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Abstract

In recent research, many univariate and multivariate approaches have been proposed to improve automatic classification of
various dementia syndromes using imaging data. Some of these methods do not provide the possibility to integrate possible
confounding variables like age into the statistical evaluation. A similar problem sometimes exists in clinical studies, as it is not
always possible to match different clinical groups to each other in all confounding variables, like for example, early-onset
(age,65 years) and late-onset (age$65) patients with Alzheimer’s disease (AD). Here, we propose a simple method to control
for possible effects of confounding variables such as age prior to statistical evaluation of magnetic resonance imaging (MRI)
data using support vector machine classification (SVM) or voxel-based morphometry (VBM). We compare SVM results for the
classification of 80 AD patients and 79 healthy control subjects based on MRI data with and without prior age correction.
Additionally, we compare VBM results for the comparison of three different groups of AD patients differing in age with the same
group of control subjects obtained without including age as covariate, with age as covariate or with prior age correction using
the proposed method. SVM classification using the proposed method resulted in higher between-group classification accuracy
compared to uncorrected data. Further, applying the proposed age correction substantially improved univariate detection of
disease-related grey matter atrophy using VBM in AD patients differing in age from control subjects. The results suggest that the
approach proposed in this work is generally suited to control for confounding variables such as age in SVM or VBM analyses.
Accordingly, the approach might improve and extend the application of these methods in clinical neurosciences.
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Introduction

In recent research, age-related changes have frequently been

reported in different imaging modalities investigating healthy

subjects and patients in advanced age [1]–[4]. When comparing

groups of younger and older subjects, most studies have reported

age-related decreases in grey matter (GM) densities in specific

brain structures [1],[4],[5] measured by magnetic resonance

imaging (MRI). Age-related changes have also been reported for

functional measurements like glucose utilization [6] measured by

[18F]fluorodeoxyglucose positron emission tomography. The use

of different univariate and multivariate statistical approaches for

the comparison of different groups of dementia patients with

healthy control subjects has led to the necessity to control for age-

related changes, as these might cover or lead to an overestimation

of group-specific differences.

Usually, when comparing imaging data of different groups of

subjects, these are matched for such confounding effects as age and

sex, and the confounding variable is usually integrated as a

covariate in the statistical model [7]. However, when using

multivariate approaches, for example for automatic detection or

differentiation of types of dementia, it is not always possible to

control for age-related changes or any other confounding

variables. Multivariate classification algorithms do not usually

provide the possibility to integrate covariates into between-group

classification.

As has been shown by Franke et al. [8], age estimation in

patients with mild Alzheimer’s disease (AD) based on T1-scans

results in an age gap of +10 years for these subjects compared to

healthy control subjects. Age of AD patients is overestimated using

T1-scans because age-related changes are equally directed with

changes associated with AD. As a result of the equal direction of
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these changes, the classification algorithm might also lead to a

misclassification of younger AD patients and older control

subjects. Therefore, to avoid these misclassifications, groups used

for the training of the multivariate pattern classifier should ideally

be matched to each single subject who has to be classified in

clinical setting. This issue is highly important for clinical practice

as the use of all univariate and multivariate approaches has mainly

the aim of enabling accurate and early detection and differenti-

ation of various dementia syndromes in single subjects.

A similar problem arises when individual dementia patients or

two groups of dementia patients differing in age (e.g. early- and

late-onset AD) are compared with a specific group of control

subjects or to each other using univariate approaches. This is

because it is rarely possible to find sufficiently large groups of

control subjects, which match each individual patient in age and

other confounding variables. Otherwise, when a patient or a group

of patients differs from the control group in specific confounding

variables, including these into statistical evaluation might cover

disease-related changes. This issue might therefore be relevant for

group comparisons, as for example when comparing early- and

late-onset AD patients with healthy control subjects or to each

other it might be interesting to look for differential atrophy

patterns in these two groups. By definition, these two groups differ

in their mean age (early-onset AD: age,65years, late-onset AD:

age $65 years). In order to exclude confounding effects of age, two

different groups of healthy control subjects are usually used to

evaluate atrophy patterns in both AD patients groups [9].

However, this procedure restricts the quantitative and qualitative

comparison of atrophy patterns in both groups of AD patients as

there might be substantial differences between groups of control

subjects used for both comparisons. Therefore, it is highly

important to have methodical approaches enabling control for

such confounding effects.

