Finally, o” is plotted with different
parameters and the respective spectra are discussed.

Table 5.1: Numerical values of the fine structure energy E;, M1 transition rate
between fine structure levels, hyperfine interactions constants A, By and g factor
for the fine structure g; obtained with an expansion up to n = 4 for the lowest
J = 2,3 levels of the 3d* subshell in 2%° Bi%1+.

J EJ Agjf AJ BJ s
(eV) (Hz) (GHz) (GHz)

3 —484570.73 80.6718 —29.7589 1.06983

2 —484574.38 250.14300 61.7162 —36.6734 1.15729

45
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5.1 Choice of the Expansion Size

An issue that arises while generating the list of the configuration state func-
tions is the choice of the appropriate expansion size. From a comparison of
two calculations, the one extending to n = 3 and the other to n = 4, the
results presented in table 5.2 have been obtained.

Table 5.2: Calculation results for expansions with n = 3 and n = 4.

n 3 4
E;, — Ej (eV) 3.64374 3.65820
Agif (Hz) 300.68170 250.14900
A;, (GHz) 80.8133 80.6718
Aj, (GHz) 61.8188 61.7162
B, (GHz) —29.8566 —29.7589
By, (GHz) —36.7696 —36.6734

Configurations with J = 2, J = 3 as well as single and double substitutions
have been considered. All the relative deviations are under 1%. Concerning
the value of E;, — E;, it should be mentioned that obtaining a highly accu-
rate value is not within the aims of this work, since precise values are given
in Ref. [4]. Moreover, the same tendency of increasing fine structure energy
splittings with higher n as mentioned in [4] has been observed.

The hyperfine interaction constants A;, B; have been determined with an
accuracy that presently lies beyond experimental precision, as a discrepancy
of 0.1 GHz corresponds to &~ 0.4 ueV, which is far less that the actual exper-
imental resolution as it is discussed further below. Thus since it is expected
that a configuration symmetry list going up to n = 5 will provide the same
order of magnitude in the improvement of the above values, the n = 4 ex-
pansion has been considered sufficient and has been used throughout the
calculations of this work.

For the calculation of the decay rate AL s between fine structure levels mag-
netic dipole (M1) transitions have been considered in order to compare them
with the values presented in [4]. Note that the AJS, value for n = 3 is
subject to a deviation of ~ 27% relative to the value 236.79 Hz in [4], which
also speaks for a n = 4 expansion where the relative deviation lies at 5%.
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5.2 Multipole Expansion of the Electromag-
netic Field

For the calculation of the fine structure energy levels and transition rates
magnetic dipole transitions have been considered. The expansion of the
electromagnetic plane waves of the radiation field consists of the following
terms!:

M1+E14+E2+M24+M3+E3+E4+M4+M5+E5+. . . |

where ”ML” refers to magnetic and ”EL” to electric type, respectively. L =1
corresponds to dipole, L = 2 to quadrupole, L. = 3 to octupole transitions
etc.

The parity selection rule holds:

L

mimg = (—1) for electric dipole transitions,

L+1

mimg = (—1) for magnetic dipole transitions.

In our case we have m; = 7y, e.g. mmy = +1.
Additionally the following total angular momentum selection rules hold:

|Jd—Ji| <L< J;+ J;, (523)

or in our case:
1< L <5, (5.2.4)

Thus only the transitions corresponding to the terms in bold are allowed.

A calculation with the "0scl92” executable? of GRASP forn =4, J =2 ¢
J = 3 level transition of the 3d* subshell yielded A}5, = 250.14900 Hz and
Adij = 3.9 x107*Hz for M1 and E2 transitions respectively. The latter cor-
responds to a lifetime of &~ 40 min, which can be considered as an infinitely
long time interval for interatomic processes. As higher multipolarity transi-
tions are expected to be of even less importance than E2, the calculations

have been restricted to M1 transitions.

5.3 Comparative, Hydrogenlike Calculation

In order to test the numerical results of the computations with GRASP, a
calculation of the hyperfine splitting of hydrogen like bismuth 2°°Bi*** has

1See e.g. [12].
2For a brief description of GRASPs executables see appendix A.
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been performed and compared with the values that were obtained with an
analytical formula for the hyperfine splitting of a one-electron ion given e.g.
in [21]*. The results are summarized in tables 5.3 and 5.4, showing that the
numbers are in agreement within our required degree of accuracy.

Note that for the hyperfine splitting energies calculated numerically with
GRASP, only the magnetic dipole interaction Wy (J, J) (see Section 4.2)
has been considered in these test studies with hydrogenic systems. How-
ever, for the rest of the calculations in this work, both magnetic dipole and
electrical quadrupole interactions have been taken into account since the cor-
responding interaction constants, A; and Bj respectively, are of the same
order of magnitude, as it can be seen in table 5.1.

Additionally the g factor values for the Zeeman splitting of the fine structure
obtained from the hydrogenlike numerical calculation have been compared
with the analytical formula for a point like nucleus in the one-electron Dirac
theory [23]:

K . v+ n— |k 1
gD_j(j+1)< VI +n—1k)?2+ (aZ)? 2)’ (5:3.1)

where « is the fine structure constant, Z the nuclear charge number, n
denotes the principal quantum number, x = (—1)7++2(j 4 1/2) is the Dirac
angular momentum quantum number and j represents the relativistic total
angular momentum quantum number. Furthermore, v = y/k? — (aZ)?. The
results are summarized in table 5.5. The values are in agreement up to 7
and 8 significant digits for j = %, J= g respectively.

