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Abstract: We consider Seiberg electric-magnetic dualities for 4d N = 1 SYM theories
with SO(N ) gauge group. For all such known theories we construct superconformal
indices (SCIs) in terms of elliptic hypergeometric integrals. Equalities of these indices for
dual theories lead both to proven earlier special function identities and new conjectural
relations for integrals. In particular, we describe a number of new elliptic beta integrals
associated with the s-confining theories with the spinor matter fields. Reductions of
some dualities from S P(2N ) to SO(2N ) or SO(2N + 1) gauge groups are described.
Interrelation of SCIs and the Witten anomaly is briefly discussed. Possible applications
of the elliptic hypergeometric integrals to a two-parameter deformation of 2d conformal
field theory and related matrix models are indicated. Connections of the reduced SCIs
with the state integrals of knot theory, generalized AGT duality for (3 + 3)d theories,
and a 2d vortex partition function are described.
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1. Introduction

Gauge field theories play a crucial role in the modern theory of elementary particles. A
generalization of the notion of electric-magnetic duality from electrodynamics to non-
abelian gauge theories was suggested in the fundamental work of Goddard et al. [55]. In
the asymptotically free theories the spectrum of elementary excitations in the high energy
region is found from the free lagrangian. In the infrared region the interaction becomes
strong and one has to pass to the description in terms of collective degrees of freedom (in
the usual quantum chromodynamics one should describe formation of the hadrons out
of quarks and gluons). The electric-magnetic duality relates these two energy scales and
is also referred to as the strong-weak coupling duality transformation. To the present
moment consistent consideration of such transformations in 4d space-time has been
given only in the maximally extended N = 4 [93], N = 2 [108], and N = 1 [105,106]
supersymmetric field theories. In comparison to the dualities for N > 1 there exists a
whole zoo of different Seiberg dualities for N = 1 SYM theories (see, e.g., surveys
[69,110]). The problem of their classification using some group-theoretical approach is
still open. For a survey of the current status of development of supersymmetric gauge
theories, see [107].

Highly nontrivial generalizations of the Witten index called superconformal indices
(SCIs) were proposed recently by Kinney et al [78] and Römelsberger [101,102]. SCIs
count BPS states protected by one supercharge and its (superconformal) conjugate which
cannot be combined to form long multiplets. They can be considered as twisted partition
functions in the Hilbert space of BPS states which are determined by specific matrix
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integrals over the classical Lie groups. SCI is a conformal manifold invariant [54] which
does not change under the marginal deformations [102,121].

In this paper we continue a systematic study of electric-magnetic dualities for N = 1
SYM theories and s-confining theories initiated in [118]. We use for that the theory
of elliptic hypergeometric integrals (EHIs) developed by the first author in [112–114].
The crucial observation on the coincidence of SCIs with such integrals was done by
Dolan and Osborn in [37]. In a sequel of papers [117–122,126] we analyzed known
supersymmetric dualities, described deep relations between them and the properties of
EHIs, and, using these relations, discovered many new dualities. Related questions were
considered also in [47,48].

SCI techniques provide currently the most rigorous mathematical justification of
N = 1 supersymmetric dualities [105,106], and serve as a very powerful tool for getting
new insights. For instance, it has led to N = 1 dualities lying outside the conformal
window [120], it is useful for consideration of the AdS/CFT correspondence for gauge
groups of infinite [78,85,86] and finite [87,121] rank. It can be applied to theories which
are difficult to treat by usual physical tools [126]. Another interesting fact is that 4d SCIs
can be reduced to 3d partition functions [40,57,58,70,73] yielding 3d dualities [38,50,
64]. Recently in [88] SCIs with the half-BPS superconformal surface operator have been
studied. EHIs are connected with the relativistic Calogero-Sutherland type models where
they describe either special wave functions or the normalizations of particular wave
functions [115]. In [119] such a connection was conjectured to extend to all SCIs. EHIs
provide a unification of known solvable models of statistical mechanics on 2d lattices
[8,117]. In [117] it was shown that SCIs of the simple gauge group SYM theories
have the meaning of partition functions of elementary cells of 2d integrable lattice
models, and corresponding full partition functions describe SCIs of particular quiver
theories. In this picture, the Seiberg duality has the meaning of a generalized Kramers-
Wannier duality transformation for partition functions. As shown in [122], SL(3, Z)-
modular transformation properties of EHIs are responsible for ’t Hooft anomaly matching
conditions in dual theories.

SCI techniques apply not only to 4d field theories, but also to 3d models [7,65,77,80].
In [80] the equality of SCIs of some 3d dual theories with the U (1) gauge group was
proved rigorously for N f = 1, 2 flavors, and in [72] this result was generalized to
arbitrary N f . The analytical proof of the coincidence for partition functions of some 3d
quiver N = 4 mirror symmetric theories was considered in [10].

There are several different ways of computing SCIs. The localization method was
used by Moore, Nekrasov and Shatashvili for computing the principal contribution to
the Witten index of supersymmetric theories expressed as some contour integrals over
the SU (N ) group [84]. Later this approach was generalized by Nekrasov and Shadchin
[92] for solving N = 2 supersymmetric field theories with symplectic and orthogonal
gauge groups. For N = 1 SYM theories Römelsberger [101,102] derived SCIs using
the operator approach to free superconformal field theories (SCFTs) and suggested that
SCIs for Seiberg dual theories coincide. For the asymptotically free theories in the
ultraviolet region this is formally justified. In Kinney et al. [78], derived SCI for N = 4
U (N )-SYM theory using the representation theory for free SCFTs [35] and targeting
mostly the AdS/CFT correspondence. SCIs for extended superconformal field theories
can be derived directly from the partition functions by imposing some restriction on
the parameters [12]. In [89], the localization technique was used for derivation of SCI
for N = 4 SYM theory. In [90,91,94], this method was used for computing partition
functions of N = 2 SYM theories. For related questions concerning counting the BPS
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operators, see also [9,36,45]. One can get N = 2 and N = 4 SYM theories out of
N = 1 theories by adjusting the matter fields content and superpotentials. Analogously,
SCIs of extended theories can be obtained from N = 1 SCIs by appropriate fitting of
the set of representations [119].

In this paper we are investigating SCIs for 4d N = 1 theories with orthogonal
gauge groups. The most interesting SO(N )-dualities arise from the matter fields in
spinor representation. Dualities without such matter fields can be obtained by reductions
from the S P(2N )-gauge group cases. Additionally, we outline possible application of
some EHIs (particular 4d SCIs) to a hypothetical elliptic deformation of 2d CFT. As
an important relation between 4d and 3d field theories, we show that reductions of
4d SCIs to the hyperbolic q-hypergeometric level yield the state integrals of knots
[29,31,33,60,61]. Further reduction of a particular hyperbolic q-hypergeometric integral
emerging in this way is shown to give a 2d vortex partition function.

By definition SCIs count gauge invariant operators which saturate the BPS bounds
for short and semi-short multiplets. N = 1 SCFTs are based on the SU (2, 2|1) space-
time symmetry group which is generated by the following set of operators: Ji , J i —the
generators of two SU (2) subgroups forming the 4d Lorentz group SO(3, 1), translations,
Pμ, μ = 1, 2, 3, 4, special conformal transformations, Kμ, the dilations, H , and also the
U (1)R-group generator R. Apart from these bosonic generators there are supercharges
Qα, Qα̇ with α, α̇ = 1, 2 and their superconformal partners Sα, Sα̇ . The full set of
commutation relations for these operators can be found, for instance, in [119]. Taking a
distinguished pair of intrinsically superconformal charges [101], for example, Q = Q1
and Q† = −S1, one has

{Q, Q†} = 2H, Q2 = (Q†)2 = 0, H = H − 2J 3 − 3R/2. (1.1)

In this case the superconformal index is defined by the matrix integral

I (p, q, fk) =
∫

G
dμ(g) Tr

(
(−1)F pR/2+J3qR/2−J3 e

∑
a ga Ga

e
∑

k fk Fk
e−βH)

,

R = R + 2J 3, (1.2)

where F is the fermion number operator and dμ(g) is the invariant measure of the gauge
group G. We explicitly singled out the integration over the gauge group, though most
often it is assumed to be a part of the gauge invariant trace. To calculate the index one
should not consider the whole space of states, but only zero modes of the operator H
because contributions of states not annihilated by the supercharge Q cancel each other.
The chemical potentials ga, fk correspond to the gauge G and flavor F symmetry group
generators Ga and Fk , respectively.

4d SCI coincides with the supersymmetric index on the S3 × S1 manifold. For
the latest discussion of such space-time manifestations, see [46,107]. According to the
Römelsberger prescription (in the form suggested in [37]) one should first compute the
single particle index, given by the following general formula:

ind(p, q, z, y) = 2pq − p − q

(1 − p)(1 − q)
χad j (z)

+
∑

j

(pq)r j χRF , j (y)χRG , j (z)−(pq)1−r j χR̄F , j (y)χR̄G , j (z)

(1− p)(1−q)
. (1.3)

Here the first term describes the contribution of gauge fields belonging to the adjoint
representation of group G; the sum over j corresponds to the chiral matter superfields
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� j transforming as the gauge group representations RG, j and the flavor symmetry group
representations RF, j with 2r j being their R-charges. The functions χad j (z), χRF , j (y)

and χRG , j (z) are the characters of representations with z and y being the maximal torus
variables of G and F groups, respectively. All the characters needed for this work are
explicitly listed in Appendix A. Originally [37,102] the index was expressed in terms
of variables x, t related to our bases as p = t x, q = t x−1. We remark that as a result of
the change of variables there appears a sign ambiguity, the term (pq)r j in (1.3) can be
written as (±√

pq)R j , where R j are R-charges of the fields, and this may influence the
balancing condition for integrals below.

To obtain the full superconformal index, the single particle states index (1.3) is
inserted into the “plethystic” exponential which is then averaged over the gauge group:

I (p, q, y) =
∫

G
dμ(z) exp

( ∞∑
n=1

1

n
ind

(
pn, qn, zn, yn))

. (1.4)

It appears that such matrix integrals are expressed in terms of the new special functions of
mathematical physics known as elliptic hypergeometric integrals which were discovered
in [112–114] (see also [116] for a general survey). Their simplest representative – the
exactly computable elliptic beta integral [112] is the top level known generalization of
the Euler beta integral, the Askey-Wilson and Rahman q-beta integrals [3]. As found
in [37], it describes the confinement phenomenon for 4d N = 1 SYM theory with
SU (2) gauge group and 6 quarks which is dual to the theory of free baryons forming
the absolutely antisymmetric tensor representation of the flavor group SU (6). On the
base of a very large number of explicit examples listed in [119], we conjectured that to
every supersymmetric duality there corresponds either an exact integration formula for
elliptic beta integrals or a nontrivial Weyl group symmetry transformation for the higher
order EHIs.

One important remark is in order. The described index computation algorithm does
not impose in advance any constraint on the fugacities, whereas the EHI identities used
for establishing equalities of SCIs require neat fitting of parameter constraints for their
existence (see below). It would be interesting to find the arguments leading to needed
constraints for fugacities directly in formulas (1.3) and (1.4).

This paper can be considered as the second part of the work [119] since we cover
several subjects skipped in it. However, there are still some interesting questions touched
in [119], but not included in this paper. In particular, we do not discuss SCIs of quiver
theories which have attracted recently some interest in [22,117].

2. Reduction of N = 1 Dualities from Symplectic to Orthogonal Gauge Groups

2.1. Dualities without spinor matter. Let us show that known N = 1 dualities with
SO(n) gauge group without matter in the spinor representation can be derived as conse-
quences of known S P(2N ) gauge group dualities. At the level of SCIs this implication
is achieved by particular restriction of the values of a number of parameters in the cor-
responding EHIs , as observed first by Dolan and Osborn [37] for the simplest cases. In
the present section we discuss such reductions in more detail. The spinor matter theories
will be considered later on.

We start from N = 1 SYM theory with S P(2N ) gauge group and 2N f quarks in
the fundamental representation having the global symmetry group SU (2N f ) × U (1)R .

The matter fields are described in the table below, where we indicate their representation
types for the gauge and flavor groups and provide R-charges
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S P(2N ) SU (2N f ) U (1)R

Q f f 1 − (N + 1)/N f

In this and all other tables below we skip the vector superfield V (or its dual partner
Ṽ , which is absent in confining theories) described by the adjoint representation of G
and singlets of the non-abelian part of the flavor group, and having trivial hypercharges
for the abelian global groups.

The dual magnetic theory constructed by Intriligator and Pouliot [67] has the same
flavor group and the gauge group G = S P(2Ñ ), where Ñ = N f − N − 2, with the
matter field content described in the table below

S P(2Ñ ) SU (2N f ) U (1)R

q f f (N + 1)/N f

M 1 TA 2(Ñ + 1)/N f

where f ( f ) denotes (anti)fundamental representation and TA denotes the antisymmetric
tensor of the second rank.

The conformal window for this duality is 3(N + 1)/2 < N f < 3(N + 1); it emerges
from the demand that both dual theories are asymptotically free in the one-loop approx-
imation. The Seiberg electric-magnetic duality at the infrared fixed points of these the-
ories, which is not proven rigorously yet, had the following justifying arguments [106]:

• the ’t Hooft anomaly matching conditions are satisfied. They were shown in [122] to
follow from the SL(3, Z)-group transformation properties of EHIs;

• matching reduction of the number of flavors 2N f → 2(N f − 1). Integrating out
2N f , (2N f − 1)th flavor quarks by adding the mass term in electric theory results in
Higgsing the magnetic theory gauge group with decoupling of a number of meson
fields. For SCIs this is realized by restricting a pair of parameters, t2N f t2N f −1 = pq
[118,119];

• matching of the moduli spaces and gauge invariant operators in dual theories. This
information is believed to be hidden in the topological meaning of SCIs.