In this work, we propose a linear detrending method in terms of

the general linear model (GLM) based only on control subjects to

control for the effects of age in single subjects and in groups of

subjects prior to statistical evaluation using support vector machine

classification (SVM) or voxel-based morphometry (VBM). A linear

model was chosen based on a study by Good et al. [1]. Thereby,

the authors compared linear vs. quadratic models in terms of

describing absolute and relative age related GM changes in a

healthy cohort consisting of 465 subjects. While the quadratic

coefficients failed to reach significance the linear coefficient was

highly significant. To evaluate this method, we compare SVM and

VBM results for differentiation of AD patients and healthy control

subjects with and without linear detrending of grey matter (GM)

values for age prior to statistical evaluation. We hypothesize that

applying linear age detrending prior to statistical evaluation should

increase the diagnostic accuracy for differentiation of dementia

patients and control subjects using SVM, and improve univariate

detection of GM changes when applying VBM for the evaluation

of groups of AD patients differing in age from the control group.

Methods

Age correction
To remove age-related effects, it is highly important to

differentiate between them and disease-related changes. For that

reason, when comparing single AD patients and control subjects

using SVM or VBM we propose performing additional GLMs

prior to the final statistical evaluation using the same methodical

approach as proposed by Friston et al. [7], but only for control

subjects. Thereby, GLMs are calculated for all GM voxels yC at

each coordinate separately. A constant and age are the only

columns in the matrix XC and only the group of healthy control

subjects is used to determine the regression coefficients b,

consisting of b0 for the constant and bC , for age-related changes

at each voxel coordinate separately. In terms of GLM, the

following simple regression model has to be solved for b by

minimizing the sum of squared residuals ,
P

e2
C?min:

yC~XCbzeC ð1Þ

Solving (1) for least squares estimates of b satisfies the following

normal equations ([10], p. 91):

X T
C XCb~X T

C yC ð2Þ

Solving linear equations system (2) for b results in:

b0

bC

� �
~ X T

C XC

� �{1
X T

C yC

To obtain age-corrected GM values yC , the calculated age

regression coefficients bC are then applied to corresponding voxels

in GM images of both healthy control subjects and AD patients.

Thereby, the residual amount explained by each subject’s individual

age XA is removed from the observed GM voxel values yA of this

subject at each coordinate using the determined coefficient bC , so:

yCOR~yA{bCXA

It is very important to use only control subjects to determine the

regression coefficient, as it has been reported that early- and late-

onset AD patients might show a differential pattern of atrophy in

MRI [9],[11,[12]. As a result, removing age-related effects using

regression coefficients determined in the AD group might also

remove disease-related changes due to their interaction with age. In

further statistical analyses, SVM and VBM results obtained using

GM images containing initial uncorrected GM values yA are

compared with results using age-corrected values yCOR. The age

correction procedure was implemented in Matlab 7.7 (MathWorks

Inc., Sherborn, MA).

Subjects
To evaluate the effect of age correction, we extracted

multicenter MRI data of 80 patients with clinically validated AD

and 79 healthy control subjects (Table 1) from the Alzheimer’s

disease Neuroimaging Initiative (ADNI) database (www.adni-info.

org). AD patients were randomly selected from the database.

Control subjects were selected to match the AD patients for

gender, age and education. The ADNI is a partnership of the

National Institute of Aging, the National Institute of Biomedical

Imaging and Bioengineering, the Food and Drug Administration,

private pharmaceutical companies and non-profit organizations.

Diagnosis of AD patients was based on NINCDS/ARDRA

criteria [13]. Exclusion criteria for the ADNI data were the

presence of any significant neurological disease other than AD,

history of head trauma followed by persistent neurological deficits

or structural brain abnormalities, psychotic features, agitation or

behavioral problems within the last three months or history of

alcohol or substance abuse. For most subjects, multiple follow-up

MRI scans were available. For each subject only the first MRI

scan was used for further analysis. The study was conducted
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according to the Declaration of Helsinki. Written informed

consent was obtained from all participants before protocol-specific

procedures were performed.