Table 5.3: Values for hyperfine splitting obtained numerically, compared to the
exact analytical result for n = 3,1 =3, j = 3/2.

AE}eL)}a;ct thRASP

F (meV) (meV)

3 —7.8374 —7.83738
4 —4.0374 —4.03743
5 0.7125 0.71248
6 6.4124 6.41240

3Formula (1) of the cited paper was implemented using CODATA 2010 values. Relativistic

but no nuclear or QED effects were taken into account, e.g. ¢ = 0 (point like nucleus), § = 0 (no
Bohr-Weisskopf effect), 2,.qq = 0.
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Table 5.4: Values for hyperfine splitting obtained numerically, compared to the
exact analytical result forn =3,1 =3, j =5/2.

7 AE}SL??b WJGRASP
(meV) (meV)
2 —5.0230 —5.02300
3 —3.9271  —3.92707
4 —2.4658 —2.46583
) —0.6393 —0.63929
6 1.5526 1.55256
7 4.1097 4.10973

Table 5.5: Fine structure g factor values from Dirac theory and from numerical
GRASP calculation for the 3d electron in hydrogenlike 29Bi%**.

j gD g?RASP
3/2 0.777561435828744 0.7775614276
5/2 1.178819140473812 1.1788191462

5.4 QED and Nuclear Effects

As mentioned in the introduction of this work, quantum field theory is needed
to handle theoretically highly charged ions. QED corrections like Breit in-
teraction, self-energy and vacuum polarization, as well as nuclear motional
corrections (normal and specific mass shift*) have been added from GRASPs
program "rci92” to the Dirac-Coulomb Hamiltonian a posteriori. This means
that the radial functions are not altered, merely the solution of the eigen-
value problem for the expansion coefficients is repeated by diagonalizing the
modified Hamiltonian matrix, which includes the above-mentioned effects.

The influence of these corrections is relevant: Within a calculation up ton =
4, considering configurations with J = 2,3, single and double substitutions
(635 CSFs), an optimized level (OL) procedure with and one without QED
and nuclear corrections have been compared. The results are given in table
5.6.

4See [19], p. 264.
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Table 5.6: Numerical data showing the magnitude of QED and nuclear recoil
effects.

E; —E, AES

d—1

Corrections (eV) (H7) 97, g7,
included 3.658 250.149 1.06983 1.15729
not included 3.816 280.540 1.06967 1.15703

The relative deviation in the difference of the fine structure splitting lies at
4%, in the radiative decay rate between fine structure levels AL, at 12%,
bringing the value including QED and mass shift corrections significantly
closer to the value 236.79 Hz given in [4]. The deviation in the g; values
lies in the 0.01% regime; the same is thus expected for the Zeeman splitting
energies.

Note that for a correct treatment of QED effects on the HFS and Zeeman
corrections, the corresponding Feynman diagrams shall be rigorously imple-
mented. These would influence the results with a relative contribution on
the order of the fine-structure constant o ~ 1/137, i.e. approximately on
the 1% level. Thus we can neglect these terms at the level of accuracy we
are aiming at for an informative comparison with anticipated experimental
results.

5.5 Doppler Broadening

In the actual experiment, the spectral lines are subject to Doppler broaden-
ing, which sets limitations to the practical resolution of the observed spectra.
If wyes is the resonant frequency of the atom in its rest frame, it follows from
the Maxwellian velocity distribution due to thermal motion of the atoms
that the absorbtion cross section has a Gaussian profile [5]:

C — 2622 (w—w,ﬂes)2
G(w) = - \/Ee wPefes (5.5.1)

or depending on the photon energy Fppq:

he -2 (&
(& s

P ot_ET‘es 2
G(Ep) = = ot (5.5.2)
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with u = \/2kgT /M being the most probable speed.

The radiative decay rate between fine structure levels, AZS 7, amounts to
250.14900 Hz. According to Heisenberg’s uncertainty relation this corre-
sponds to a line broadening or radiative width of the state |®4):

I =hALS, = 1.4779044 x 107% eV (5.5.3)

This low order of magnitude of this value confirms the validity of the isolated
resonances approximation assumed along the derivation of the cross section
formula. Taking into account that the energy difference between the 3d states
J; =2 and J; = 3 lies at = 3.6eV, one can approximate the Lorentzian-like
cross section of each of the 410 allowed transitions by a delta function.

In order to obtain the expected observed spectrum under a given resolution,
the cross section with the natural line width has to be convoluted with the
Gaussian line shape function involving the Doppler broadening:

o ~ (Ep 0157E)2 ~
it (Ephot) o / L(E; By, TH) - Ne™ 57— dE (5.5.4)
0
© (Ephot—B)? .
~ / (B = ) New s dE (5.5.5)
0
(Ephot—EBres)?
=Ne 27 (5.5.6)

N = (ov/27)7! is the normalizing constant of the Gaussian and o its devia-
tion. The general form of a Gaussian has been used instead of (5.5.2), since
we demand that the full width at half maximum (FWHM) of the Gaussian
equals the experimental line width I'c,):

FWHM = 20v/2[n2 = T,
Fezp
g =
2v/2In2

Due to the fact that L(Eppet; Eres, ['}) is energy-normalized, one simply has
to replace this function in the derived expression of the total cross section