We need the following EHI on the BCn root system

I (m)
n (t; p, q) = (p; p)n∞(q; q)n∞

2nn!

×
∫

Tn

∏
1≤i< j≤n

1

�(z±1
i z±1

j )

n∏
j=1

∏2(m+n+2)
i=1 �(ti z

±1
j )

�(z±2
j )

n∏
j=1

dz j

2π iz j
, (2.1)

where T is the unit circle with positive orientation, all |ti | < 1,
∏2(m+n+2)

i=1 ti = (pq)m+1,

(z; q)∞ =
∞∏

i=0

(1 − zqi ), |q| < 1,

is the standard infinite q-shifted factorial [3] and

�(z) ≡ �(z; p, q) =
∞∏

i, j=0

1 − z−1 pi+1q j+1

1 − zpi q j
, |p|, |q| < 1, (2.2)
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is the elliptic gamma function [116]. We use the convention

�(t1, . . . , tk) = �(t1) . . . �(tk), �(t z±1) = �(t z)�(t z−1).

Then the algorithm for construction SCIs described above yields for the electric theory

I S P(2N )
E = I

(N f −N−2)

N (t1, . . . , t2N f ; p, q) [37,119]. The dual magnetic theory has SCI
of the form

I S P(2Ñ )
M =

∏
1≤i< j≤2N f

�(ti t j ) I (N )
N f −N−2((pq)1/2/t1, . . . , (pq)1/2/t2N f ; p, q).

Römelsberger’s conjecture on the equality of SCIs for dual theories I S P(2N )
E = I S P(2Ñ )

M
was proven in [37] on the basis of the symmetry transformation for integrals established
in [99]. For N = 1 the full symmetry group of SCI is W (E7). The key transformation
generating this group was found earlier in [114]. Its physical consequences for multiple
dualities have been studied in [118] and the superpotentials for such theories were
investigated later in [76]. Altogether the results of [37,118,119] gave a new powerful,
most rigorous from the mathematical point of view confirmation of the Seiberg duality,
complementing the tests mentioned above.

It should be stressed that this and all other equalities of SCIs of dual theories are true
or supposed to be true only if the values of parameters in all integrals guarantee that only
sequences of poles of the integrands converging to zero are located inside the contour of
integration T (otherwise one should use the nontrivial analytical continuation procedure
for identities to be true in other regions of parameters).

Consider now the Seiberg duality for N = 1 SYM theories with orthogonal gauge
group [106]. The electric theory matter fields are described in the following table:

SO(N ) SU (N f ) Z2N f U (1)R

Q f f k
N f −N+2

N f

and for the magnetic theory one has

SO(Ñ ) SU (N f ) Z2N f U (1)R

q f f −k N−2
N f

M 1 TS 2k 2
N f −N+2

N f

where TS denotes the absolutely symmetric tensor of second rank and Ñ = N f − N + 4.
The conformal window [106] for this duality has the form 3(N −2)/2 < N f < 3(N −2),

which guarantees existence of the non-trivial infrared fixed points (one should be careful
with the use of such windows since there are examples [120] of dualities lying outside
them).

In these tables we explicitly indicated existence of the discrete Z2N f symmetry
[68,106]. In order to take it into account in the construction of SCIs we modify the
Römelsberger prescription for orthogonal groups. Introduce the single particles states
index
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ind(p, q, z, y, xk) = 2pq − p − q

(1 − p)(1 − q)
χad j (z)

+
∑

j

xk(pq)r j χRF , j (y)χRG , j (z) − (pq)1−r j χR̄F , j (y)χR̄G , j (z)/xk

(1 − p)(1 − q)
, (2.3)

where xk = eπ ik/N f , k = 0, . . . , 2N f − 1, and apply the general formula (1.4) with the
powers xn

k in the plethystic exponential.
Orthogonal groups SO(n) are qualitatively different for even n = 2N (root system

DN ) and odd n = 2N + 1 (roots system BN ). SCIs in the electric theory take the form

I SO(2N )
E = (p; p)N∞(q; q)N∞

2N−1 N !
∫

TN

∏N f
i=1

∏N
j=1 �(ti z

±1
j )∏

1≤i< j≤N �(z±1
i z±1

j )

N∏
j=1

dz j

2π iz j
, (2.4)

where the balancing condition reads
∏N f

i=1 ti = ±(pq)N f /2−N+1, and

I SO(2N+1)
E = (p; p)N∞(q; q)N∞

2N N !
N f∏
i=1

�(ti )

×
∫

TN

∏N f
i=1

∏N
j=1 �(ti z

±1
j )∏N

j=1 �(z±1
j )

∏
1≤i< j≤N �(z±1

i z±1
j )

N∏
j=1

dz j

2π iz j
, (2.5)

where the balancing condition is
∏N f

i=1 ti = ±(pq)N f /2−N+1/2. Here ti := xk(pq)ri yi
and the effect of the discrete chemical potential k is reduced to the sign value on the
right-hand side of the balancing condition.

The magnetic theory SCI can be written in the form:

IM (t; p, q)SO(Ñ ) =
∏

1≤i< j≤N f

�(ti t j )

N f∏
i=1

�(t2
i )IE (

√
pq

t
; p, q)SO(Ñ ). (2.6)

To show the duality relation IE (t; p, q)SO(N ) = IM (t; p, q)SO(Ñ ) one has to restrict
parameters in the S P(2N )-indices [37]. First we identify

IE (t; p, q)SO(2n) =
⎧⎨
⎩

2I
( 1

2 (N f +4)−n)
n (t, u; p, q), N f even,

2I
( 1

2 (N f +3)−n)
n (t, v; p, q), N f odd,

(2.7)

where parameters u = (tN f +1, . . . , tN f +8) and v = (tN f +1, . . . , tN f +7) in I (m)
n are chosen

as

u = {±1,±√
p,±√

q,±√
pq

}
, v = {±1,±√

p,±√
q,−√

pq
}
.

Analogously,

IE (t; p, q)SO(2n+1) =
⎧⎨
⎩

∏N f
i=1 �(ti )I

( 1
2 (N f +2)−n)

n (t, u′), N f even,

∏N f
i=1 �(ti )I

( 1
2 (N f +3)−n)

n (t, v′; p, q), N f odd,

(2.8)
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where

u′ = {−1,±√
p,±√

q,−√
pq

}
, v′ = {−1,±√

p,±√
q,±√

pq
}
.

These relations are based on the duplication formula for the elliptic gamma function

�(z2) =
∏

ε=±1

�(εz, ε
√

pz, ε
√

qz, ε
√

pqz) (2.9)

and the inversion formula �(z)�(pq/z) = 1. They allow one to reduce EHIs from the
S P(2n)-group to SO(2n) or SO(2n + 1) and, simultaneously, reduces mesons from
TA- to TS-representation.

The same line of arguments works for checking the equality of SCIs for many other
known dualities of orthogonal gauge group theories whose matter content we list below:

• the antisymmetric tensor of the second rank (or the adjoint representation) and quarks
in the fundamental representation, see [81] for the duality between interacting field
theories and [23,79] for the s-confining theory;

• the symmetric tensor of the second rank and quarks in the fundamental representation,
see [66] for the nontrivial dual gauge group case and [23,79] for the s-confining theory;

• two matter fields—symmetric tensors of the second rank and quarks in the fundamental
representation, see [15,79];

• one matter field—the symmetric tensor of the second rank, and another field, the
antisymmetric tensor of the second rank, together with the quarks in the fundamental
representation, see [15,79].

For brevity we are not presenting explicitly SCIs of these theories and do not indicate
how they are related to S P(2N )-group indices considered in [119] since they are easily
obtained by reductions similar to the one described above. Moreover, one can obtain new
orthogonal gauge group dualities with the flavor group composed of several S P(2m)-
groups and SU (4) group after a similar reduction of the duality considered in Sect. 7 of
[119] (as well as the related s-confining theory). The general question why SO-dualities
for theories without spinor matter can be derived from S P-theories is not understood
from the physical point of view yet.

Now we would like to discuss some special cases in more detail. Consider the G =
SO(n) theory with N f = n − 1 quarks known to have three dual pictures [68]: electric,
magnetic, and dyonic. For G = SO(2N + 1) with 2N quarks SCI is obtained from (2.5)
with N f replaced by 2N . The magnetic dual has an SO(3) gauge group with SCI,

I SO(3)
M =

∏
1≤m<s≤2N

�(tmts)
2N∏
i=1

�(t2
i ,

√
pq

ti
)
(p; p)∞(q; q)∞

2

×
∫

T

∏2N
i=1 �(

√
pq
ti

y±1)

�(y±1)

dy

2π iy
; (2.10)

the balancing condition here reads
∏2N

m=1 tm = √
pq. These expressions can also be

obtained from S P(2N )-indices with N f = N + 3. The moduli space of vacua of the
SO(3)-theory has two non-trivial points leading to two dual theories. One of them is the
original SO(2N +1)-electric theory, and the second one is the SO(2N +1)-dyonic theory,
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which is obtained from the electric one by adding a particular term to the superpotential
and shifting the theta angle by π . The electric and dyonic theories are related to each other
by the “weak-to-weak” T -duality transformation and, therefore, their superconformal
indices are identical, ID ≡ IE . These duality transformations form the permutation
group S3, a subgroup of the SL(2, Z)-group, interchanging the three different theories.

The same arguments apply to the N = 1 SYM theory with SO(2N ) gauge group
and 2N − 1 quarks. Restricting seven parameters in I S P(2N )

E (with N f = N + 3) as
1,±√

p,±√
q,±√

pq, one obtains SCI of the electric theory identically coinciding

with the index of the dyonic theory. Substituting the same constraints to I S P(2N )
M one

obtains SCI of the SO(3)-magnetic theory. In both cases the balancing condition reads∏2N−1
i=1 ti = 1, i.e. at least one of the parameters ti has modulus greater than 1, which

requires an appropriate deformation of the integration contours for separation of relevant
sequences of integrand poles.

As to the self-dual case of the SO(3)-gauge group, its SCIs I SO(3)
E and I SO(3)

M depend
on two parameters with the balancing condition t1t2 = √

pq . Remarkably, after taking

into account the latter constraint, the index I SO(3)
M becomes identically equal to I SO(3)

E .
So, the electric, magnetic, and dyonic theories differ from each other only by particular
terms in the superpotential (governed by the parameter e = 0,±1 in [68]) and have SCIs
of identical shape.

According to Seiberg [106], the case G = SO(n) with N f = n−2 has the dual gauge
group SO(2), i.e. the magnetic theory coincides with N = 1 abelian theory describing
the supersymmetric photon with the gauge group U (1). This duality can be deduced
from the S P(2N ) ↔ S P(2(N f − N − 2)) duality with N f = N + 3. Corresponding
SCIs are obtained by imposing appropriate constraints on the parameters, as described
above. For G = SO(2N + 1) SCI is given by expression (2.5) with N f replaced by
2N − 1. The dual SCI has the form

I SO(2)
M =

∏
1≤m<s≤2N−1

�(tmts)
2N−1∏
i=1

�(t2
i )

(p; p)∞(q; q)∞
2

∫
T

2N−1∏
i=1

�(

√
pq

ti
y±1)

dy

2π iy
,

where is it assumed that N ≥ 2. Here the balancing condition reads
∏2N−1

m=1 tm = 1,

so that at least one of the parameters should be of modulus greater than 1. Therefore
the integration contours in IE should be deformed appropriately. For the gauge group
SO(2N ) we have SCI given by (2.4) with N f replaced by 2N − 2 and

I SO(2)
M =

∏
1≤m<s≤2N−2

�(tmts)
2N−2∏
i=1

�(t2
i )

(p; p)∞(q; q)∞
2

∫
T

2N−2∏
i=1

�(

√
pq

ti
y±1)

dy

2π iy
,

where the balancing condition is
∏2N−2

m=1 tm = 1 and N > 2. For N = 2 both expressions
diverge and one has to apply appropriate regularization t1t2 
= 1 and residue calculus to
obtain a meaningful limit t1t2 → 1. Interestingly, both magnetic SCIs are represented by
the general well-poised EHIs without the very-well-poisedness condition [116] (which
is thus not obligatory for applications in supersymmetric theories).

Consider dualities for G = SO(n) and N f = n − 3 [68]. Their SCIs are obtained
by a reduction of the elliptic beta integral for S P(2N ) group of type I as described



Elliptic Hypergeometry of Supersymmetric Dualities 431

above. For the SO(2N + 1)-group with 2N − 2 quarks the index is given in (2.5) with
N f replaced by 2N − 2 and the balancing condition

∏2N−2
m=1 tm = (pq)−1/2 requiring a

change of the integration contour. Due to the confinement the dual index has a simple
form

IM =
∏

1≤m<s≤2N−2

�(tmts)
2N−2∏
i=1

�(t2
i ,

√
pq

ti
). (2.11)

For the SO(2N )-group the electric index has the form (2.4) with N f replaced by 2N −3
and the balancing condition

∏2N−3
m=1 tm = (pq)−1/2. Its magnetic partner is

IM =
∏

1≤m<s≤2N−3

�(tmts)
2N−3∏
i=1

�(t2
i ,

√
pq

ti
). (2.12)

Extra terms
∏2N−3

i=1 �(
√

pq
ti

) appear in (2.12) from the fundamental representation,
although the dual gauge group is absent being formally defined as SO(1).