Image preprocessing and data analysis
All image-processing steps described below were carried out using

the SPM5 software package (Statistical Parametric Mapping

software: http://www.fil.ion.ucl.ac.uk/spm/) implemented in Ma-

tlab 7.7 (MathWorks Inc., Sherborn, MA). SVM classification was

conducted with the LIBSVM software [14] using the Matlab

interface.

MRI data
The MRI dataset included standard T1-weighted images

obtained with different scanner types using the volumetric

MPRAGE sequence varying in TR and TE with an in-plane

resolution of 1.2561.25 mm and 1.2 mm sagittal slice thickness.

Only images obtained using 1.5T scanners were used in this study.

All images were preprocessed as described on the ADNI website

(http://www.loni.ucla.edu/ADNI/Data/ADNI_Data.shtml), in-

cluding distortion correction and B1 non-uniformity correction.

Preprocessing
MRI data were interpolated to an isotropic resolution of

16161 mm3, bias-corrected for inhomogeneity artifacts, segmented

and spatially normalized to an averaged size template created from

all subjects using the DARTEL (Diffeomorphic Anatomical

Registration Through Exponentiated Lie algebra) approach [15].

Within the normalization procedure, the data were modulated to

preserve the total amount of signal in the images. The data were

smoothed using a Gaussian kernel of 12 mm FWHM. This high

kernel was chosen because it has been shown in previous studies

investigating AD with VBM that large amount of smoothing of MRI

data results in an accurate statistical evaluation of GM atrophy

[16],[17]. The obtained GM images were masked twice: firstly to

avoid contamination by misclassified voxels, and secondly, after the

smoothing to avoid big edge effects. The mask was obtained after

extensive testing by excluding all voxels in the first and the last

template created by the DARTEL approach with a probability of

below 0.2 for belonging to GM and including only voxels that exceed

this threshold in both templates. Subsequently, all GM images were

corrected for age effects using the linear regression approach

described above. The statistical analysis using SVM and VBM was

performed twice, with and without correction for age effects.

SVM
Multivariate pattern classification, as described in [18], was

performed with a linear kernel by identifying a separating

hyperplane that maximizes the distance between different clinical

groups based on whole-brain information. The optimization and

cross-validation of the trained SVM was performed by using the

the split half method. This procedure splits the group into two

independent samples and trains the model on one of the samples

for subsequent class assignation of the sample that was not

included in the training procedure. Both samples are used once as

training sample and once as the sample that has to be classified.

This validation method enables the generalization of the trained

SVM to data that have never been presented to the SVM

algorithms previously. SVM classification was performed for the

whole group (Table 1) twice; once with and once without age

correction applied prior to SVM. The reported accuracy is the

percentage of subjects correctly assigned to the clinical diagnosis in

both samples. As it was expected that younger AD patients and

older control subjects tend to be misclassified using SVM, AD

patients and control subjects, which were misclassified with and

without age correction, were compared to each other in their

mean age using an independent samples t-test with a significance

threshold of p,0.05 (one-tailed). Additionally, to enable an

accurate evaluation of potential statistical differences in differen-

tiation accuracies when using age-corrected compared to uncor-

rected data the split half procedure was repeated 60 times by

randomly permuting the subjects to the training and testing groups

and calculating the SVM classification accuracies for both, age-

corrected and uncorrected data. The obtained distributions of

accuracy values were compared to each other using an

independent samples t-test with a significance threshold of

p,0.05.

VBM
To evaluate the effect of suggested age correction onto VBM

analyses, differences between groups of AD patients (Table 2) and

the group of healthy control subjects were assessed using voxel-wise

independent samples t-tests. Thereby, pair-wise group comparisons

with the control group were performed using only 25 youngest AD

patients, 25 oldest AD patients or 25 AD patients fitting the mean of

the control group. All three AD groups were subgroups of the AD

group used for SVM comparison. For all comparisons the t-test was

calculated three times: with age included as covariate, without age

as covariate and using age-corrected GM images. Sex was included

as covariate in all t-tests. Further, we wanted to evaluate if the

proposed method for age correction leads to an over- or

underestimate of atrophy in one of the AD groups. For this

purpose, the control group used for SVM was split into three groups

of 25 subjects each. The three groups of control subjects (Table 2)

were matched for age to the three groups of AD patients.