=

(5.5.7)

(4.1.9) by
1 _(Ephothdi)Q
G(Bppot) = —r— e 57
oV 2T
2 l 2 _4ln2<Eph0t7Edi)2
- DT R (5.5.8)
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where (5.5.7) has been made use of in the second line.
Therefore the total cross section including Doppler broadening is given by

3.2%3 AUn2(Epp ot —Fay)*

D wcth? g 10 [In2 - ———Ept—d
. E ot) = 4— A . B Tez 5 559
Uz—)d( ph t) EC%Z d—i T T € P ( )

with the experimental line width I'c;,. I'cyp is related to a given experimental
resolution® by

AE
Fezp ~ fEdl . (5510)

Thus, for AE/E = 1/20000 and with the typical value Ey =~ 3.6eV, we get
[evp = 1.8 x 107%eV.

5.6 Spectra

In this section the main result of this work is presented: the optical spectra
of the resonant fluorescence process for titaniumlike 2°° Bi®'* ions. The ab-
sorption cross section as a function of energy and wavelength in vacuum with
different experimental line widths I'.;, and under external magnetic fields of
0T, 1T and 8T is visualized.

The values from table 5.1 have been used, except for the energy levels of the
fine structure E;,, E';,, where the fine structure energy splitting £;, — E;, =
EFS = 3.604705eV from [4] has been employed instead®, which is judged
accurate. This corresponds to a wavelength A = 343.9510 nm .

In figures 5.1, 5.2 0”(E,n) and o (E)) are plotted with B = 0T and
[ezp = 1 x 107° €V, so that only the hyperfine structure peaks are present.
The corresponding numerical values of the peak positions, as well as the
identity of the transitions are given in table 5.7.

5p— hc
iC
6”Quad” value of 1/, table 2, [4].
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Figure 5.1: Hyperfine transition peaks for the case of a zero external magnetic field.
Plotted is 0P (Eypot), with T,y = 1x 1075 eV, The fine-structure peak, i.e. the one
for the hypothetical case of a vanishing nuclear spin lies at EFS = 3.604705eV.
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Figure 5.2: Hyperfine transition peaks; o”(\); Tepp = 1 X 107 €V.
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Table 5.7: Hyperfine structure transitions, corresponding resonant wavelength and

energy.

#|F;, Fg Agi(nm) Egu(eV)  # | F; Fg Ag(nm)  Eg(eV)
1|2 2 3437394 3.606924 8 | § 9§ 344.0706 3.603452
2 |5 5 343.8227 3.606050 9 | I I 344.1021 3.603122
315 5 3438944 3.605298 10| 3 2 344.1247 3.602885
4|7 9 3439564 3.604648 11 |1 L 3441790 3.602317
548 18 3439732 3.604473 12| ¥ 2 344.2047 3.602048
6|3 I 3440105 3.604082 13| 2 2 344.2069 3.602025
TS 4 344.0284 3.603894 14| 2 I 3442164 3.601926

15| £ 5 3442164 3.601926

Note that the difference of wavelengths among transitions 14 and 15 in table
5.7 is less than 0.5 x 10° nm, causing the corresponding peaks in Figure 5.2
to be indistinguishable at the set level of resolution. The small difference
between peaks 13 and 14 is still visible, bringing the total count of visible
transitions to 14 out of 15.

Still with T.,, = 1 X 107%eV but with B = 1T, the spectra in figures 5.3
and 5.4 arise. There is now an interaction between the magnetic moments of
the atom and the external field and the Zeeman splitting takes place. The
resolution 36 x 10% is large enough to uncover many of the 410 Zeeman peaks
out of the hyperfine ones. However the modulus of the Zeeman splitting cor-
rection to the resonance energy (peak position) |AEff;dm — AEfﬁiﬂ is of
the same magnitude as the line width or often less (compare with table 5.8),
so that even the thinnest structures visible may be composed of overlapped
peaks.



P (107Ycm?)

061

04+

021

o MO

3.602 3.603 3.604

Figure 5.3: Doppler-broadened spectrum o (Ephot) with with a resolution

3.605

AE

E

3.606

field B = 1T. The fine structure resonance energy lies at ES = 3.604705eV.

3.607

Ephot (eV)

= 36 x 10* and an external magnetic

VHLOHIS 9°¢

qg



oP (10 Yem?)

0.8

0.6

0.4

0.2

i

343.6

343.7

343.8

343.9 344.0 344.1

Figure 5.4: oP(\); 82 =36 x 10*; B = 1T..

344.2

' A (nm)
3

9¢

SLINSHY ¢ HALdVHD



5.6. SPECTRA o7

Decreasing the resolution to a realistic level, the Zeeman levels are present,
but not resolvable. In Figure 5.5 a plot of (5.5.9) with T'e,, = 1.8 X 1074 eV
and B = 1T can be seen.

oP (10 em?)
030}
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: : ! L L —— Ephot (eV)
3.602 3.603

3.604 3.605 3.606 3.607

Figure 5.5: Doppler-broadened spectrum o () with a resolution % = 2x10%
and an external magnetic field B =1T.

In Figure 5.6 the same stands as a function of wavelength with the positions
of the fine structure peaks marked with red lines.