Similarly one can consider the case of G = SO(n) with N f = n − 4 [68]. For the
SO(2N +1)-group SCI has the form (2.5) with N f replaced by 2N −3 and the balancing
condition

∏2N−3
m=1 tm = (pq)−1. In the infrared region particles are confined and

IM =
∏

1≤m<s≤2N−3

�(tmts)
2N−3∏
i=1

�(t2
i ). (2.13)

For the SO(2N )-group electric SCI has the form (2.5) with N f replaced by 2N − 4 and
the balancing condition

∏2N−4
m=1 tm = (pq)−1. Its dual has the form

IM =
∏

1≤m<s≤2N−4

�(tmts)
2N−4∏
i=1

�(t2
i ). (2.14)

2.2. Connection to the Witten anomaly. The even-dimensional theories have triangle
anomalies associated with the global currents. For odd-dimensional field theories these
anomalies are absent and this fact plays a negative role in searching corresponding
dualities (because of the absence of powerful ’t Hooft anomaly matching conditions).
That is why the reduction of 4d SCIs to 3d partition functions discovered in [38] is
important for searching 3d dualities, since it inherits the information hidden in higher
dimensional anomaly matching conditions.

However, apart from the global triangle anomalies there is a non-perturbative anomaly
found by Witten [128], which is associated with the fact that the fourth homotopy group is
non-trivial for some gauge groups. For example, it was found that an SU (2) gauge group
theory with an odd number of fermions is not well defined because π4(SU (2)) = Z2.
The same argument applies to supersymmetric field theories. Therefore it is important
to understand how this anomaly manifests itself in SCIs and we analyze this question
below.

We start from an example of the s-confining theory: 4d N = 1 SYM theory with
SU (2) gauge group and 6 chiral superfields. The confining phase contains baryons Mi j
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forming the antisymmetric tensor of the flavor group SU (6). Corresponding SCIs were
discussed in [37,119] and they are given by the left- and right-hand sides of the elliptic
beta integral [112]. So, the electric SCI has the form

IE (s1, . . . , s6) = (p; p)∞(q; q)∞
2

∫
T

∏6
i=1 �(si z±1)

�(z±2)

dz

2π iz
, (2.15)

with the balancing condition
∏6

i=1 si = pq. Changing the integration variable z →
−z we see that IE (s1, . . . , s6) = IE (−s1, . . . ,−s6). The magnetic SCI is IM =∏

1≤ j<k≤6 �(s j sk) = IE .
Let us set s6 = √

pq . From the reflection equation for the elliptic gamma function
one has �(

√
pqz±1) = 1. Therefore the reduced SCI takes the form

IE1(s1, . . . , s5) = (p; p)∞(q; q)∞
2

∫
T

∏5
i=1 �(si z±1)

�(z±2)

dz

2π iz
, (2.16)

where the balancing condition is
∏5

i=1 si = √
pq . According to the prescription for

constructing SCIs, this expression describes the N = 1 SYM theory with SU (2) gauge
group and 5 quarks forming a fundamental representation of the flavor group SU (5) and
having the R-charges 2r = 1/5. The situation looks as if one of the quarks has been
integrated out. As to the magnetic SCI, it takes the form

IM1(s1, . . . , s5) =
∏

1≤i< j≤5

�(si s j )

5∏
i=1

�(
√

pqsi )

and describes a confined theory of two types of mesons—the antisymmetric tensor
representation TA of the group SU (5) with the R-charge 2/5 and the fundamental rep-
resentation of SU (5) with the R-charge 6/5. As a consequence of the superconformal
algebra, formal canonical dimension of the latter field is bigger than 1, i.e. formally the
unitarity is broken, but real physical content of formally dual theories outside conformal
windows require better understanding.

So, the electric theory has the Witten anomaly and the magnetic theory has problems
with the unitarity. Despite of the non-physical properties, these theories are presumably
dual to each other since all known duality tests are valid for them, including the equality
of SCIs. A natural question is whether SCI feels in any way this anomaly ambiguity or
not? As argued in [128], physical observables in this anomalous theory should vanish
due to the cancellation induced by the “large” gauge transformations which change the
sign of the fermion determinant. This means that SCI should vanish as well, as a gauge
invariant object. However, the SCI we use was computed basically from the free field
theory (in a sense, perturbatively), and the non-perturbative effect of the large gauge
transformation does not enter it, yielding a nonzero result.

Still, we believe that SCIs catch this effect. For instance, in the above confining theory
with 5 quarks IE1(s1, . . . , s5) 
= IE1(−s1, . . . ,−s5), since the balancing condition is
not preserved by the reflections s j → −s j . There is an ambiguity in reducing the number
of quarks: one can choose s6 = −√

pq and obtain SCI of the same shape (2.16), but with

the balancing condition having the different sign
∏5

i=1 si = −√
pq . We interpret this

ambiguity in reductions together with the breaking of the reflection symmetry s j → −s j
as manifestations of the Witten anomaly.
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For instance, if we choose in the elliptic beta integral s6 = √
pq and s5 = −√

pq ,
we obtain the relation

IE2 = (p; p)∞(q; q)∞
2

∫
C

∏4
k=1 �(sk z±1; p, q)

�(z±2; p, q)

dz

2π iz

= IM2 = 2(−p; p)∞(−q; q)∞
∏

1≤ j<k≤4

�(s j sk)

4∏
k=1

�(pqs2
k ; p2, q2), (2.17)

where
∏4

k=1 sk = −1 and the contour C is chosen appropriately. (There is a misprint
in the corresponding equality given before formula (4.9) in [116]—the infinite products
independent on s j were combined there in an erroneous way.) If we interpret this relation
as the equality of superconformal indices for some confining theory with four quarks,
then the Witten anomaly is absent and, indeed, IE2(s1, . . . , s4) = IE2(−s1, . . . ,−s4).
The physical meaning of this duality is not quite clear since the standard Römelsberger
prescription does not apply to it. Namely, the electric theory has four quarks, but some
nontrivial topological contributions to SCI are present leading to the non-standard bal-
ancing condition indicating on a non-marginal deformation of the standard four quarks
electric theory.

The described effect exists only for N = 1 SYM theories with S P(2N ) (and
SU (2)) gauge group theories. The G = SO(n) theories do not have such a problem
since π4(SO(n)) = 1. The flavor symmetry group in this case is SU (N f ) (instead of
SU (2N f )) and one can integrate out a single quark field without problems. At the level
of SCIs this is reached by restricting one of the fugacities in an appropriate way.

2.3. SO/S P gauge group theories with small number of flavors. Here we consider
relations between N = 1 SYM theories with orthogonal and symplectic gauge groups
with a small number of flavors. Take the dualities for the S P(2) gauge group theory with
8 quarks. This model was suggested in [25] and studied in detail in [118], where it was
argued that there are in total 72 dual theories having specific physical manifestations
[76].

Electric theory SCI is described by an elliptic analogue of the Euler-Gauss hyperge-
ometric function introduced in [113,114]

V (t1, . . . , t8; p, q) = (p; p)∞(q; q)∞
2

∫
T

∏8
j=1 �(t j z±1)

�(z±2)

dz

2π iz
(2.18)

with the constraints |t j | < 1 for eight complex variables t1, . . . , t8 and the balancing
condition

∏8
j=1 t j = (pq)2. This function obeys the following symmetry transformation

derived in [114]:

V (t1, . . . , t8; p, q) =
∏

1≤ j<k≤4

�(t j tk, t j+4tk+4) V (s1, . . . , s8; p, q), (2.19)

where complex variables s j , |s j | < 1, are connected with t j as follows

s j = ρ−1t j , j = 1, 2, 3, 4, s j = ρt j , j = 5, 6, 7, 8,

ρ =
√

t1t2t3t4
pq

=
√

pq

t5t6t7t8
.

(2.20)
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This fundamental relation taken together with the evident S8-permutational group of
symmetries in parameters t j generates the Weyl group W (E7) [99].

Let us apply the following constraint on the parameters:

t3,4,5,6,7,8 = {±√
p,±√

q,−1,−√
pq

}
.

The initial electric SCI takes the form

IE = (p; p)∞(q; q)∞
2

∫
T

∏2
i=1 �(ti z±1)

�(z±1)

dz

2π iz
, (2.21)

where t1t2 = √
pq, while in the magnetic SCIs S8-symmetry is explicitly broken and

we can get various inequivalently looking expressions. E.g., split the initial 8 parameters
into two sets

{±√
q,−√

pq, t1} and {±√
p,−1, t2}

for which ρ = √
t1(q/p)1/4. In terms of the parameters

s1,2,3,4 = ρ−1{±√
q,−√

pq, t1} and s5,6,7,8 = ρ{±√
p,−1, t2}

the magnetic SCI takes a quite simple form

IM = (p; p)∞(q; q)∞
2

∫
T

∏8
i=1 �(si z±1)

�(z±2)

dz

2π iz
. (2.22)

After multiplication of both IE and IM by
∏

i=1,2 �(ti ), on the electric side we obtain
SCI for N = 1 SYM with SO(3) gauge group with two quarks and on the magnetic
side we have SCI of a N = 1 SYM theory with S P(2) gauge group and eight quarks
whose flavor fugacities are chosen in a special way. This relation can be generalized to
an arbitrary number of colors N and to the theories discussed in Sect. 2.1. However, the
general meaning of all such relations is not clear yet.

3. S-Confining Theories with the Spinor Matter

In this chapter we systematically consider all known s-confining theories with SO(N )-
gauge groups and the matter in spinor representation [24]. The upper parts of the tables
contain information on the charges and field representation types of the electric models
(except of the vector superfield). The lower parts of the tables describe the s-confining
phase of the theory. The models with the rank of the gauge group smaller than 4 are
not considered because of different isomorphisms for orthogonal groups: SO(6) �
SU (4), SO(5) � S P(4), SO(4) � SU (2) × SU (2), SO(3) � SU (2), and SO(2) �
U (1).

For the orthogonal group SO(2N ) there are two types of spinor representations: the
proper spinor representation, which we denote as s, and its complex conjugate which is
denoted as c, both representations have dimension 2N−1. For gauge group SO(2N + 1)

there exists only the spinor representation s which has the dimension 2N . Characters of
the corresponding representations can be found in the Appendix.
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3.1. Confinement for SO(7) gauge group.

3.1.1. SU (6) flavor symmetry group. The matter field content is [24]

SO(7) SU (6) U (1)R

S s f 2r = 1
6

S2 TS
1
3

S4 T A
2
3

Corresponding SCIs have the form

IE = (p; p)3∞(q; q)3∞
233!

∫
T3

∏6
i=1 �(si (z1z2z3)

±1)
∏3

j=1 �(si (z
−2
j z1z2z3)

±1)∏3
j=1 �(z±2

j )
∏

1≤ j<k≤3 �(z±2
j z±2

k )

3∏
j=1

dz j

2π iz j
,

(3.1)

where |si | < 1 with the balancing condition
∏6

i=1 si = (pq)1/2, and

IM =
6∏

i=1

�(s2
i )

∏
1≤i< j≤6

�(si s j , (pq)
1
2 s−1

i s−1
j ). (3.2)

In the limit p = q = 0 (after proper treatment of the balancing condition) and s2,3,4,5 = 0
the equality IE = IM is directly verified by residue calculus.

This and all other dualities described in this paper satisfy the ’t Hooft anomaly match-
ing conditions. According to [122] this means that dual SCIs have the same SL(3, Z)-
modular group properties (in particular, one can associate with these dualities some
totally elliptic hypergeometric terms).

3.1.2. SU (5) × U (1) flavor group. The matter content is [24]

SO(7) SU (5) U (1) U (1)R

S s f 1 0

Q f 1 −5 1

Q2 1 −10 2

S2 TS 2 0

S4 f 4 0

S2 Q TA −3 1

S4 Q f −1 1
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Corresponding SCIs are

IE = (p; p)3∞(q; q)3∞
233! �(t)

∫
T3

∏3
j=1 �(t z±2

j )∏3
j=1 �(z±2

j )
∏

1≤ j<k≤3 �(z±2
j z±2

k )

×
5∏

i=1

�(si (z1z2z3)
±1)

3∏
j=1

�(si (
z2

j

z1z2z3
)±1)

3∏
j=1

dz j

2π iz j
, (3.3)

where |si | < 1 with the balancing condition t
∏5

i=1 si = √
pq, and

IM = �(t2)

5∏
i=1

�(

√
pq

si t
,

√
pq

si
, s2

i )
∏

1≤i< j≤5

�(si s j , tsi s j ). (3.4)

Again, this s-confining duality predicts the exact integration formula IE = IM . Similar
to the previous case, this identity is easily checked in the limit p = q = 0 and s2,3,4 = 0.

3.1.3. SU (4) × SU (2) × U (1) flavor group. The matter content is [24]

SO(7) SU (4) SU (2) U (1) U (1)R

S s f 1 1 0

Q f 1 f −2 1
2

Q2 1 TS −4 1

S2 TS 1 2 0

S2 Q TA f 0 1
2

S2 Q2 TA 1 −2 1

S4 1 1 4 0

S4 Q 1 f 2 1
2

Corresponding SCIs are

IE = (p; p)3∞(q; q)3∞
233!