Subsequently, three VBM analyses using age-uncorrected GM

images were performed comparing each of the AD groups to the age

matched sample of control subjects. For these comparisons, age was

additionally included as covariate. Atrophic regions were investi-

gated with a threshold of p,0.001 (uncorrected) at the voxel level

and p,0.05 (FWE corrected for multiple comparison) at the cluster

level. The first threshold detects all voxels in the brain exceeding the

probability of 0.001 for being significantly different between both

groups. The second threshold removes all clusters smaller than a

cluster size expected by chance (accounted for the number of

comparisons) which additionally decreases the amount of false

positive errors. Additionally, to evaluate age-related changes in

healthy control subjects, voxel-wise correlations between GM

densities and age were calculated using only control subjects, with

sex included as covariate.

Further, as the model obtained using the age correction

approach described above does not fulfill the criteria for a strict

Table 1. Subject group characteristics for SVM.

Controls AD t-test(df,t,p)

Number 79 80 -

Male/Female 41/38 40/40 -

Age (years6SD) 75.864.9 75.7.167.0 157,0.1,0.89

MMSE (score6SD) 28.761.7 23.662.2 157,16.6,,0.001

CDR (score6SD) 0.0460.13 0.8160.24 157,616.4,,0.001

AD Alzheimer’s disease, CDR Clinical Dementia Rating, MMSE Mini Mental State
Examination, SD standard deviation.
doi:10.1371/journal.pone.0022193.t001
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cross-validation because the model estimated on control subjects is

applied to the same data which were used to train the model we

repeated the VBM and SVM analyses using a stricter cross-

validation. Thereby, the control group was split into two equally

sized subgroups. The age effect was estimated in both subgroups

independently. The obtained betas for age from subgroup 1 were

applied to data of subgroup 2 and vice versa. Additionally, to

avoid a now possible confound in the AD group as in the control

group two models have now been applied to detrend for age while

in the AD only one model was used, we also split the AD group

randomly into two equally sized subgroups. A model which has

been estimated from only one of the control subgroups was applied

on subgroup 1 from AD. Correspondingly, for the 2nd AD

subgroup the second model from the other control subgroup was

used. This proceeding insures that the model used to detrend the

data for age is only applied on data which have not been seen by

the model before. For the VBM comparisons using this strict cross-

validation an additional covariate was added containing the

information if model 1 or 2 was used for the regression.

Statistical analysis
Group comparisons for age and severity of dementia as

measured by the MMSE (Mini Mental State Examination, [19])

and CDR (Clinical Dementia Rating Scale, [20]) between groups

used for SVM were performed using independent samples t-tests

(two-tailed). For the four groups used for VBM comparison on

age-corrected data (all control subjects, young AD, mean AD and

old AD), age, MMSE and CDR were compared by conducting

ANOVAs (analyses of variance). If an ANOVA revealed a

significant between-group effect, a Bonferroni t-test was calculated

with a significance threshold of p,0.05 (Bonferroni corrected for

multiple comparisons, two-tailed). The six groups used for pairwise

age-matched VBM comparisons (young controls vs. young AD,

mean controls vs. mean AD, old controls vs. old AD) were

compared to each other in age, MMSE and CDR using

independent samples t-tests.

Group differences for both, VBM and SVM groups, regarding

sex were evaluated using a chi-square test for independent

samples. The statistical analysis was performed using the

commercial software package SPSS 17.0 (http://www.spss.com/

statistics/).

Results

Clinical characteristics
The chi-square test for independent samples did not reveal a

statistical differences in sex between groups used for SVM

[x2(1) = 0.06;p = 0.811]. MMSE scores and CDR scores differed

significantly between AD patients and control subjects used for

SVM (Table 1). AD patients and control subjects used for SVM

did not differ in age.

There was no significant difference in sex between the three age

groups of AD patients and the group consisting of all control

subjects [x2(3) = 2.07;p = 0.56] or between the three age groups of

AD patients and the three age-matched groups of control subjects

(Table 2) [x2(5) = 3.44;p = 0.63] used for VBM comparisons.