We perform a small test for the peak heights: the Doppler broadening de-
creases the peak maximum values via the convolution as [5]

Tk
UiD—>d(Ephot) ~ Vrin2 T ! Ui—)d(Ephot) . (561)
exp

In our case, the value of the natural-width cross section at resonance (FEy; ~

3.6eV) is":
Th? (204 + 1)AM®

Oima(Eg) =2 ioE 17 =1 ~ 1.9 x 107 cm?, (5.6.2)
di d—f
so that we expect:
1 x 10712eV _ _
ol (Eg) ~ 1.5 T8 xT0-Tay 10X 10 Yem? ~ 1.6 x 107 m?.  (5.6.3)

This indeed corresponds to the order-of-magnitude in the above figures.

"The resonance value of a Lorentzian L(E,s;T) = % .
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oP (10 cm?)
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Figure 5.6: Doppler-broadened spectrum o ()); resolution 5% = 2 x 10%, external

magnetic field B = 1T. The lines drawn in the figure indicate the hyperfine struc-
ture peaks, which are displayed separately in figures 5.1, 5.2. The corresponding

exact numerical values can be extracted from table 5.7.



Table 5.8: Numerical values of properties of selected transitions. The numbering is based on the total 410
transitions. hW; are the hyperfine energy splittings and R;/q = hWy, , / AE]@@;’/” the ratios of the hyperfine
i/d

and Zeeman splitting energies of each level.

4 | B B My My A Eao | WWyo ABfET | RW,,  AEfT i R,
(Hz)  (eV) | (meV) (107%eV) | (meV) (107 %eV)

6|2 5| L 1 172 360192 -193  -032 | -471  -0.71 | 603.125  663.38
202 2] L 1 |37 360192 -0.73 0.41 -3.51 0.29 | -178.049 -1210.34
9 |4 2 L2 1303 3.60203 | 0.67 8.76 | -1.99 6.76 7.6484  -29.4379
108 |2 -1 _1l1 014 360232 225 @ -11.34 | -0.14  -10.96 |-19.8413 1.27737
1305 2| 4 4 |053 36029 | -289  -191 | -471  -0.71 | 151.309  663.38
146 | L 2| -1 —11035 360312 -1.93 0.32 351 -0.29 | -603.125 1210.34
17715 5| 2 2 | 179 3.60346 | -0.73 1.22 -1.99 2.25 | -59.8361 -88.4444
191 [ & L1 1L 11263 3.60387 | 0.67 876 | -0.14  -10.96 | -7.6484 1.27737
205 | & & & 9 | 23 36039 | 0.67 8.76 -0.14 8.96 7.6484  -1.5625
2302 I 1 -1 16 36041 | -289  -1.91 | -351  -0.29 | 151.309 1210.34
274 |48 1 35 1381 36045 | 2.25 3.09 2.01 572 | 72.8155  35.1399
287 2 2| -3 —2%|516 3.60462| -1.93 0.32 -1.99  -225 | -603.125 88.4444
3151 9 4| -5 -2 1215 360529 | -0.73  -2.03 | -0.14  -2.99 | 359606 4.68227
336 ) 4 B -5 I 11586 3.60601| 0.67 -3.98 2.01 -8.00 | -16.8342 -25.125
371 |8 L9 119655 3.60688 | 2.25 -9.28 446  -13.62 |-24.2457 -32.746

VHLOHIS 9°¢
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In Figure 5.7 a plot with T';, = 1.8 x 107*eV and B = 8T (typical EBIT
value) can be seen.

oP 10 em?)

010
0.08
0.06 -
0.04
0.02
T T SR R L T Ephot (V)
3.602 3.603 3.604 3.605 3.606 3.607
Figure 5.7: Doppler-broadened spectrum o”(FE,,y); resolution 22 = 2 x 10*
g <l pp p g phot ) E )

external magnetic field B = 8T.

An interesting result is obtained from the decrease of the experimental width
down to I'eyp = 1 X 10~°eV in Figure 5.8. Here the large increase of the
Zeeman splitting energies due to the magnetic field and thus the decrease
of the ratio between hyperfine structure and Zeeman splitting energies is
visualized by the dense arrangement of the peaks, which fill the whole energy
range.

The maximum and minimum values among the 410 transitions of the ratios
between the hyperfine and Zeeman splitting energies R;,q = hW}, Jd / AE{;;Z’Z
for the lower and upper level, respectively, are given in table 5.9.



P (107Ycm?)

Figure 5.8: Doppler-broadened spectrum o (E,;,;) with a resolution
B =8T.
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= 3.6 x 10° and an external magnetic field
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Table 5.9: Extreme values of the ratios R;/q = hW, P / AE]@‘;@Z of the hyperfine

and Zeeman splitting energies for a 1-Tesla and an 8-Tesla external magnetic field.

B ( T) Rznm R;naz Rgzm R:inar

1 7.6 603.1| 1.3 1210.3
8 1.0 756 | 0.2 1489

For 8 T the Zeeman splitting can be larger that the hyperfine. This is not
the exception of some values: 310 out of 410 transitions give a ratio R; or Ry
less than 10, our tolerance limit. This means that for a 8 T' magnetic field the
first-order perturbation approach in the calculation of the Zeeman splitting
is not appropriate; the strong-field limit of the Zeeman effect (Paschen-Back
effect) has been reached. Same holds for 6 T, where 292 transitions fail the
test.