2∏
i=1

�(ti )
∫

T3

∏2
i=1

∏3
j=1 �(ti z

±2
j )∏3

j=1 �(z±2
j )

∏
1≤ j<k≤3 �(z±2

j z±2
k )

×
4∏

i=1

�(si (z1z2z3)
±1)

3∏
j=1

�(si (
z2

j

z1z2z3
)±1)

3∏
j=1

dz j

2π iz j
, (3.5)

where |si |, |t j | < 1, st = √
pq with s = ∏4

i=1 si , t = ∏2
i=1 ti , and

IM = �(s, t)
2∏

i=1

�(sti , t2
i )

4∏
i=1

�(s2
i )

∏
1≤i< j≤4

�(si s j , tsi s j )

2∏
k=1

�(si s j tk). (3.6)
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3.1.4. SU (3) × SU (3) × U (1) flavor group. The matter content is [24]

SO(7) SU (3) SU (3) U (1) U (1)R

S s f 1 1 0

Q f 1 f −1 1
3

Q2 1 TS −2 2
3

S2 TS 1 2 0

S2 Q f = TA f 1 1
3

S2 Q2 f f 0 2
3

S2 Q3 TS 1 −1 1

Corresponding SCIs are

IE = (p; p)3∞(q; q)3∞
233!

3∏
i=1

�(ti )
∫

T3

∏3
i=1

∏3
j=1 �(ti z

±2
j )∏3

j=1 �(z±2
j )

∏
1≤ j<k≤3 �(z±2

j z±2
k )

×
3∏

i=1

�(si (z1z2z3)
±1)

3∏
i, j=1

�(si (
z2

j

z1z2z3
)±1)

3∏
j=1

dz j

2π iz j
, (3.7)

where |si |, |t j | < 1, st = √
pq with s = ∏3

i=1 si , t = ∏3
i=1 ti , and

IM =
3∏

i=1

�(s2
i , t2

i , ts2
i )

3∏
i, j=1

�(sts−1
i t−1

j , ss−1
i t j )

∏
1≤i< j≤3

�(si s j , ti t j , tsi s j ). (3.8)

3.2. G = SO(8).

3.2.1. SU (4) × SU (3) × U (1) flavor group. The matter content is [24]

SO(8) SU (4) SU (3) U (1) U (1)R

Q f f 1 3 1
4

S s 1 f −4 0

Q2 TS 1 6 1
2

S2 1 TS −8 0

S2 Q2 TA f −2 1
2

S2 Q4 1 TS 4 1
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Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
234!

∫
T4

∏4
i=1

∏4
j=1 �(si z

±2
j )∏

1≤ j<k≤4 �(z±2
j z±2

k )

×
3∏

i=1

�(ti (z1z2z3z4)
±1)

3∏
i=1

∏
1≤ j<k≤4

�(ti
z2

j z
2
k

z1z2z3z4
)

4∏
j=1

dz j

2π iz j
, (3.9)

where |si |, |t j | < 1, and

IM =
3∏

i=1

�(t2
i , st2

i )

4∏
i=1

�(s2
i )

∏
1≤i< j≤3

�(ti t j , sti t j )
∏

1≤i< j≤4

(
�(si s j )

3∏
k=1

�(tsi s j t
−1
k )

)
,

(3.10)

with s = ∏4
i=1 si , t = ∏3

i=1 ti , and the balancing condition st = √
pq. A simple check

of the equality of these SCIs is obtained in the limit p = q = 0 and s2,3,4 = t2 = 0.

3.2.2. SU (4) × SU (2) × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(8) SU (4) SU (2) U (1)1 U (1)2 U (1)R

Q f f 1 1 0 1
4

S s 1 f −2 1 0

S′ c 1 1 0 −2 0

Q2 TS 1 2 0 1
2

S2 1 TS −4 2 0

S′2 1 1 0 −4 0

S2 Q2 TA 1 −2 2 1
2

S2 Q4 1 TS 0 2 1

S′2 Q4 1 1 4 −4 1

SS′Q f f −1 −1 1
4

SS′Q3 f f 1 −1 3
4

Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
234!

∫
T4

∏4
i, j=1 �(si z

±2
j )∏

1≤ j<k≤4 �(z±2
j z±2

k )

2∏
i=1

�(ti (z1z2z3z4)
±1)

×
2∏

i=1

∏
1≤ j<k≤4

�

(
ti

z2
j z

2
k

z1z2z3z4

)
4∏

j=1

�

(
u(

z2
j

z1z2z3z4
)±1

)
4∏

j=1

dz j

2π iz j
, (3.11)
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where |si |, |t j |, |u| < 1, stu = √
pq with s = ∏4

i=1 si , t = ∏2
i=1 ti , and

IM = �(u2, su2, t, st)
2∏

j=1

(
�(t2

j , st2
j )

4∏
i=1

�(usi t j ,
us

si
t j )

)

×
4∏

i=1

�(s2
i )

∏
1≤i< j≤4

�(si s j , tsi s j ). (3.12)

3.2.3. SU (3) × SU (3) × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(8) SU (3) SU (3) U (1)1 U (1)2 U (1)R

Q f 1 1 0 6 1

S s f 1 1 −1 0

S′ c 1 f −1 −1 0

Q2 1 1 0 12 2

S2 TS 1 2 −2 0

S′2 1 TS −2 −2 0

SS′Q f f 0 4 1

S3S′Q 1 f 2 2 1

SS′3 Q f 1 −2 2 1

S2S′2 f f 0 −4 0

Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
234!

∫
T4

∏4
j=1 �(uz±2

j )∏
1≤ j<k≤4 �(z±2

j z±2
k )

3∏
i=1

�(si (z1z2z3z4)
±1)

×
3∏

i=1

∏
1≤ j<k≤4

�

(
si

z2
j z

2
k

z1z2z3z4

)
3∏

i=1

4∏
j=1

�

(
ti
( z2

j

z1z2z3z4

)±1

)
4∏

j=1

dz j

2π iz j
, (3.13)

where |si |, |t j |, |u| < 1, and

IM = �(u2)

3∏
i=1

�(s2
i , t2

i , suti , tusi )

3∏
i, j=1

�(usi t j , sts−1
i t−1

j )
∏

1≤i< j≤3

�(si s j , ti t j ),

(3.14)

with s = ∏3
i=1 si , t = ∏3

i=1 ti , and the balancing condition stu = √
pq. We checked

the equality of these SCIs in the limit p = q = 0 and s2,3 = t2 → 0.

3.2.4. SU (3) × SU (2)1 × SU (2)2 × U (1)1 × U (1)2 flavor group. The matter content
is [24]
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SO(8) SU (3) SU (2)1 SU (2)2 U (1)1 U (1)2 U (1)R

Q f f 1 1 0 4 0

S s 1 f 1 1 −3 1
4

S′ c 1 1 f −1 −3 1
4

Q2 TS 1 1 0 8 0

S2 1 TS 1 2 −6 1
2

S′2 1 1 TS −2 −6 1
2

SS′Q f f f 0 −2 1
2

S2 Q2 f 1 1 2 2 1
2

S′2 Q2 f 1 1 −2 2 1
2

SS′Q3 1 f f 0 6 1
2

S2S′2 1 1 1 0 −12 1

S2S′2 Q2 f 1 1 0 −4 1

Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
234!

∫
T4

∏3
i=1

∏4
j=1 �(si z

±2
j )∏

1≤ j<k≤4 �(z±2
j z±2

k )

2∏
i=1

�(ti (z1z2z3z4)
±1)

×
2∏

i=1

∏
1≤ j<k≤4

�

(
ti

z2
j z

2
k

z1z2z3z4

)
2∏

i=1

4∏
j=1

�

(
ui

( z2
j

z1z2z3z4

)±1

)
4∏

j=1

dz j

2π iz j
,

(3.15)

where |si |, |ti |, |ui | < 1, stu = √
pq with s = ∏3

i=1 si , t = ∏2
i=1 ti , u = ∏2

i=1 ui ,
and

IM = �(t, u, tu)

3∏
i=1

�(s2
i )

2∏
i=1

�(t2
i , u2

i )

2∏
i, j=1

�(sti u j )

×
∏

1≤i< j≤3

�(si s j )

3∏
i=1

�(stus−1
i , sts−1

i , sus−1
i )

3∏
i=1

2∏
j,k=1

�(si t j uk). (3.16)

3.3. G = SO(9).

3.3.1. SU (4) flavor group. The matter content is [24]
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SO(9) SU (4) U (1)R

S s f 1
8

S2 TS
1
4

S4 TAASS
1
2

S6 TS
3
4

where TAASS denotes the fourth rank tensor representation symmetric in two indices and
antisymmetric in other two indices, whose character is given by the formula

χTAASS ,SU (4)(s) =
∑

1≤i< j≤4

s2
i s2

j +
4∑

i=1

∑
1≤ j<k≤4; j,k 
=i

s2
i s j sk + 2.

Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
244!

∫
T4

∏4
i=1 �(si z±1)

∏4
i, j=1 �(si (

z2
j

z )±1)∏4
i=1 �(z±2

i )
∏

1≤ j<k≤4 �(z±2
j z±2

k )

×
4∏

i=1

∏
1≤ j<k≤4

�(si
z2

j z
2
k

z
)

4∏
j=1

dz j

2π iz j
, (3.17)

where z = z1z2z3z4, |si | < 1, the balancing condition s2 = √
pq with s = ∏4

i=1 si ,
and

IM = �2(s)
4∏

i=1

�(s2
i , ss2

i )
∏

1≤i< j≤4

�(si s j , ssi s j , s2
i s2

j )

4∏
i=1

∏
1≤ j<k≤4; j,k 
=i

�(s2
i s j sk).

(3.18)

3.3.2. SU (3) × SU (2) × U (1) flavor group. The matter content is [24]

SO(9) SU (3) SU (2) U (1) U (1)R

S s f 1 1 0

Q f 1 f −3 1
2

Q2 1 TS −6 1

S2 Q TS f −1 1
2

S2 TS 1 2 0

S4 T S 1 4 0

S2 Q2 f 1 −4 1

S4 Q2 f 1 −2 1

S4 Q f f 1 1
2
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Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
244!

2∏
i=1

�(ti )
∫

T4

∏2
i=1

∏4
j=1 �(ti z

±2
j )

∏3
i=1 �(si z±1)∏4

j=1 �(z±2
j )

∏
1≤ j<k≤4 �(z±2

j z±2
k )

×
3∏

i=1

4∏
j=1

�(si (z
2
j z

−1)±1)

3∏
i=1

∏
1≤ j<k≤4

�(si z
2
j z

2
k z−1)

4∏
j=1

dz j

2π iz j
, (3.19)

where z = z1z2z3z4, |si | < 1, s2t = √
pq with s = ∏3

i=1 si , t = ∏2
i=1 ti , and

IM =
2∏

i=1

�(t2
i )

3∏
i=1

�(s2
i , stsi , s2s−1

i , sts−1
i )

3∏
i=1

2∏
j=1

�(s2
i t j , ssi t j )

×�(t)
∏

1≤i< j≤3

�(si s j , s2s−1
i s−1

j )
∏

1≤i< j≤3

2∏
k=1

�(si s j tk). (3.20)

3.3.3. SU (2) × SU (4) × U (1) flavor group. The matter content is [24]

SO(9) SU (2) SU (4) U (1) U (1)R

S s f 1 1 1
4

Q f 1 f −1 0

Q2 1 TS −2 0

S2 Q TS f 1 1
2

S2 TS 1 2 1
2

S2 Q3 1 f −1 1
2

S2 Q2 1 TA 0 1
2

S4 Q3 1 f 1 1

S2 Q4 TS 1 −2 1
2

S4 1 1 4 1

Corresponding SCIs are

IE = (p; p)4∞(q; q)4∞
244!

4∏
i=1

�(ti )
∫

T4

∏4
i, j=1 �(ti z

±2
j )

∏2
i=1 �(si z±1)∏4

j=1 �(z±2
j )

∏
1≤ j<k≤4 �(z±2

j z±2
k )

×
2∏

i=1

4∏
j=1

�(si (z
2
j z

−1)±1)

2∏
i=1

∏
1≤ j<k≤4

�(si z
2
j z

2
k z−1)

4∏
j=1

dz j

2π iz j
, (3.21)
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where z = z1z2z3z4, |si | < 1, s2t = √
pq with s = ∏2

i=1 si , t = ∏4
i=1 ti , and

IM = �(s, st, s2)

2∏
i=1

�(s2
i , ts2

i )

4∏
i=1

�(t2
i , st2

i , stt−1
i , s2t t−1

i )

×
2∏

i=1

4∏
j=1

�(s2
i t j )

∏
1≤i< j≤4

�(ti t j , sti t j ). (3.22)

3.4. G = SO(10).

3.4.1. SU (4) × U (1) flavor group. The matter content is [24]

SO(10) SU (4) U (1) U (1)R

S s f 1 0

Q f 1 −8 1

Q2 1 −16 2

S2 Q TS −6 1

S4 TAASS 4 0

S6 Q TS −2 1

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

∏4
i=1 �(si z)

∏4
i=1

∏5
j=1 �(si z2

j z
−1)∏

1≤ j<k≤5 �(z±2
j z±2

k )

×
4∏

i=1

∏
1≤ j<k≤5

�(si zz−2
j z−2

k )

5∏
j=1

�(t z±2
j )

5∏
j=1

dz j

2π iz j
, (3.23)

where z = z1z2z3z4z5, |si |, |t | < 1, and

IM = �(t2)�2(s)
4∏

i=1

�(ts2
i , sts2

i )
∏

1≤i< j≤4

�(tsi s j , stsi s j , s2
i s2

j )

×
4∏

i=1

∏
1≤ j<k≤4; j,k 
=i

�(s2
i s j sk), (3.24)

with s = ∏4
i=1 si and the balancing condition s2t = √

pq. A simple check of the
equality of these integrals is obtained in the limit p = q = 0 and s2,3 = 0.
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3.4.2. SU (3) × SU (3) × U (1) flavor group. The matter content is [24]