The ANOVA revealed significant differences in MMSE

[F(150) = 85.99;p,0.001] and CDR [F(150) = 200.32;p,0.001]

scores between the three AD groups and the group consisting of all

control subjects used for VBM. The post-hoc tests revealed no

differences in the mean MMSE and CDR scores between the

three groups of dementia patients, indicating a similar severity of

dementia syndrome [young AD vs. mean AD: t(48) = 0.0;p = 1.0;

young AD vs. old AD: t(48) = 1.0;p = 1.0; mean AD vs. old AD:

t(48) = 1.0;p = 1.0]. All three groups of AD patients had signifi-

cantly lower MMSE scores compared to the control group [young

AD vs. control group: t(87) = -8.1;p,0.001; mean AD vs. control

group: t(87) = 28.1;p,0.001; old AD vs. control group:

t(87) = 29.8;p,0.001]. As expected, the ANOVA revealed a

significant group difference in age between groups used for VBM

comparisons. In post-hoc tests, all three groups of AD patients

differed significantly from each other [young AD vs. mean AD:

t(18) = 28.1;p,0.001; young AD vs. old AD: t(18) = 215.0;

p,0.001; mean AD vs. old AD: t(18) = 226.6; p,0.001]. Young

AD patients [t(87) = 27.6; p,0.001] and old AD patients [t(87) =

29.8; p,0.001] differed significantly from the control group.

There was no significant difference in age between mean AD

patients and control subjects [t(87) = 20.1; p = 1.0].

For the comparison of age-matched control subjects and AD

patients (young controls vs. young AD, mean controls vs. mean AD,

old controls vs. old AD) independent samples t-tests did not reveal

any significant differences in age [young controls vs. young AD:

t(48) = 1.55;p = 0.13, mean controls vs. mean AD: t(48) = 0.0,p = 1.0,

old controls vs. old AD: t(48) = 21.36;p = 0.18]. As expected

MMSE [young controls vs. young AD: t(48) = 7.22;p,0.001, mean

controls vs. mean AD: t(48) = 9.86,p,0.001, old controls vs. old AD:

t(48) = 10.48;p,0.001] and CDR [young controls vs. young AD:

t(48) = 12.41;p,0.001, mean controls vs. mean AD: t(48) =

13.3,p,0.001, old controls vs. old AD: t(48) = 15.32;p,0.001]

scores differed significantly for all comparisons of the age-matched

groups.

SVM results
Applying SVM to uncorrected data resulted in a high overall

classification accuracy of 83.0%, which was calculated using the

split half procedure. However, as expected, there was a significant

difference in age between misclassified control subjects and AD

patients (Figure 1). Misclassified AD patients were significantly

Table 2. Subject group characteristics for VBM.

Young Controls Mean Controls Old Controls Young AD Mean AD Old AD ANOVA (df,F,p)

Number 25 25 25 25 25 25 -

Male/Female 15/10 12/13 9/16 12/13 12/13 14/11 -

Age (years6SD) 70.763.1 75.761.5 81.162.6 69.263.7 75.661.3 82.263.0 5,87.8,,0.001

MMSE (score6SD) 28.462.4 28.661.2 28.961.1 23.862.1* 23.862.1* 23.562.3* 5,48.3,,0.001

CDR (score6SD) 0.0460.1 0.0460.1 0.0460.1 0.7660.3* 0.860.3* 0.8660.2* 5,112.0,,0.001

*significant difference compared to the group of age-matched control subjects. AD Alzheimer’s disease, ANOVA analysis of variance, CDR Clinical Dementia Rating,
MMSE Mini Mental State Examination, SD standard deviation.
doi:10.1371/journal.pone.0022193.t002
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younger than misclassified control subjects [t(25) = 2.1;p = 0.02]

indicating that age has a substantial effect onto classification

outcome. When SVM was applied to age-corrected data, the

overall classification accuracy further increased to 85.0%.

Additionally, there was no further difference in mean age between

misclassified AD patients and control subjects [t(22) =

20.69;p = 0.75].

Permutation statistic using the split half method revealed a

mean classification accuracy of 81.9% using uncorrected data.

Applying age-correction prior to SVM resulted in a significantly

improved mean classification accuracy of 83.2% [t(118) = 2.7;

p = 0.004] (Figure 2). The split half accuracy using the data

obtained after the strict cross-validation (by applying an age

correction model on data which have not been used to train the

model) revealed a similar improvement from 82.4% using

uncorrected data to 84.3% after age-correction for the same split

half groups.