For B = 1T 100 of 410 transitions exist, where one of the ratios R;, Ry is
less than 10. This case deserves a more thorough examination. It has been
observed that these peaks with low ratio are the ones around the positions
given in table 5.10 (compare with figure 5.3). As one can see, they belong to

Table 5.10: Low-ratio peak neighborhoods with corresponding F' quantum num-
bers for B =1T to be compared with figure 5.3 and table 5.8.

# example from table 5.8 hfs transition — Epp. (€V)

1 49 2 -4 3.6020
2 108 232 3.6023
3 205 Lod 3.6039
4 315 49 3.6053
5 336 U 3.6061

higher hyperfine transitions. Opposed to them, the rest of the peak groups
correspond to transitions between F-values of %, %, g This explains why
the former ones present low hyperfine/Zeeman splitting energy ratios: in the
upper hyperfine levels the electrons interact less strong with the multipole
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moments of the nucleus than in the lower ones, letting thus the interac-
tion energy due to the external magnetic field, e.g. the Zeeman splitting,
dominate. An exception to this tendency is the region of 3.607 eV, which is
characterized by high ratios. The relatively high hyperfine interaction energy
(distance from ET) counteracts the above mentioned effect and keeps the
ratio high.

For B = 1T the perturbation theory ansatz applies to some specific energy
regions. Since the peak groups in figure 5.3 are clearly separated from each
other, as opposed to the 8 T case, a comparison with the experiment can be
achieved so long as the resolution is high enough to keep the low-ratio peaks
apart from the high-ratio ones. Such a spectrum is the one in Figure 5.5 for
example.



64

CHAPTER 5. RESULTS



Chapter 6

Summary and Outlook

Calculating level energies in highly charged ions keeps representing a great
theoretical challenge. First of all, a many-body problem has to be solved
in order to obtain the interaction energies between electrons. Secondly, the
presence of a nuclear field implies the consideration of the Coulomb inter-
action between electrons and the nucleus. In the case when the nucleus has
a magnetic dipole or electric quadrupole moment, there is an additional in-
teraction between the nuclear and electronic multipole moments. This then
gives rise to the hyperfine splitting of the atomic levels, which in the presence
of a static external magnetic field leads additionally to the Zeeman effect.
Once the external field becomes strong enough, one enters the Paschen-Back
regime, where crossings of the energy levels are expected.

In the present work, we address these issues in titaniumlike bismuth, moti-
vated by its high nuclear spin and thus its Zeeman splitting energy corre-
sponding to the visible region of the spectrum. The calculations have been
carried out in the boundaries between the weak and strong external magnetic
field.

First the hyperfine spectrum at B = 0T has been obtained successfully with
the help of multiconfiguration Dirac-Fock calculation using the General Rel-
ativistic Atomic Structure Package (GRASP) package of codes. After having
calculated the corresponding spectra, we conclude that almost all transition
peaks can be clearly distinguished with the choice of a very small experimen-
tal width. This has served as a first validation of the computational model.
Concerning the Zeeman splitting, it has been concluded that for a 1-Tesla
strength of the external magnetic field, the calculation of the Zeeman inter-
action in first-order perturbation theory is a valid approximation for most
peaks. In the other domains allowed transitions between 3d* levels with
J = 2,3 exhibit a hyperfine/Zeeman splitting ratio less than the tolerance
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value 10, considered as the threshold for the applicability of perturbation
theory. For a 8-Tesla field, more than half of the transitions fail this. For
the present, the interest lies in the experimental confirmation of this fact
through a comparison of theoretical and measured spectra.

During an actual EBIT experiment, the magnetic field is indeed 8 T, thus
it is in the order where perturbation theory ceases to apply. However, this
holds true only for the case when electrons from relatively outer shells are
involved, such as in titaniumlike bismuth. In the hydrogenlike case the,
hyperfine structure splitting would be large enough to ensure a high ratio,
but would shift the spectrum beyond the high energy end of the visible part.

Concerning the numerical calculations with the GRASP programs, various
parameters have been investigated concerning their influence on the fine-
structure transition rate and level energies and hence the optimal settings
have been chosen. These calculations were necessary in order to obtain good
atomic state functions. These were then used in the programs "hfs92” and
"gfactor2001” in order to compute the hyperfine interaction constants and
the g; factor of the fine structure splitting. Thus, the determination of the
hyperfine and Zeeman splitting energies was carried out. This was another
innovation in this work.

Using a projection operator formalism on the continuum- and bound states
involved in the resonant fluorescence process, an expression for the cross
section of the interaction between the atom and the electromagnetic field, for
example, a weak laser field, has been derived, leading thus to the calculation
of the absorption spectra that have been discussed previously.

Considerable insight in the behavior of the spectra with respect to the
Doppler broadening and the influence of the magnetic field has been gained,
opening the way towards future, even more detailed calculations. The next
step in the theoretical calculation would be to conduct a non-degenerate
perturbation theory approach to the interaction of the magnetic moments in
the atom with the external field. To this end, non-diagonal matrix elements
of both magnetic operators need to be evaluated with the existing atomic
wave functions. This could lead eventually to the insight, that for high mag-
netic fields, the Zeeman splitting energy, after overcoming a nonlinear (e.g.
quadratic) zone, is again linear in B, after regions with crossings. Certainly,
further extensions may be undertaken in the theory. One suggestion would
address QED corrections to the hyperfine splitting to be calculated, however,
given the large number of electrons, to perform such calculations would be
a great undertaking.