SO(10) SU (3) SU (3) U (1) U (1)R

S s f 1 1 0

Q f 1 f −2 1
3

Q2 1 TS −4 2
3

S2 Q TS f 0 1
3

S2 Q3 f 1 −4 1

S4 T S 1 4 0

S4 Q2 f f 0 2
3

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

∏3
i=1 �(si z)

∏3
i=1

∏5
j=1 �(si z2

j z
−1)∏

1≤ j<k≤5 �(z±2
j z±2

k )

×
3∏

i=1

∏
1≤ j<k≤5

�(si zz−2
j z−2

k )

3∏
i=1

5∏
j=1

�(ti z
±2
j )

5∏
j=1

dz j

2π iz j
, (3.25)

where z = z1z2z3z4z5, |si |, |t j | < 1, s2t = √
pq with s = ∏3

i=1 si , t = ∏3
i=1 ti , and

IM =
3∏

i=1

�(t2
i , s2s−2

i , sts−1
i )

3∏
i, j=1

�(s2
i t j , stsi t

−1
j )

×
∏

1≤i< j≤3

(
�(ti t j , s2s−1

i s−1
j )

3∏
k=1

�(si s j tk)
)
. (3.26)

3.4.3. SU (2) × SU (5) × U (1) flavor group. The matter content is [24]

SO(10) SU (2) SU (5) U (1) U (1)R

S s f 1 5 1
4

Q f 1 f −4 0

Q2 1 TS −8 0

S2 Q TS f 6 1
2

S2 Q3 1 T A −2 1
2

S2 Q5 TS 1 −10 1
2

S4 1 1 20 1

S4 Q4 1 f 4 1
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Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

∏2
i=1 �(si z)

∏2
i=1

∏5
j=1 �(si z2

j z
−1)∏

1≤ j<k≤5 �(z±2
j z±2

k )

×
2∏

i=1

∏
1≤ j<k≤5

�(si zz−2
j z−2

k )

5∏
i, j=1

�(ti z
±2
j )

5∏
j=1

dz j

2π iz j
, (3.27)

where z = z1z2z3z4z5, |si |, |t j | < 1, s2t = √
pq with s = ∏2

i=1 si , t = ∏5
i=1 ti , and

IM =�(st, s2)

2∏
j=1

�(ts2
j )

5∏
i=1

(
�(t2

i , sti , s2t t−1
i )

2∏
j=1

�(s2
j ti )

) ∏
1≤i< j≤5

�(ti t j , stt−1
i t−1

j ).

(3.28)

3.4.4. SU (3) × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(10) SU (3) U (1)1 U (1)2 U (1)R

S s f 1 0 0

S c 1 −3 1 0

Q f 1 0 −2 1

Q2 1 0 −4 2

S2 Q TS 2 −2 1

SS f −2 1 0

S3SQ TAS 0 −1 1

S2S2 TS −4 2 0

S4 T S 4 0 0

S5S TS 2 1 0

S4S2 Q f −2 0 1

S2 Q 1 −6 0 1

S3S3 Q2 1 −6 −1 2

where TAS stands for the rank three tensor representation which is symmetric in the first
two indices and antisymmetric in the last two indices.

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

�(t z−1)
∏3

i=1

(
�(si z)

∏5
j=1 �(si z2

j z
−1)

) ∏5
j=1 �(t zz−2

j )

∏
1≤ j<k≤5 �(z±2

j z±2
k )

×
∏

1≤ j<k≤5

(
�(t z2

j z
2
k z−1)

3∏
i=1

�(si zz−2
j z−2

k )
) 5∏

j=1

�(uz±2
j )

dz j

2π iz j
, (3.29)
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where z = z1z2z3z4z5, |si |, |t |, |u| < 1, s2t2u = √
pq with s = ∏3

i=1 si , and

IM = �(u2, t2u, st3u2)�2(stu)

3∏
i=1

�(tsi , us2
i , t2s2

i , s2s−2
i , sts2

i , st2usi )

×
∏

1≤i< j≤3

�(usi s j , t2si s j , stsi s j , s2s−1
i s−1

j )

3∏
i, j=1;i 
= j

�(tus2
i s j ). (3.30)

3.4.5. SU (2) × SU (3) × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(10) SU (2) SU (3) U (1)1 U (1)2 U (1)R

S s f 1 1 1 0

S c 1 1 −2 1 1
2

Q f 1 f 0 −2 0

Q2 1 TS 0 −4 0

S2 Q TS f 2 0 0

S2 Q 1 f −4 0 1

SS f 1 −1 2 1
2

S2S2 TS 1 −2 4 1

S2 Q3 1 1 2 −4 0

S3SQ f f 1 2 1
2

S4 1 1 4 4 0

SSQ2 f f −1 −2 1
2

S2S2 Q2 1 f −2 0 1

S3SQ3 f 1 1 −2 1
2

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

�(t z−1)
∏2

i=1

(
�(si z)

∏5
j=1 �(si z2

j z
−1)

)∏5
j=1 �(t zz−2

j )

∏
1≤ j<k≤5 �(z±2

j z±2
k )

×
∏

1≤ j<k≤5

(
�(t z2

j z
2
k z−1)

2∏
i=1

�(si zz−2
j z−2

k )
) 5∏

j=1

�(uz±2
j )

dz j

2π iz j
, (3.31)

where z = z1z2z3z4z5, |si |, |t |, |u j | < 1, s2t2u = √
pq with s = ∏3

i=1 si , and

IM = �(s2, su, st2)

2∏
i=1

�(tsi , t2s2
i , stusi )

3∏
i=1

�(sui , u2
i , t2ui , st2uu−1

i )

×
2∏

i=1

3∏
j=1

�(s2
i u j , stsi u j , tusi u

−1
j )

∏
1≤i< j≤3

�(ui u j ). (3.32)
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3.4.6. SU (2)1 × SU (2)2 × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(10) SU (2)1 SU (2)2 U (1)1 U (1)2 U (1)R

S s f 1 1 1 0

S c 1 f −1 1 0

Q f 1 1 0 −8 1

Q2 1 1 0 −16 2

S2 Q TS 1 2 −6 1

S2 Q 1 TS −2 −6 1

SS f f 0 2 0

S4 1 1 4 4 0

S4 1 1 −4 4 0

S2S2 TS TS 0 4 0

S3SQ f f 2 −4 1

SS3 Q f f −2 −4 1

S2S2 Q2 1 1 0 −12 2

S4S2 Q TS 1 2 −2 1

S2S4 Q 1 TS −2 −2 1

S3S3 f f 0 6 0

S6S2 1 1 4 8 0

S2S6 1 1 −4 8 0

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

∏2
i=1 �(si z, ti z−1)

∏2
i=1

∏5
j=1 �(si z2

j z
−1, ti zz−2

j )∏
1≤ j<k≤5 �(z±2

j z±2
k )

×
2∏

i=1

∏
1≤ j<k≤5

�(si zz−2
j z−2

k , ti z
2
j z

2
k z−1)

5∏
j=1

�(uz±2
j )

dz j

2π iz j
, (3.33)

where z = z1z2z3z4z5, |si |, |ti |, |u| < 1, s2t2u = √
pq with s = ∏3

i=1 si , and

IM = �(s2, t2, u2, st, su, tu, s3t, st3, stu2, s2tu, st2u)

×
2∏

i=1

�(us2
i , ut2

i , st2
i , ts2

i , stus2
i , stut2

i )

2∏
i, j=1

�(si t j , s2
i t2

j , susi t j , tusi t j , stsi t j ).

(3.34)
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3.4.7. SU (5) × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(10) SU (5) U (1)1 U (1)2 U (1)R

S s 1 1 5 1
4

S c 1 −1 5 1
4

Q f f 0 −4 0

Q2 TS 0 −8 0

S2 Q f 2 6 1
2

S2 Q f −2 6 1
2

SS 1 0 10 1
2

S2 Q5 1 2 −10 1
2

S2 Q5 1 −2 −10 1
2

SSQ2 TA 0 2 1
2

SSQ4 f 0 −6 1
2

S2S2 1 0 20 1

S2S2 Q4 f 0 4 1

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

�(sz, t z−1)
∏5

j=1 �(sz2
j z

−1)∏
1≤ j<k≤5 �(z±2

j z±2
k )

×
∏

1≤ j<k≤5

�(szz−2
j z−2

k , t z2
j z

2
k z−1)

5∏
i, j=1

�(ui z
±2
j )

5∏
j=1

�(t zz−2
j )

dz j

2π iz j
,

(3.35)

where z = z1z2z3z4z5, |s|, |t |, |ui | < 1, s2t2u = √
pq with u = ∏5

i=1 ui , and

IM = �(st, su, tu, s2t2)

5∏
i=1

�(u2
i , s2ui , t2ui , stuu−1

i , s2t2uu−1
i )

×
∏

1≤i< j≤5

�(ui u j , stui u j ). (3.36)

3.5. G = SO(11).

3.5.1. SU (6) × U (1) flavor group. The matter content is [24]
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SO(11) SU (6) U (1) U (1)R

S s 1 3 1
4

Q f f −2 0

Q2 TS −4 0

S2 Q2 TA 2 1
2

S2 Q5 f −4 1
2

S4 1 12 1

S4 Q5 f 2 1

S2 Q f 4 1
2

S2 Q6 1 −6 1
2

Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
255!

6∏
i=1

�(ti )
∫

T5

�(sz±1)
∏5

j=1 �(s(z2
j z

−1)±1)∏5
j=1 �(z±2

j )
∏

1≤ j<k≤5 �(z±2
j z±2

k )

×
∏

1≤ j<k≤5

�(s(zz−2
j z−2

k )±1)

6∏
i=1

5∏
j=1

�(ti z
±2
j )

5∏
j=1

dz j

2π iz j
, (3.37)

where z = z1z2z3z4z5, |s|, |ti | < 1, s4t = √
pq with t = ∏6

i=1 ti , and

IM = �(s4, s2t)
6∏

i=1

�(s2ti , t2
i , s2t t−1

i , s4t t−1
i )

∏
1≤i< j≤6

�(ti t j , s2ti t j ). (3.38)

3.5.2. SU (2)1 × SU (2)2 × U (1) flavor group. This s-confining theory was found in
[83]. The matter content is

SO(11) SU (2)1 SU (2)2 U (1) U (1)R

S s f 1 1 0

Q f 1 f −4 1
2

Q2 1 TS −8 1

S2 Q2 TS 1 −6 1

S2 Q TS f −2 1
2

S2 1 1 2 0

S4 T4S 1 4 0

S4′
1 1 4 0

S4 Q2 1 TS −4 1

S4 Q2′
TS 1 −4 1

S4 Q TS f 0 1
2

S6 Q2 TS 1 −2 1

S6 Q TS f 2 1
2

S8 1 1 8 0

S8 Q 1 f 4 1
2

S4 Q 1 f 0 1
2

S6 1 1 6 0

Here T4S denotes the totally symmetric tensor of the fourth rank.
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Corresponding SCIs are

IE = (p; p)5∞(q; q)5∞
255!

2∏
i=1

�(ti )
∫

T5

∏2
i=1 �(si z±1)

∏2
i=1

∏5
j=1 �(si (z2

j z
−1)±1)∏5

j=1 �(z±2
j )

∏
1≤ j<k≤5 �(z±2

j z±2
k )

×
2∏

i=1

∏
1≤ j<k≤5

�(si (zz−2
j z−2

k )±1)

2∏
i=1

5∏
j=1

�(ti z
±2
j )

5∏
j=1

dz j

2π iz j
, (3.39)

where z = z1z2z3z4z5, |s|, |ti | < 1, s4t = √
pq with s = ∏2

i=1 si , t = ∏2
i=1 ti , and

IM = �(s, t, st, s3, s3t, s4)�2(s, s2t)
2∏

i=1

�(t2
i , sti , ts2

i , s2ti , ss2
i )

×
2∏

i=1

�(s2ti , s2t2
i , sts2

i , s2ts2
i , s3ti , s4

i , s4ti )
2∏

i, j=1

�(s2
i t j , ss2

i t j , s2s2
i t j ).

(3.40)

3.6. G = SO(12).

3.6.1. SU (7) × U (1) flavor group. The matter content is [24]

SO(12) SU (7) U (1) U (1)R

S s 1 7 1
4

Q f f −4 0

Q2 TS −8 0

S2 Q2 TA 6 1
2

S2 Q6 f −10 1
2

S4 1 28 1

S4 Q6 f 4 1

Corresponding SCIs are

IE = (p; p)6∞(q; q)6∞
256!

∫
T6

�(sz±1)∏
1≤ j<k≤6 �(z±2

j z±2
k )

×
∏

1≤ j<k≤6

�(s(zz−2
j z−2

k )±1)

7∏
i=1

6∏
j=1

�(ti z
±2
j )

6∏
j=1

dz j

2π iz j
, (3.41)
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where z = z1z2z3z4z5z6, |s|, |ti | < 1, s4t = √
pq with t = ∏7

i=1 ti , and

IM = �(s4)

7∏
i=1

�(t2
i , s2t t−1

i , s4t t−1
i )

∏
1≤i< j≤7

�(ti t j , s2ti t j ). (3.42)

3.6.2. SU (2) × SU (3) × U (1) flavor group. The matter content is [24]

SO(12) SU (2) SU (3) U (1) U (1)R

S s f 1 3 1
8

Q f 1 f −8 0

Q2 1 TS −16 0

S2 1 1 6 1
4

S2 Q2 TS f −10 1
4

S4 T4S 1 12 1
2

S4 Q2 1 TS −4 1
2

S4 Q2′
TS f −4 1

2

S6 1 1 18 3
4

S6 Q2 TS f 2 3
4

S8 Q2 1 TS 8 1

Corresponding SCIs are

IE = (p; p)6∞(q; q)6∞
256!