VBM results
The comparison of the three groups of AD patients differing in

age with the same group of control subjects without including age

as covariate resulted in a differential qualitative and quantitative

pattern of GM atrophy in all three groups (Figure 3 and 4). There

were no voxels in the young AD group that exceeded the

significance threshold. In the mean AD group, differences relative

to control subjects were detected in the right hippocampus and in

the right middle and inferior temporal lobe. Old AD patients

showed bilaterally an extensive frontotemporal, cingulate, hippo-

campal and thalamic atrophy pattern compared to control

subjects. Including age as covariate into VBM analyses resulted

in a substantially different atrophy pattern. Young AD patients

showed a bilateral atrophy in the hippocampus and middle and

inferior temporal lobe. For mean AD patients, the atrophy pattern

detected was very similar to the pattern detected without including

age as covariate, with GM atrophy in the right hippocampus and

in the right middle and inferior temporal lobe. However, there

were no significant changes detected for old AD patients when age

was included as covariate.

Applying age correction prior to statistical evaluation using

VBM resulted in the detection of substantial differences between

young AD patients and healthy control subjects, in particular

parietotemporal, frontal, cuneal and hippocampal GM atrophy. A

comparison of mean AD patients with control subjects after age

correction resulted in a highly similar pattern of atrophy compared

to VBM using uncorrected data. For old AD patients, GM atrophy

after age correction were observed in the right hippocampus and

in the right polar region of the temporal lobe. The comparison of

the three different age groups of AD patients with age-matched

control subjects revealed a similar pattern of atrophy extension to

that detected using age-corrected data with younger AD patients

showing the strongest GM atrophy and older AD having

substantially less pronounced atrophy compared to age-matched

control subjects. In these older groups a small gender imbalance

might have partially biased the statistical results in this group

comparison.

VBM results using the data obtained after the strict cross-

validation models for age correction did not differ substantially

from the results obtained using a single model to detrend for age.

Voxel-wise correlations between age and GM atrophy in

healthy control subjects revealed an age-related decrease

(Figure 5a) in bilateral cingulate, temporal and hippocampal

regions. A further age-related decrease was observed in the right

prefrontal cortex.

Discussion

When comparing imaging data of groups of patients with

healthy control subjects to investigate disease-related changes,

control subjects are usually selected to match the patient groups in

possible confounding variables that are expected to have an

impact onto imaging data. In the further statistical evaluation,

possible confounding variables are then additionally included as

Figure 1. Age characteristics of missclassified subjects using SVM. Mean age of misclassified subjects in AD and control group using SVM
classification with (middle two bars) and without (right two bars) age correction priorly applied. Left two bars represent the mean of all subjects in
each group used for SVM. Error bars represent the standard errors of mean. AD Alzheimer’s disease, SVM support vector machine classification,
* significant difference between conditions.
doi:10.1371/journal.pone.0022193.g001
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covariates. This straightforward procedure, although sufficient to

exclude major effects of possible confounding variables, is not

always applicable in clinical studies for several reasons.

In this study, we propose a methodical approach to control for

effects of confounding variables like age in imaging data prior to

univariate or multivariate statistical evaluation by calculating

linear regression models. This is approach is similar to a method

applied in some earlier studies [21],[22]. In these studies a linear

regression model was applied on regional volumes and on total

brain volume to control for the effect of intracranial volume prior

to statistical evaluation. Thereby, age-related effects on MRI data

are estimated voxel-wise using only healthy control subjects to

calculate the regression coefficient. In the second step, the amount

of GM atrophy explained by the age factor is removed from all

data on a single subject level. To investigate the effect of the

proposed age-correction method, we compared VBM and SVM

results for differentiation of AD patients and healthy control

subjects, with and without age correction applied prior to statistical

evaluation.

SVM classification using GM values without correction resulted

in very high accuracy for differentiation of AD patients and

healthy control subjects, consistent with results of previous studies

applying this method [18]. However, applying SVM without prior

age correction resulted in a significant misclassification of younger

AD patients and older control subjects indicating that age has a

major impact onto differentiation accuracy using SVM. Applying

age correction before SVM further increased the classification

accuracy. In addtion, the two groups of misclassified patients and

control subjects did not further show a difference in mean age.