From the experimental point of view, two-photon laser spectroscopy and
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saturated absorption spectroscopy are methods that could help increase the
spectral resolution. Having both fine- and hyperfine structure splitting in
the optical range, high-resolution spectroscopy could provide the accuracy
needed for determining the nuclear magnetic moment. This would lead to
further knowledge about nuclear electromagnetic properties.

Note that the Bohr-Weisskopf effect caused by the finiteness of the nuclear
magnetization distribution has not been taken into account in our calcula-
tions, since no reliable information related to nuclear structure is available so
far. However, a comparative calculation between a pointlike and a finite-size
nucleus for bismuth can be carried out, in order to determine the influence
on the energy levels of the 3d states, but this is not expected to be of great
significance, due to the relatively large distance of these orbitals from the
nucleus.

The dependence of the cross section on the emission angle and polarization
of the fluorescence photons may be considered in further studies. This will
be necessary when one wanted to compare the theoretical and experimental
cross sections on an absolute scale, since in an actual experiment one can
only detect photons under one or a few fixed solid angles. In addition, in
case the isolated resonances approximation assumed in the derivation of the
cross section is not adopted, the interference among the decay channels of
each state is to be included.

The calculations may be extended relatively easily to further elements in
future, leading thus to conclusions about evolutions of the effects. By com-
paring spectra among isotopes, which are expected to exhibit completely
different profiles (since e.g. some of them do not possess a nuclear spin), one
could use such absorption or fluorescence spectra to measure the isotopic
abundance in, for example, astronomical objects.

In tokamak plasmas, high confining magnetic fields dominate and a large va-
riety of ions is present. Again, from the investigation of the visible spectrum
not only identification of these elements in the plasma, but also characteriza-
tion of their excitation state could be achieved. Furthermore, their temper-
ature may be determined based on the line broadening. In order to perform
all these analytical examinations, a good theoretical description, followed by
accurate numerical predictions, have to be available. It is within this concept
that this bachelor thesis has been carried out, applying rigor and considering
details in a controlled manner throughout the derivations and calculations.
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APPENDIX

A General Relativistic Atomic Structure Pack-

age

In this chapter the functionalities of the General-purpose Relativistic Atomic
Structure Package (GRASP), an implementation of the multiconfiguration
Dirac-Fock method, are presented. The information and technical details as
described in the papers [2, 9, 10, 13, 19] are summarized.

A.1 Overview of the Package

GRASP is a suite of programs written in FORTRAN for multiconfigurational
relativistic atomic structure calculations with large configuration state func-
tion (CSF) lists. In the present work, we employed its version GRASP92 [19],
with some auxiliary programs written as an extension of the original pack-
age [10, 13]. Using a fully relativistic approach, theoretical data describing
atomic spectra, e.g. energy levels and radiative decay rates, can be calcu-
lated. A typical calculational session thereby includes the following general
steps:

(a) definition of nuclear data,

(b) generation and manipulation of configuration state lists,

(c) generation of angular coefficients needed for the calculation of matrix
elements with multiconfiguration wave functions,

(d) initial estimates for radial functions,

(e) application of the self-consistent field procedure for obtaining radial
functions and configuration expansion coefficients,

(f) relativistic configuration interaction calculations to include other oper-
ators in the Hamiltonian,

(g) evaluation of atomic properties like transition probabilities, hyperfine
interaction constants and ¢ factors.
A.2 Description of the Individual Programs
geniso

After the input of the nuclear data, that is, atomic number, mass number,
nuclear spin quantum number, dipole and quadrupole moment, a nuclear
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data file .iso is created, which is to be used by the subsequent programs
of the package. The nucleus can be treated either as a point charge or its
extended charge distribution may be described by the two-parameter Fermi
distribution given by equation (2.6.2).

gencsl

Here, a list of jj-coupled configuration state functions are generated (con-
figuration symmetry list). This is done by considering electronic excitations
with respect to one or more reference states (” reference peel subshell config-
urations”; in our case only 3d*) towards an active set of orbitals belonging
to the peel subshells in general.

Taking correlation of the orbitals into account, gencsl generates all possi-
ble CSFs that include, for example, single substitutions between the peel
subshells: the occupation of one of the subshells belonging to the reference
subshell configuration® defined by the user is reduced by 1 and the occupation
for any other subshell in the same configuration increased by 1. Additionally,
correlation functions can be defined by the user, which are also taken into
account in the substitutions and hence in the construction of the ASFs.

All replacements are consistent with the limits of subshell occupation and
applied in such a way that the total atomic angular momentum and parity
keep the same value as those of the reference CSFs. For example, let us
assume that the user has defined the reference subshell configuration to be
3s% 3p% 3d®. A possible single replacement could be 3s' 3p® 3d® or, if for
example all n = 4 subshells are defined as additional correlation functions,
350 3pb 3d° 4s'.

Multiple substitutions are also possible. Note that in contrast to the peel
subshells, a list of core subshells can be defined during the input, from or
towards which no electronic replacements take place. In the example above
that would be 1s? 2s% .