∫
T6

∏2
i=1 �(si z±1)∏

1≤ j<k≤6 �(z±2
j z±2

k )

×
2∏

i=1

∏
1≤ j<k≤6

�(si (zz−2
j z−2

k )±1)

3∏
i=1

6∏
j=1

�(ti z
±2
j )

6∏
j=1

dz j

2π iz j
, (3.43)

where z = z1z2z3z4z5z6, |si |, |ti | < 1, s4t = √
pq with s = ∏2

i=1 si , t = ∏3
i=1 ti ,

and

IM = �(s, s2, s3)

2∏
i=1

�(ss2
i , s4

i )

3∏
i=1

�(t2
i , s2t2

i , stt−1
i , s2t t−1

i , s4t2
i , s3t t−1

i )

×
2∏

i=1

3∏
j=1

�(sts2
i t−1

j , s2ts2
i t−1

j , ts2
i t−1

j )
∏

1≤i< j≤3

�(ti t j , s2ti t j , s4ti t j ). (3.44)
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3.6.3. SU (3) × U (1)1 × U (1)2 flavor group. The matter content is [24]

SO(12) SU (3) U (1)1 U (1)2 U (1)R

S s 1 1 3 1
8

S′ c 1 −1 3 1
8

Q f f 0 −8 0

Q2 TS 0 −16 0

SS′Q3 1 0 −18 1
4

S2 Q2 f 2 −10 1
4

S
′2 Q2 f −2 −10 1

4

SS′Q f 0 −2 1
4

S4 1 4 12 1
2

S
′4 1 −4 12 1

2

S2S
′2 1 0 12 1

2

S3S′Q3 1 2 −12 1
2

SS
′3 Q3 1 −2 −12 1

2

S2S
′2 Q2 TS 0 −4 1

2

S2S
′2 Q2′

f 0 −4 1
2

S3S′Q f 2 4 1
2

SS
′3 Q2 f −2 4 1

2

S3S
′3 Q3 1 0 −6 3

4

S3S
′3 Q f 0 10 3

4

S4S
′2 Q2 f 2 2 3

4

S2S
′4 Q2 f −2 2 3

4

S4S
′4 1 0 24 1

S4S
′4 Q2 f 0 8 1

Corresponding SCIs are

IE = (p; p)6∞(q; q)6∞
256!

∫
T6

�(sz±1)∏
1≤ j<k≤6 �(z±2

j z±2
k )

∏
1≤ j<k≤6

�(s(zz−2
j z−2

k )±1)

×
6∏

i=1

�(t (z2
i z−1)±1)

∏
1≤i< j<k≤6

�(t (z2
i z2

j z
2
k z−1)±1)

3∏
i=1

6∏
j=1

�(ui z
±2
j )

6∏
j=1

dz j

2π iz j
,

(3.45)
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where z = z1z2z3z4z5z6, |s|, |t |, |ui | < 1, (st)4u = √
pq with u = ∏3

i=1 ui , and

IM = �(stu, s4, t4, s2t2, st3u, s3tu, s3t3u, s4t4)
∏

1≤i< j≤3

�(ui u j , s2t2ui u j )

×
3∏

i=1

�(s3tui , st3ui , s3t3ui , s4t2uu−1
i , s2t4uu−1

i , s4t4uu−1
i )

×
3∏

i=1

�(u2
i , s2uu−1

i , t2uu−1
i , stui , s2t2u2

i , s2t2uu−1
i ). (3.46)

3.7. G = SO(13).

3.7.1. SU (4) × U (1) flavor group. The matter content is [24]

SO(13) SU (4) U (1) U (1)R

S s 1 1 1
8

Q f f −2 0

Q2 TS −4 0

S2 Q3 f −4 1
4

S2 Q2 TA −2 1
4

S4 Q4 1 −4 1
2

S4 Q3 f −2 1
2

S4 Q2 TS 0 1
2

S4 Q f 2 1
2

S4 1 4 1
2

S6 Q3 f 0 3
4

S6 Q2 TA 2 3
4

S8 Q3 f 2 1

S8 1 8 1

Corresponding SCIs are

IE = (p; p)6∞(q; q)6∞
266!

4∏
i=1

�(ti )
∫

T6

�(sz±1)
∏6

j=1 �(s(z2
j z

−1)±1)∏6
j=1 �(z±2

j )
∏

1≤ j<k≤6 �(z±2
j z±2

k )

×
∏

1≤ j<k≤6

�(s(zz−2
j z−2

k )±1)
∏

1≤i< j<k≤6

�(sz2
i z2

j z
2
k z−1)

4∏
i=1

6∏
j=1

�(ti z
±2
j )

6∏
j=1

dz j

2π iz j
,

(3.47)
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where z = z1z2z3z4z5z6, |s|, |ti | < 1, s8t = √
pq with t = ∏4

i=1 ti , and

IM = �(s4, s4t, s8)

4∏
i=1

�(t2
i , s2t t−1

i , s4t t−1
i , s4t2

i , s4ti , s6t t−1
i , s8t t−1

i )

×
∏

1≤i< j≤4

�(ti t j , s2ti t j , s4ti t j , s6ti t j ). (3.48)

3.8. G = SO(14).

3.8.1. SU (5) × U (1) flavor group. The matter content is [24]

SO(14) SU (5) U (1) U (1)R

S s 1 5 1
8

Q f f −8 0

Q2 TS −16 0

S2 Q3 T A −14 1
4

S4 Q2 TS 4 1
2

S4 Q4 f −12 1
2

S6 Q3 T A 6 3
4

S8 1 40 1

S8 Q4 f 8 1

Corresponding SCIs are

IE = (p; p)7∞(q; q)7∞
267!

∫
T7

�(sz)
∏7

j=1 �(sz2
j z

−1)∏
1≤ j<k≤7 �(z±2

j z±2
k )

×
∏

1≤ j<k≤7

�(szz−2
j z−2

k )
∏

1≤i< j<k≤7

�(sz2
i z2

j z
2
k z−1)

5∏
i=1

7∏
j=1

�(ti z
±2
j )

7∏
j=1

dz j

2π iz j
,

(3.49)

where z = z1z2z3z4z5z6z7, |s|, |ti | < 1, s8t = √
pq with t = ∏5

i=1 ti , and

IM =�(s8)

5∏
i=1

�(t2
i , s4t t−1

i , s8t t−1
i , s4t2

i )
∏

1≤i< j≤5

�(ti t j , s2t t−1
i t−1

j , s4ti t j , s6t t−1
i t−1

j ).

(3.50)

To summarize, the formulas of this section lead to conjectures for exact evaluations of
certain EHIs on BN and DN root systems constructed from the characters of various rep-
resentations necessarily including the spinor representation, which require now rigorous
mathematical proofs.
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4. Self-Dual Theories with the Spinor Matter

We start by presenting a basic example of the self-dual N = 1 SYM theory based
on the orthogonal gauge group with some number of fields in spinor representation. It
was considered first in [25], further examples have been described in [34,74]. First we
consider the theory with the SO(8) gauge group and the flavor group SU (4)l ×SU (4)r ×
U (1)B . The matter content of this theory is

SO(8) SU (4)l SU (4)r U (1)B U (1)R

S s f 1 1 1
4

Q f 1 f −1 1
4

In [25] there were found 5 theories dual to the original electric theory. We reconsid-
ered these theories using SCI technique and found that there are, actually, only 3 dual
theories. Other theories have the fields which can be integrated out and, in particular,
their contribution to ’t Hooft anomaly matching conditions is trivial (none). The matter
fields of dual theories are listed below in the table, where the double lines separate dual
theories.

SO(8) SU (4)l SU (4)r U (1)B U (1)R

s s f 1 1 1
4

v f 1 f −1 1
4

M 1 TS 1 2 1
2

N 1 TS 1 −2 3
2

s s f 1 1 1
4

v f 1 f −1 1
4

M̃ 1 1 TS −2 1
2

Ñ 1 1 TS 2 3
2

s s f 1 1 1
4

v f 1 f −1 1
4

M 1 TS 1 2 1
2

N 1 TS 1 −2 3
2

M̃ 1 1 TS −2 1
2

Ñ 1 1 TS 2 3
2
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Corresponding SCIs are given by the following expressions

IE = (p; p)4∞(q; q)4∞
234!

∫
T4

∏4
i, j=1 �(si z

±2
j )∏

1≤i< j≤4 �(z±2
i z±2

j )

×
4∏

i=1

�(ti Z±1)

4∏
i=1

∏
1≤ j<k≤4

�(ti z
2
j z

2
k Z−1)

4∏
j=1

dz j

2π iz j
, (4.1)

where Z = z1z2z3z4 and the balancing condition reads ST = pq with S =∏4
i=1 si , T = ∏4

i=1 ti . Magnetic SCIs are

I (1)
M =

4∏
i=1

�(t2
i , St2

i )
(p; p)4∞(q; q)4∞

234!
∫

T4

∏4
i, j=1 �(si z

±2
j )∏

1≤i< j≤4 �(z±2
i z±2

j )

×
4∏

i=1

�(

√
T

ti
Z±1)

4∏
i=1

∏
1≤ j<k≤4

�(

√
T

ti
z2

j z
2
k Z−1)

4∏
j=1

dz j

2π iz j
, (4.2)

for the first magnetic theory;

I (2)
M =

4∏
i=1

�(s2
i , T s2

i )
(p; p)4∞(q; q)4∞

234!
∫

T4

∏4
i, j=1 �(

√
S

si
z±2

j )∏
1≤i< j≤4 �(z±2

i z±2
j )

×
4∏

i=1

�(ti Z±1)

4∏
i=1

∏
1≤ j<k≤4

�(ti z
2
j z

2
k Z−1)

4∏
j=1

dz j

2π iz j
, (4.3)

for the second magnetic theory;

I (3)
M =

4∏
i=1

�(s2
i , t2

i , T s2
i , St2

i )
(p; p)4∞(q; q)4∞

234!
∫

T4

∏4
i, j=1 �(

√
S

si
z±2

j )∏
1≤i< j≤4 �(z±2

i z±2
j )

×
4∏

i=1

�(

√
T

ti
Z±1)

4∏
i=1

∏
1≤ j<k≤4

�(

√
T

ti
z2

j z
2
k Z−1)

4∏
j=1

dz j

2π iz j
, (4.4)

for the third magnetic theory.
The situation with other self-dual theories is not so clear, e.g. the self-duality of

[25,74] based on the SO(12)gauge group with one field in the spinor representation and 8
quarks in the fundamental representation seems to be incorrect. First, the representations
and charges of the dual quarks and spinor representation fields are not changed. Second,
the fields M4 and M8 (taken from the second section of [74]) can be integrated out and
their contributions to anomalies cancel out leading thus back to the original theory.
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5. Seiberg Dualities for SO(N) Gauge Group with the Spinor Matter

5.1. G = SO(5) and F = SU (N f ) × SO(4) × U (1). A duality with SU (N f ) ×
SU (4)×U (1) flavor group was studied in [34] with the claim that it can be derived from
a more general duality, which we shall consider later in Sect. 5.8. Using SCI technique
we show that this statement is incorrect. In our language, the duality of Sect. 5.8 reduces
to the duality discussed below which is based on the SO(4)-flavor subgroup instead of
SU (4).

Let us describe the corrected duality from [34]. The electric theory is represented by
the following table

SO(5) SU (N f ) SO(4) U (1) U (1)R

Q f f 1 −1 1 − 3
N f +2

S s 1 f
N f
2 1 − 3

N f +2

while the magnetic theory is

SU (N f ) SU (N f ) SO(5) � S P(4) U (1) U (1)R

q f f 1 1 3
N f +2 − 1

N f

q ′ f 1 1 −N f −1 + 6
N f +2 + 1

N f

w TS 1 1 0 2
N f

t f 1 f 0 1 − 1
N f

Y 1 f 1 N f − 1 3 − 9
N f +2

M 1 TS 1 −2 2 − 6
N f +2

N 1 1 f N f 2 − 6
N f +2

The indices are

IE = (p; p)2∞(q; q)2∞
222!

N f∏
i=1

�(si )

∫
T2

�(tu±1
1 u±1

2 (z1z2)
±1, tu±1

1 u±1
2

(
z1z−1

2

)±1
)

�(z±2
1 z±2

2 , z±2
1 , z±2

2 )

×
N f∏
i=1

2∏
j=1

�(si z
±2
j )

2∏
j=1

dz j

2π iz j
, (5.1)

where the balancing condition is s2t4 = (pq)N f −1 with s = ∏N f
i=1 si , and

IM = (p; p)
N f −1
∞ (q; q)

N f −1
∞

N f ! �((pq)
N f −1

2 s−1)
∏

j=1,2

�((pq)
N f −1

2 s−1u±1
j )

×
∏

1≤i< j≤N f

�(si s j )

N f∏
i=1

�(s2
i )

N f∏
i=1

�((pq)
N f −1

2 s−1si )
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×
∫

T
N f −1

∏
1≤i< j≤N f

�((pq)
1

N f yi y j )

�(yi y−1
j , y−1

i y j )

N f∏
i=1

�((pq)
1

N f y2
i )

×
N f∏

i, j=1

�((pq)

N f −1
2N f s−1

i y−1
j )

N f∏
j=1

�((pq)
1
2 (2+ 1

N f
−N f )

sy j , (pq)

N f −1
2N f y−1

j )

×
∏

i=1,2

N f∏
j=1

�((pq)

N f −1
2N f u±1

i y−1
j )

N f −1∏
j=1

dy j

2π iy j
, (5.2)

where
∏N f

j=1 y j = 1.
A simple explanation of the inconsistency of the duality of [34] consists in the mis-

match of the number of independent fugacities (parameters) in the dual indices; for the
SU (4)-flavor subgroup there will be an extra parameter in the electric theory in compar-
ison with the magnetic one. In principle, as described in [118], the integrands entering
indices may have a different number of parameters, but there should be some additional
multipliers to the integrals which cancel the contribution of these extra parameters.