Although an increase of only about 2% might appear not to be

noteworthy, when dealing with already very high accuracies it is

more important to decrease the percentage of misclassified subjects

which is in our case 17% (100%–83%: e.g. when already obtaining

accuracies of 98% an additional improvement of only 1% to 99%

would mean that the amount of misclassified subjects would

Figure 3. Visualization of VBM results for different age groups. GM atrophy projected onto an averaged brain detected with VBM in three
groups of AD patients (columns) differing in age compared to the same group of healthy control subjects without age as covariate (upper row), with
age as covariate (middle row) and after the proposed age correction (lower row). Color bars indicate the t-values. Images are thresholded with
p = 0.001 on voxel level (uncorrected) and p = 0.05 on cluster level (FWE corrected). AD Alzheimer’s disease, VBM voxel-based morphometry.
Anatomical convention. Radiological convention.
doi:10.1371/journal.pone.0022193.g003

Figure 2. Results of permutation statistics using SVM. Results of
permutation statistics using SVM split half cross-validation on
uncorrected (red) and age-corrected data (blue). Observed frequency
is the cumulative number of accuracies observed for a specific accuracy
range.
doi:10.1371/journal.pone.0022193.g002
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decrease by 50% which is clinically important despite the fact that

the accuracy is increased only by 1%). This error rate decreased to

15% after applying age correction which means a decrease by

12% (taking the initial 17% as baseline) in the amount of

misclassified subjects which makes the improvement highly

relevant for clinical application.

The improved classification accuracy after age correction and

the absence of age differences between misclassified AD patients

and control subjects after age correction indicate that some

subjects were misclassified due to their large deviation from the

mean age of the corresponding group. In younger AD patients,

smaller age-related changes might have covered the disease-related

effect while in older healthy control subjects, the normal age-

related GM atrophy might have been misrecognized as a disease-

specific alteration.

The results of VBM comparisons complement and provide

further support for this interpretation. Here, three groups of AD

patients differing in age were compared to the same group of

control subjects. Generally, results confirmed previously reported

regional atrophy patterns for AD patients [23]. When age was not

included as covariate, old AD subjects showed an extensive

atrophy in frontotemporal, cingulate, thalamic and hippocampal

regions. In contrast, young AD patients showed substantially less

extended disease-specific reductions. However, when age was

correlated with GM changes in healthy control subjects, similar

regions to those detected in old AD patients showed an age-related

GM atrophy. Calculating an overlay of atrophy regions detected

in old AD patients without including age as covariate and regions

showing a normal age related decline resulted in a large overlap of

changes detected in both analyses (Figure 5b). This result indicates

that as expected, changes detected in old AD patients whithout

including age as a covariate substantially overestimate the real

amount of atrophy in this patient group. The opposite effect was

observed when age was included as covariate – less disease-related

GM atrophy was detected in old AD patients. Young AD patients

now showed a strong decrease in GM densities in hippocampal

and inferior and middle temporal regions. The amount of GM

atrophy was comparable in young and mean AD patiens.

Applying the proposed age correction method prior to VBM

analyses substantially improved the detection of GM atrophy in

young AD patients. This group showed the most extensive age-

corrected GM atrophy compared to mean AD and old AD

patients. VBM performed after age correction also detected GM

atrophy in old AD patients in hippocampal, inferior temporal,

parietal and frontal regions although these were less extensive than

in the two other groups of AD patients. For the mean AD group,

GM atrophy detected without age as covariate, with age as

covariate and with age correction prior to statistical evaluation did

not show any substantial qualitative or quantitative differences.

Additionally, the quantative and qualitative pattern detected using

age-corrected data was highly similar to differences detected in

comparisons of age-matched AD patients and control subjects.

This similarity indicates that the application of the proposed age

correction method provides a sufficient control for the effect of

possible covariates like age and therefore enables a direct

comparison of clinical groups with substantial initial differences

in potential confounding variables. The higher cluster extension

for all comparisons using age-corrected data compared to age-

matched comparisons are rather a statistical artifact resulting due

to different group sizes used for these comparisons. Further, the

results obtained using age-corrected data are in line with previous

studies indicating that less severe disease-related pathology is

required with increased age to induce a similar decline in cognitive

performance [11],[12]. Furthermore, as all three groups of AD

patients showed a similar stage of cognitive impairment, the

amounts of atrophy detected in all three groups in our study

suggest a negative linear relationship between age and GM

atrophy which are sufficient to induce similar cognitive impair-

ment.