In principle, the larger the configuration symmetry list, the more accurate
will the calculation be. However, the number of the CSFs grows fast, es-
pecially with multiple substitutions allowed: in our case of the titaniumlike
ground-state configuration, allowing orbitals up to n = 3 and considering
only configurations with J = 2,3 without substitutions corresponds to 14
CSF's, whereas allowing single and double substitutions only within the n = 3

IThis is often referred to as the “spectroscopic” configuration.
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shell leads to 243 CSF's; allowing peel orbitals of the n = 3, 4 shells to be sub-
stituted, the procedure leads to ~ 65.000 CSFs. The size of the configuration
symmetry list is decisive for the convergence of the calculation.

erwf

This program performs an initial estimate of the radial wave functions P, (r)
and Q. (r) of the Dirac orbitals. These estimates can be obtained by solving
the Dirac equation in the Thomas-Fermi potential, as screened hydrogenic
functions, or by using radial files of previous calculations that are trustwor-
thy. By the latter method, good starting wave functions are provided for the
self-consistency procedure, which eventually helps overcoming convergence
problems or simply reduces the number of iterations needed. Nevertheless,
the final results are independent of the choice of initial estimate wave func-
tions.

GRASP makes use of a radial grid in order to tabulate the values of the
subshell radial wave functions. These are thus considered vanishing beyond
their maximum tabulation point (MTP) on the radial grid. The value of
the MTP is given in a summary (.sum) file along with the coefficients and
exponents describing the asymptotic behavior of the wave functions.

genmcp

The angular coefficients 2.2.7 are calculated by algebraically performing spin-
angular integrations for the matrix elements of the many-electron Dirac-
Coulomb Hamiltonian.

rscf

For a given list of CSFs, the radial wave functions are optimized and the
eigenvalue problem for the mixing coefficients c,. is solved simultaneously
according to the self-consistency procedure described in Section 2.5.1. One
may choose between an Optimized Level (OL) or an Average Level (AL)
procedure [2]. The result is a new set of radial wave functions together with
mixing coefficient values, which together define the atomic state function

(ASF).
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rci

The relevant informations for this package have been already given in Section
5.4.

oscl

This program calculates the radiative decay rate AL, between the fine struc-
ture levels by usage of a radial wave function set originating from an rscf cal-
culation, and configuration mixing coefficients from an rscf or rci run. Other
related transition parameters for multipole transitions like the Einstein B
coefficients [7], oscillator strengths, total radiative widths and lifetimes are
also provided.

hfs92

This program calculates the hyperfine interaction constants A;, B, intro-
duced in Section 4.2. It makes use of the nuclear data in the .iso file gener-
ated by geniso, the configuration symmetry list from gencsl, the radial wave
function file and the corresponding mixing coefficients file.

gfactor2001

This program evaluates g; factors of fine structure levels and subsequently
the leading QED correction due to the interaction of the free electron with
the quantized vacuum is added to this value. It needs the same inputs as
rhfs, except for the .iso file.

B Projection Operators

B.1

In this appendix we evaluate the the operator R®(z)R — appearing in the
derivation of the resonance fluorescence cross section — in the lowest-order
approximation. Starting from the definition of ®(z),

[R(z — Hy — V)R]®(z) = R,
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and taking into account that R and H, commute and as well that R? = R,
we write

(z — Hy)R®(2)R = R+ RVR®(2)R
(z — H))R*®(2)R~ R
R(z — Hy)R*®(2)R~ R
R®(2)R ~ R[R(z — Hy)R] ™. (B.1)

B.2

Here we give in detail the calculation of another intermediate step in Section
3.3. Here we can use the result of the previous Appendix (B.1):

(QP4|Q[z — H — VRP(2)RV]|QPa)

~ (QP4|Q[z — Ho — V =V R[R(2 — Ho)R] ' V]Q|QPq)
RGE(:)R

= (Q24|Q[z — Ho — V]Q|Q®P4) — (QPa|QV RG{ () RVQ|Q®y)

= (QPa|z — Ho — V|QPa) — (Q4|V RG{(2) RV|Q®y)

= 2 (QP4|QPa) — (QP4|Ho|QPy) — (QPa|V[QPq) —
f E, 0

= (2 = Eq) — (Q®q|V RG{ (2) RV|Q®q) (B.2)

showing thus (3.3.18). In (B.2), use has been made of the property Q% = Q
of the projection operator. The penultimate term in (B.2) is equal to zero
because the interaction operator V' describes transitions between different

subspaces only and has diagonal elements equal to zero as mentioned in
Section 3.2.

C 35— and 65— Symbols

In order to evaluate »_ s Agff > we need to assess the sum

2 2

F 1 F, Je Fr 1
S eR+neR+y | ! r
Fy Mp, —Mp, Mg, — Mg, Mg, Fy Jg 1

(C.1)
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since A} if in (4.1.4) depends only on J. Here, Jy,=1, as mentioned in

Chapter 4.1. For given values of F,; and Mp,:

2

MEp, _MFf MFf - MFd MFd
2 2
Fy I A T R
~Mp,+1 —1 My, Mg, —1 1 My,
2
F 1 F

+ ‘ (C.2)

—Mp, 0 Mp,

because the 3j—symbol remains nonzero only for 3 values of Mp,:
Mp, —1< Mp, < Mg, +1 (C.3)

Using analytical expressions? for the 3j—symbol, one can show that

2

F 1 E 1
> ] - 2y +1° (C4)
MFf _MFf MFf - MFd MFd d
Thus (C.1) becomes
2
Jp Fy 1
Ser+pth Y (C.5)
Ff Fd Jd 1
We use the properties of the 6j-symbol?:
2 2
VRN O R 1 G C/A R ) O SR 2 G
Fy Jg 1 Fy 1, Fp 1|l 1o '
which yields*
2
Jg Fy 1 1
SR+t T = . (C.7)
Ff F, J; 1 2J5+1

2See [14], p. 437, 438.
3See [17], p.1063, 1064 .
4We make use of the orthogonality relation (C.35¢) in [17], p.1065.