5.2. SO(7) gauge group with N f fundamentals. The N = 1 SYM electric theory
described in this section was historically the first model including a matter field in the
spinor representation with known dual theory. It was discovered by Pouliot [95] and it
is based on the SO(7) gauge group with the following matter content

SO(7) SU (N f ) U (1)R

Q s f 1 − 5
N f

where s means the spinor representation. Pouliot found the following dual magnetic
theory:

SU (N f − 4) SU (N f ) U (1)R

q f f 5
N f

− 1
N f −4

w TS 1 2
N f −4

M 1 TS 2 − 10
N f

where the number of flavors is constrained by the conformal window 6 ≤ N f ≤ 15.

According to this duality one should have equality of the following SCIs:

IE = (p; p)3∞(q; q)3∞
233!

∫
T3

∏N f
i=1 �(ti (z1z2z3)

±1)
∏N f

i=1

∏3
j=1 �(ti

(
z2

j
z1z2z3

)±1

)

∏
1≤i< j≤3 �(z±2

i z±2
j )

∏3
j=1 �(z±2

j )

×
3∏

j=1

dz j

2π iz j
, (5.3)
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with |t |, |t j | < 1, and the balancing condition T = ∏N f
m=1 tm = (pq)(N f −5)/2, and (with∏N f −4

j=1 y j = 1)

IM =
∏

1≤i< j≤N f

�(ti t j )

N f∏
j=1

�(t2
j )

(p; p)
N f −5
∞ (q; q)

N f −5
∞

(N f − 4)!
∫

T
N f −5

N f −5∏
j=1

dy j

2π iy j

×
∏

1≤i< j≤N f −4

�((pq)
1

N f −4 yi y j )

�(yi y−1
j , y−1

i y j )

N f −4∏
j=1

�((pq)
1

N f −4 y2
j )

N f∏
i=1

�(T
1

N f −4 t−1
i y−1

j ).

(5.4)

To stress the non-trivial character of SO(N )-dualities with spinor matter and promote
them, we describe the duality for N = 1 SYM theory with the G2 gauge group proposed
in [95]. Pouliot’s idea to derive this model consists in the following: G2 is a subgroup of
SO(7) and the corresponding duality can be obtained from the SO(7)-group case with
N f fields in the spinor representation after giving masses to some mesons or integrating
out one of the quarks. In our language one should calculate accurately the limit tN f → 1
in the electric and magnetic SCIs. In the magnetic SCI one has the diverging multiplier
�(t2

N f
) in front of the integral, which is the only piece of SCI problematic for this limit.

Therefore we can plug tN f = 1 in other terms and see that the rank of the magnetic
gauge group is not changed, i.e. no Higgs mechanism applies from the physical point of
view.

On the electric side one has a divergency coming from the poles approaching the
integration contour and it is necessary to use the residue calculus [26]. Let us slightly
deform the contour T for the 3rd integration variable and pick up the residues of the
poles at z3 = tN f (z1z2)

±1 and their reciprocals. Now divide both electric and magnetic
SCIs by �(t2

N f
) and take the limit tN f → 1. Then the electric index can be rewritten as

the integral (13.3) of [119] with N f replaced by N f − 1 which describes SCI of the G2
gauge group theory with N f − 1 fundamental quarks:

IE = (p; p)2∞(q; q)2∞
223

N f −1∏
m=1

�(tm)

∫
T2

∏3
k=1

∏N f −1
m=1 �(tm z±1

k )∏
1≤ j<k≤3 �(z±1

j z±1
k )

2∏
k=1

dzk

2π izk
, (5.5)

where z1z2z3 = 1 and the balancing condition reads
∏N f −1

m=1 tm = (pq)(N f −5)/2. The
magnetic index (5.4) reduces to integral (13.4) of [119]:

IM = (p; p)
N f −5
∞ (q; q)

N f −5
∞

(N f − 4)!
∏

1≤ j<k≤N f −1

�(t j tk)

N f −1∏
j=1

�(t2
j )

×
∫

T
N f −5

∏
1≤ j<k≤N f −4

�((pq)rs z j zk)

�(z−1
j zk, z j z

−1
k )

N f −4∏
j=1

�((pq)rs z2
j )

×
N f −4∏

j=1

�((pq)(1−rs )/2z−1
j )

N f −1∏
k=1

�((pq)(1−rs )/2t−1
k z−1

j )

N f −5∏
j=1

dz j

2π iz j
, (5.6)
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where
∏N f −4

j=1 z j = 1 and rs = 1/(N f − 4). Another possibility of deriving this G2-
duality out of the standard Seiberg duality for SU (3)-gauge group has been described
in [119].

5.3. G = SO(7) and F = SU (N f ) × U (1). The electric theory is represented in the
following table [21]:

SO(7) SU (N f ) U (1) U (1)R

Q f f −1
N f −4

N f

S s 1 N f 0

while the magnetic theory is

SU (N f − 3) SU (N f ) U (1) U (1)R

q f f
2N f −3
N f −3

3(N f −4)

N f (N f −3)

q ′ f 1
N f

N f −3
N f −4
N f −3

w T S 1 − 2N f
N f −3

2
N f −3

M 1 TS −2
2(N f −4)

N f

L 1 1 2N f 0

where 5 ≤ N f ≤ 13. For the electric theory we have

IE = (p; p)3∞(q; q)3∞
233!

N f∏
i=1

�(si )

∫
T3

�(t z±1)
∏3

j=1 �(t (z2
j z

−1)±1)∏3
j=1 �(z±2

j )
∏

1≤i< j≤3 �(z±2
i z±2

j )

×
N f∏
i=1

3∏
j=1

�(si z
±2
j )

3∏
j=1

dz j

2π iz j
, (5.7)

where z = z1z2z3 and the balancing condition reads st = (pq)
1
2 (N f −4) with s =∏N f

i=1 si . In the magnetic theory we have (with
∏N f −3

j=1 y j = 1)

IM = �(t2)

N f∏
i=1

�(s2
i )

∏
1≤i< j≤N f

�(si s j )
(p; p)

N f −4
∞ (q; q)

N f −4
∞

(N f − 3)!

×
∫

T
N f −4

∏
1≤i< j≤N f −3

�(s
2

(N f −4)(N f −3) t
− 2(N f −5)

(N f −3)(N f −4) y−1
i y−1

j )

�(yi y−1
j , y−1

i y j )
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×
N f∏
i=1

N f −3∏
j=1

�((st2)
1

N f −3 s−1
i y j )

×
N f −3∏

j=1

�((st2)
1

N f −3 y j , s
2

(N f −4)(N f −3) t
− 2(N f −5)

(N f −3)(N f −4) y−2
i )

N f −4∏
j=1

dy j

2π iy j
. (5.8)

5.4. G = SO(7) and F = SU (N f ) × SU (2) × U (1). The electric theory is [21]

SO(7) SU (N f ) SU (2) U (1) U (1)R

Q f f 1 −2 1 − 5/N f

S s 1 f N f 1

while the magnetic theory is

SU (N f − 2) SU (N f ) SO(3) U (1) U (1)R

q f f 1 2
2(N f −5)

N f (N f −2)

q ′ f 1 f 0
N f −3
N f −2

q̃ f 1 1 −2N f − N f −3
N f −2

w T S 1 1 0 2
N f −2

M 1 TS 1 −4 2 − 10/N f

L 1 1 f 2N f 2

N 1 f 1 2(N f − 1) 3 − 5/N f

where 4 ≤ N f ≤ 12. The electric theory SCI is

IE = (p; p)3∞(q; q)3∞
233!

N f∏
i=1

�(si )

∫
T3

�(yx±1z±1)
∏3

j=1 �(yx±1(z2
j z

−1)±1)∏3
j=1 �(z±2

j )
∏

1≤i< j≤3 �(z±2
i z±2

j )

×
N f∏
i=1

3∏
j=1

�(si z
±2
j )

3∏
j=1

dz j

2π iz j
, (5.9)

where z = z1z2z3 and the balancing condition reads sy2 = (pq)
1
2 (N f −3) with s =∏N f

i=1 si . In the magnetic theory we have (with
∏N f −2

j=1 y j = 1)
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IM = �(y2, y2x±1)

N f∏
i=1

�(s2
i , y2si )

∏
1≤i< j≤N f

�(si s j )
(p; p)

N f −3
∞ (q; q)

N f −3
∞

(N f − 2)!

×
∫

T
N f −3

∏
1≤i< j≤N f −2

�((pq)
1

N f −2 y−1
i y−1

j )

�(yi y−1
j , y−1

i y j )

N f∏
i=1

N f −2∏
j=1

�((pq)

N f −5
2(N f −2) s−1

i y j )

×
N f −2∏

j=1

�((pq)
1

N f −2 y−2
j , (pq)

N f −1
2(N f −2) y−1 y−1

j , (pq)

N f −3
2(N f −2) y j , (pq)

N f −3
2(N f −2) x±1 y j )

×
N f −3∏

j=1

dy j

2π iy j
. (5.10)

5.5. G = SO(8) and F = SU (N f ) × U (1). The electric theory is [96]

SU (N f − 4) SU (N f ) U (1) U (1)R

Q f f 2N f − 4
6(N f −5)

(N f +1)(N f −4)

S TS 1 −2N f
12

(N f +1)(N f −4)

while the magnetic theory is

SO(8) SU (N f ) U (1) U (1)R

q f f 4 − N f
N f −5
N f +1

p s 1 N f (N f − 4)
N f −5
N f +1

M 1 TS 2N f − 8 12
N f +1

U 1 1 −2N f (N f − 4) 12
N f +1

where 6 ≤ N f ≤ 16. The electric theory SCI is

IE = (p; p)
N f −5
∞ (q; q)

N f −5
∞

(N f − 4)!
∫

T
N f −5

∏
1≤i< j≤N f −4

�(uzi z j )

�(zi z
−1
j , z−1

i z j )

×
N f −4∏

j=1

�(uz2
j )

N f∏
i=1

N f −4∏
j=1

�(si z
−1
j )

N f −5∏
j=1

dz j

2π iz j
, (5.11)
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where
∏N f −4

j=1 z j = 1 and the balancing condition reads suN f −2 = (pq)3 with s =∏N f
i=1 si . In the magnetic theory we have (with z = z1z2z3z4)

IM = �(uN f −4)
∏

1≤i< j≤N f

�(usi s j )

N f∏
i=1

�(us2
i )

(p; p)4∞(q; q)4∞
234!

∫
T4

�(s
1
6 u− 1

3 (N f −5)z±1)

×
∏

1≤i< j≤4

�(z±2
i z±2

j )
∏

1≤i< j≤4

�(s
1
6 u− 1

3 (N f −5)z2
i z2

j z
−1)

×
N f∏
i=1

4∏
j=1

�(s
1
6 u

1
6 (N f −5)s−1

i z±2
j )

4∏
j=1

dz j

2π iz j
. (5.12)

5.6. G = SO(8) and F = SU (N f ) × U (1)1 × U (1)2. The electric theory is [21]

SO(8) SU (N f ) U (1)1 U (1)2 U (1)R

Q f f −2 0 1 − 6/N f

S s 1 N f 1 1

S′ c 1 N f −1 1

while the magnetic theory is

SU (N f − 3) SU (N f ) U (1)1 U (1)2 U (1)R

q f f 2 0
5N f −18

N f (N f −3)

q ′ f 1 0 2
N f −4
N f −3

q ′′ f 1 0 −2
N f −4
N f −3

q̃ f 1 −2N f 0 − N f −4
N f −3

w T S 1 0 0 2
N f −3

M 1 TS −4 0 2 − 12/N f

L1 1 1 2N f 2 2

L2 1 1 2N f −2 2

N 1 f 2(N f − 1) 0 3 − 6/N f
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where 5 ≤ N f ≤ 15. The electric theory SCI is

IE = (p; p)4∞(q; q)4∞
234!

∫
T4

�(t z±1)
∏

1≤i< j≤4 �(t z2
i z2

j z
−1)∏

1≤i< j≤4 �(z±2
i z±2

j )

×
4∏

j=1

�(u(z2
j z

−1)±1)

N f∏
i=1

4∏
j=1

�(si z
±2
j )

4∏
j=1

dz j

2π iz j
, (5.13)

where z = z1z2z3z4 and the balancing condition reads stu = (pq)
1
2 (N f −4) with s =∏N f

i=1 si . In the magnetic theory we have (with
∏N f −3

j=1 y j = 1)

IM = �(u2, t2)

N f∏
i=1

�(s2
i , tusi )

∏
1≤i< j≤N f

�(si s j )
(p; p)

N f −4
∞ (q; q)

N f −4
∞

(N f − 3)!