However, some very important aspects have to be considered

prior to application of the proposed method to control for possible

confounding variables in VBM or SVM studies. One of these

major points is the group size used for the comparisons. On the

one hand, the group size of the control group used for the

calculation of the regression coefficients shoud be sufficiently large

to provide a robust estimate of age-related changes in the total

population. On the other hand, the application of the pre-

regression for age does change the degrees-of-freedom in the final

statistical model for VBM studies which might lead to differences

in results when using smaller sample sizes. Therefore, studies using

lower sample sizes should take care or account for these altered

degrees-of-freedom when using the proposed method.

Figure 4. VBM results for different age groups. VBM results for the comparison of three groups of AD patients differing in age compared to the
same group of control subjects without age as covariate (upper two diagrams), with age as covariate (middle two diagrams) and after the proposed
age correction (lower two diagrams). Diagrams on the left represent the number of voxels detected with VBM in the three groups of AD patients.
Diagrams on the right represent the peak t-values of clusters exceeding the threshold (p = 0.001 uncorrected on voxel level and p = 0.05 FWE
corrected on cluster level) detected in each group of AD patients. AD Alzheimer’s disease, FWE family-wise error, VBM voxel-based morphometry.
doi:10.1371/journal.pone.0022193.g004

Figure 5. Effect of healthy aging on VBM results in AD.
a) Regions showing an age-related GM atrophy in healthy control
subjects detected in a correlational analysis using VBM (p = 0.001
uncorrected on voxel level and p = 0.05 FWE corrected on cluster level)
plotted onto an averaged brain. Color bar represents the t-values for
the correlation. b) Overlap of regions (in red) showing GM atrophy in
old AD patients compared to the control group, without age included
as covariate, and regions detected in the correlational analysis showing
an age-related GM decline in the control group. Results are plotted
onto an averaged brain. Only regions which exceeded the significance
threshold (p = 0.001 uncorrected on voxel level and p = 0.05 FWE
corrected on cluster level) in both analyses are shown. AD Alzheimer’s
disease, FWE family-wise error, GM grey matter, VBM voxel-based
morphometry. Radiological convention.
doi:10.1371/journal.pone.0022193.g005
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A further important point which has to be considered prior to

application of the proposed method is the potential mutual

correlation between the variable used for pre-regression and other

covariates used for subsequent analysis. In our study we only used

sex as an additional covariate in the subsequent VBM analysis.

Furthermore, it has been shown by Good et al. [1] that the

interaction between age and sex does not reach significance even

in a substantially larger cohort. Therefore, we ignored this

potential mutual effect in our study. Nonetheless, when applying

the proposed method using any other covariates in the subsequent

analysis the potential effect between these covariates and age (or

any other variable for pre-regression) has to be carefully

investigated. A possible option to account for mutual correlation

between the covariates would be that a more complex pre-

regression model is used including more than one covariate in a

multiple linear regression model. However, this option has first to

be carefully investigated.

Finally, the proposed method is not meant to replace classical

VBM analyses which simply include possible covariates into the

design matrix. The proposed option is rather meant for the studies

when matching is not possible for any reason, as might be the case

for example when comparing patient groups differing in more

than one factor. Another option for the application of the

proposed method would be a pre-regression for possible

confounding effects prior to application of SVM classification.

Conclusion and perspectives
In our study, we suggest an easily applicable approach providing

the possibility to compare groups of subjects differing in specific

confounding variables or to control for the effect of confounding

variables in different imaging modalities in a separate step before

multivariate pattern classification algorithms are applied. Using

age as an example of a confounding variable in comparisons of

patients with AD and healthy control subjects, we showed that

applying the proposed method improves the between-group

classification using SVM and the detection of univariate

differences using MRI data in groups of AD patients of differing

age. However, the proposed approach is not limited to age or to

between-group evaluation. It can be easily applied at a group or

single subject level to remove effects of any other confounding

variables which might affect the statistical evaluation. However,

the proposed method is not meant to replace the usual statistical

approach of including possible confounding variables directly into

the statistical analyses of VBM studies. If matching is easily

possible which is usually the case in studies investigating healthy

volunteers common statistical methods should be prefered.
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