76



Bibliography

1]
2]

D. Budker, D. F. Kimball, and D. P. DeMille. Atomic Physics. Oxford
university press, second edition, 2008.

K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plum-
mer. Grasp: A general-purpose relativistic atomic structure program.
Comput. Phys. Commun., 55:425-456, 1989.

Herman Feshbach. A unified theory of nuclear reactions ii. Annals of
Physics, 19:287-313, 1962.

C. Froese Fischer and S. Fritzsche. Magnetic-dipole transitions between
the lowest 3d* J = 2 — 3 transitions in highly charged titanium-like
ions. Journal of Physics B: Atomic, Molecular and Optical Physics,
34(24):L767, 2001.

C. J. Foot. Atomic Physics. Oxford Master Series In Physics. Oxford
University Press, 2006.

J. D. Gillaspy. Highly charged ions. J. Phys. B: At. Mol. Opt. Phys.,
34:R93-R130, 2001.

[. P. Grant. Gauge invariance and relativistic radiative transitions.
J. Phys. B: At. Mol. Opt. Phys., 7:1458, 1974.

S. L. Haan and V. L. Jacobs. Projection-operator approach to the unified
treatment of radiative and dielectronic recombination. Phys. Rev. A,
40:80, 1989.

P. Jonsson, X. He, C. Froese Fischer, and I.P. Grant. The grasp2k rel-
ativistic atomic structure package. Comput. Phys. Commun., 177:597—
622, 2007.

P. Jonsson, F. A. Parpia, and C. Froese Fischer. HFS92: A program for
relativistic atomic hyperfine structure calculations. Computer Physics
Communications, 96:301-310, 1996.

W. R. Johnson and G. Soff. The Lamb shift in Hydrogen-like atoms.
At. Data Nucl. Data Tables, 33:405, 1985.

7



[12] Walter R. Johnson. Atomic Structure Theory. Springer, 2007.

[13] T. Kondo. Gfactor2001:a program for relativistic atomic g-factor calcu-
lations. Computer Physics Communications, (146):261-270, 2002.

[14] L. D. Landau and E. M. Lifshitz. Quantum Mechanics (Non-relativistic
theory), volume 3. Butterworth-Heinemann, third edition, 1977.

[15] J. R. Crespo Lépez-Urrutia. The visible spectrum of highly charged
ions: A window to fundamental physics. Canadian Journal of Physics,
86:111-123, 2008.

[16] J. B. Mann and W. R. Johnson. Breit interaction in multielectron atoms.
Phys. Rev. A, 4:41, 1971.

[17] Albert Messiah. Quantum Mechanics, volume 2. North-Holland Pub-
lishing Company Amsterdam-Oxford, 1975.

[18] P. J. Mohr. Self-energy correction to one-electron energy levels in a
strong Coulomb field. Phys. Rev. A, 46:4421-4424, 1992.

[19] F. A. Parpia, C. Froese Fischer, and I. P. Grant. Grasp92: A pack-
age for large-scale relativistic atomic structure calculations. Com-
put. Phys. Commun., 94:249, 1996.

[20] Roxana Schiopu. Effect on the nuclear charge distribution on dielec-
tronic resonances for heavy few-electrons ions. Master’s thesis, Univer-
sity of Bucarest, June 2004.

[21] V. M. Shabaev. Hyperfine structure of hydrogen-like ions.
J. Phys. B: At. Mol. Opt. Phys., 27:5825-5832, 1994.

[22] J. R. Taylor. Scattering Theory. Wiley, New York, 1972.
[23] S. A. Zapryagaev. Optical Spectroscopy, (47):9, 1979.

78



Acknowledgements

I wish first of all to thank Prof. Dr. Keitel and Dr. José Crespo for super-
vising this thesis.

I am especially grateful to Dr. Crespo for giving me the opportunity in
February 2010 to carry out an internship in his EBIT group at the Max
Planck Institute for Nuclear Physics, thus initiating me to the physics of
ions and for introducing me later on to Dr. Zoltan Harman, with whom I
have collaborated in the present work.

Zoltan has been an extremely patient and ever caring mentor and collabora-
tor, who welcomed me in his theory group from the beginning and supported
me until the very end of my work. During our work together he took con-
siderable amount from his precious time for discussions and helpful advice.
Thanks to him I acquired deep insight in atomic physics. For all these I offer
him my warmest gratitude.

Dr. Zoltan Harman, Prof. Yousef Salamin, Dr. Jacek Zatorski, Benjamin
Galow, all other group members, as well as Veerle Sterken, ensured with
their company a most pleasant time at the Institute.

Thanks to Dr. Jacek, Benjamin, Veerle and of course Zoltan for pointing
out typographical errors in the final version of the thesis.

Finally special thanks to my family and friends, both in Greece and in Ger-
many, who have been standing next to me during my entire study period
giving me much strength and hope at all occasions.

79



80



Erklarung

Ich versichere, dass ich diese Arbeit selbststindig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 13. Juli 2011,

81