×
∫

T
N f −4

∏
1≤i< j≤N f −3

�((pq)
1

N f −3 y−1
i y−1

j )

�(yi y−1
j , y−1

i y j )

N f∏
i=1

N f −3∏
j=1

�((pq)

N f −4
2(N f −3) s−1

i y j )

×
N f −3∏

j=1

�((pq)
1

N f −3 y−2
j , (pq)

N f −2
2(N f −3) (tu)−1 y−1

j , (pq)

N f −4
2(N f −3) (tu−1)±1 y j )

×
N f −4∏

j=1

dy j

2π iy j
. (5.14)

5.7. G = SO(9) and F = SU (N f ) × U (1). The electric theory is [21]

SO(9) SU (N f ) U (1) U (1)R

Q f f −2 1 − 5/N f

S s 1 N f 0

while the magnetic theory is

SU (N f − 4) SU (N f ) U (1) U (1)R

q f f 2
4(N f −5))

N f (N f −4)

q ′ f 1 0
N f −5
N f −4

q̃ f 1 −2N f
N f −3
N f −4

w T S 1 0 2
N f −4

M 1 TS −4 2 − 10/N f

L 1 1 2N f 0

N 1 f 2(N f − 1) 1 − 5/N f
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where 6 ≤ N f ≤ 18. The electric theory SCI is

IE =
N f∏
i=1

�(si )
(p; p)4∞(q; q)4∞

244!
∫

T4

�(t z±1)
∏

1≤i< j≤4 �(t z2
i z2

j z
−1)∏

1≤i< j≤4 �(z±2
i z±2

j )

×
∏4

j=1 �(t (z2
j z

−1)±1)∏4
j=1 �(z±2

j )

N f∏
i=1

4∏
j=1

�(si z
±2
j )

4∏
j=1

dz j

2π iz j
, (5.15)

where z = z1z2z3z4 and the balancing condition reads st2 = (pq)
1
2 (N f −5) with s =∏N f

i=1 si . In the magnetic theory we have (with
∏N f −4

j=1 y j = 1)

IM = �(t2)

N f∏
i=1

�(s2
i , t2si )

∏
1≤i< j≤N f

�(si s j )
(p; p)

N f −5
∞ (q; q)

N f −5
∞

(N f − 4)!

×
∫

T
N f −5

∏
1≤i< j≤N f −4

�((pq)
1

N f −4 y−1
i y−1

j )

�(yi y−1
j , y−1

i y j )

N f∏
i=1

N f −4∏
j=1

�((pq)

N f −5
2(N f −4) s−1

i y j )

×
N f −4∏

j=1

�((pq)
1

N f −4 y−2
j , (pq)

N f −3
2(N f −4) t−2 y−1

j , (pq)

N f −5
2(N f −4) y j )

N f −5∏
j=1

dy j

2π iy j
.

(5.16)

5.8. G = SO(10) and F = SU (N f ) × U (1). The electric theory is [97]

SO(10) SU (N f ) U (1) U (1)R

Q f f −1 1 − 8
N f +2

P s 1
N f
2 1 − 8

N f +2

while the magnetic theory is

SU (N f − 5) SU (N f ) U (1) U (1)R

w TS 1 0 2
N f −5

q f f 1 8
N f +2 − 1

N f −5

q ′ f 1 −N f −1 + 16
N f +2 + 1

N f −5

M 1 TS −2 2 − 16
N f +2

Y 1 f N f − 1 3 − 24
N f +2
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where 7 ≤ N f ≤ 21. The SCIs are

IE = (p; p)5∞(q; q)5∞
245!

∫
T5

�(t Z)
∏5

j=1 �(t z2
j Z−1)

∏
1≤i< j≤5 �(t Z z−2

i z−2
j )∏

1≤i< j≤5 �(z±2
i z±2

j )

×
N f∏
i=1

5∏
j=1

�(si z
±2
j )

5∏
j=1

dz j

2π iz j
, (5.17)

where st2 = (pq)
N f
2 −3, s = ∏N f

i=1 si , Z = z1z2z3z4z5, and (with
∏N f −5

j=1 y j = 1)

IM =
∏

1≤i< j≤N f

�(si s j )

N f∏
i=1

�(s2
i , t2si )

(p; p)
N f −6
∞ (q; q)

N f −6
∞

(N f − 5)!

×
∫

T
N f −6

∏
1≤i< j≤N f −5

�((pq)
1

N f −5 yi y j )

�(y−1
i y j , yi y−1

j )

N f −5∏
i=1

�((pq)
1

N f −5 y2
i , (pq)

N f −4
2(N f −5) t−2 yi )

×
N f∏
i=1

N f −5∏
j=1

�((pq)

N f −6
2(N f −5) s−1

i y−1
j )

N f −6∏
j=1

dy j

2π iy j
. (5.18)

An interesting fact is that fixing s1 = 1 and t = √
pq in both integrals, we come to

SCIs of the original Seiberg duality between SO(9) and SO(N f − 5) gauge theories
with N f quarks in the fundamental representation [106]. A connection between these
dualities was understood first from the physical point of view in [97], and our observation
is that SCIs are connected as well after imposing appropriate constraints. The residue
calculus similar to that of [26] should be applied to the electric theory. In the limit s1 → 1
the integration contour is pinched by the poles coming from the term

∏5
j=1 �(s1z±2

j ).

Picking up residues of the poles at z j = s±1/2
1 we come to SCI of N = 1 SYM

theory with the SO(9) gauge group and N f quarks in the fundamental representation.
In the magnetic SCI we have the multiplier �(t2s1) vanishing in the discussed limit
and further steps are a little tricky. For N f > 5 and N f odd it is convenient first to
rescale yi → (pq)−1/2(N f −4)yi , i = 1, . . . , N f − 5. Then the first residue comes
from the pole at y j = √

pq , and other residues come from the poles y2i+1 = y2i , i =
1, . . . , (N f − 5)/2. Accurately computing all these sequential residues one can verify
that the resulting integral describes SCI of the magnetic theory with SO(N f − 5) gauge
group having N f quarks in the fundamental representation and the gauge singlet baryon
field in the TS-representation of the flavor group SU (N f ).

There is another nice reduction of dual theories observed in [97]. If we take N f = 8
then we can obtain S-duality for N = 2 SYM theory with SU (2) gauge group and 4
hypermultiplets studied in detail in [108]. From the mathematical point of view we need
to apply the following constraints in (5.17) and (5.18):

s1s5 = 1, s2s6 = 1, s3s7 = 1, s4 = 1,

and then compute the residues of poles z1 = s1, z2 = s2, z3 = s3, z4 = s4 (and all their
permutations) which leads to the equality of reduced SCIs
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I ′
E = (p; p)∞(q; q)∞

2

∫
T

�(s8z±2,
√

pqs
− 1

2
8 (s1s2s3)

± 1
2 z±1)

�(z±2)

×
3∏

i=1

�(
√

pqs
− 1

2
8 (si (s1s2s3)

− 1
2 ))±1z±1)

dz

2π iz
(5.19)

and

I ′
M = (p; p)∞(q; q)∞

2

∫
T

�(s8z±2)�2(
√

pqs
− 1

2
8 z±1)

�(z±2)

3∏
i=1

�(
√

pqs
− 1

2
8 s±1

i z±1)
dz

2π iz
.

(5.20)

The equality I ′
E = I ′

M is a particular case of the identity obtained in [17] with

b = s8, t4 = √
pqs

− 1
2

8 , ti = √
pqs

− 1
2

8 si , i = 1, 2, 3.

One can reduce also the duality considered in this section to the dualities studied
in [34]. If we give vacuum expectation values to k fundamental quarks in the electric
theory, it breaks the gauge group to SO(10 − k) while in the magnetic side the gauge
group remains the same [34], see Sect. 5.1 for a particular example when k = 5. But
these dualities should be considered with care since, as we have shown in Sect. 5.1,
instead of SU (4) flavor symmetry group one has SO(4) symmetry group. From SCIs
point of view we should restrict some of the parameters to form the divergency ∝ �(1)

in (5.18). Appearance of such a term in the magnetic index requires the residue calculus
on the electric side. For example, the model considered in Sect. 5.1 is obtained from
(5.17) and (5.18) by taking in these expressions the following limits:

sN f −4sN f −3 = sN f −2sN f −1 = sN f = 1, (5.21)

with the subsequent replacement N f → N f + 5 and identification sN f −2 = u1,

sN f −4 = u2.
A more general duality was proposed in [11,75] having on the electric side the same

SO(10) gauge group with N f vectors and Nk spinors. The magnetic dual side was
conjectured to be a quiver gauge theory with SU and S P gauge groups. Again, as in
Sect. 5.1, we have not found evidence for this duality from SCIs technique point of
view, except for the obvious cases when the dual gauge group contains only one simple
component or when the theory s-confines, in which cases one obtains known dualities.
Anyway, we are not considering quiver gauge theories in this work, so we leave open
the detailed analysis of repairing the general duality of [11,75]. As in Sect. 5.1, perhaps
this question may be settled by a reduction from an even more general unknown duality
for SO(N ), N > 10, gauge group.

6. Matrix Models and an Elliptic Deformation of 2d CFT

The main inspiration for this section comes from paper [104], where a q-deformed 2d
CFT and the corresponding matrix model description in terms of the Jackson integrals
was proposed. From EHIs’ point of view there is a natural way to propose a generaliza-
tion of CFT to the elliptic and different q-deformed levels. q-Extensions of the Virasoro
algebra have been considered already some time ago [5,43,82] (see also [4,6,44] for a
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recent discussion). Here we propose expressions for the three- and four-point correlation
functions presumably associated with new hypothetical q-deformations and an elliptic
deformation of 2d CFT. For that we employ various known generalizations of the Sel-
berg integral, the basic integral appearing in calculations of the three-point correlation
function in 2d CFT.

6.1. Elliptic Selberg integral. The following elliptic generalization of the Selberg inte-
gral attached to the root system BCN was discovered in [26,27]:

(p; p)N∞(q; q)N∞
2N N !

∫
TN

∏
1≤i< j≤N

�(t z±1
i z±1

j )

�(z±1
i z±1

j )

N∏
j=1

∏6
i=1 �(ti z

±1
j )

�(z±2
j )

N∏
j=1

dz j

2π iz j

=
N∏

j=1

⎛
⎝�(t j )

�(t)

∏
1≤i<k≤6

�(t j−1ti tk)

⎞
⎠ , (6.1)

where |t |, |t j | < 1 and the balancing condition reads t2(N−1)
∏6

i=1 ti = pq. This integral
describes the N = 1 s-confining SYM theory with the S P(2N ) gauge group, one
chiral superfield in the TA-representation of S P(2N ), and 6 quarks [119]. This physical
application provides a matrix model interpretation of formula (6.1). Note also that this
integral describes the normalization of a particular eigenstate of a relativistic Calogero-
Sutherland type model [115].

We postulate that the chiral part of the three-point correlation function of a hypothet-
ical elliptic deformation of 2d CFT based on an elliptic extension of the Virasoro algebra
is given by integral (6.1) admitting exact evaluation. This proposition fits the fact that
in all known variations of 2d CFT the three-point function is computable exactly. Note
that in [44] a simple elliptic deformation of the free bosonic field algebra was proposed,
but its relevance to our construction is not clear, in particular, the number and meaning
of the parameters t j are not evident in this case.

6.2. q-Selberg integral. Different reductions of EHIs were systematically investigated
in [100] (see also [18]). First we reduce integral (6.1) to the trigonometric level and
then to the standard Selberg integral. The limit p → 0 is not straightforward due to the
balancing condition which we get rid of by substituting in (6.1) t6 = pq/(t2(N−1)T ),
where T = ∏5

i=1 ti , and obtain

(p; p)N∞(q; q)N∞
2N N !

∫
TN

∏
1≤i< j≤N

�(t z±1
i z±1

j )

�(z±1
i z±1

j )

N∏
j=1

∏5
i=1 �(ti z

±1
j )

�(t2(N−1)T z±1
j )�(z±2

j )

N∏
j=1

dz j

2π iz j

=
N∏

j=1

⎛
⎝�(t j )

�(t)

∏
1≤i<k≤5

�(t j−1ti tk)
5∏

i=1

1

�(t N+ j−2T/ti )

⎞
⎠ . (6.2)

After setting p = 0 with fixed t j and subsequently t5 = 0 one obtains the trigonometric
q-Selberg integral of Gustafson [56]
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1

2N N !
∫

TN

∏
1≤i< j≤N

(z±1
i z±1

j ; q)∞
(t z±1

i z±1
j ; q)∞

N∏
j=1

(z±2
j ; q)∞∏4

i=1(ti z
±1
j ; q)∞

N∏
j=1

dz j

2π iz j

=
N∏

j=1

⎛
⎝ (t; q)∞

(t j ; q)∞(q; q)∞
(t N+ j−2t1t2t3t4; q)∞

∏
1≤i<k≤4

1

(t j−1ti tk; q)∞

⎞
⎠ . (6.3)

Again, as above, we postulate that the three-point correlation function of a hypothet-
ical 2d CFT based on a (yet unknown) q-deformed Virasoro algebra is given by function
(6.3). Note that it is described by the standard contour integral and not the Jackson
q-integral, as suggested in [104].

6.3. Reduction to the Selberg integral. To obtain the Selberg integral one should care-
fully take the limit q → 1−. To simplify the left-hand side of formula (6.3) we use the
relation

lim
q→1−

(qaz; q)∞
(z; q)∞

= (1 − z)−a, (6.4)

and the duplication formula (z2; q)∞ = (±z,±q
1
2 z; q)∞. To simplify the right-hand

side expression we replace infinite products by the Jackson q-gamma function

�q(x) = (q; q)∞
(qx ; q)∞

(1 − q)1−x , �q(x) =
q→1

�rat (x), (6.5)

where �rat (x) is the Euler gamma function. Now we denote the parameters entering
(6.3) as

t = qγ , t1 = qα− 1
2 , t2 = −qβ− 1

2 , t3 = q
1
2 , t4 = −q

1
2 . (6.6)

On the left-hand side of (6.3) we change also the integration variables z j = eiθ j and
denote xi = (1+cos θi )/2. Finally, for fixed α, β, γ , we can take safely the limit q → 1−,
which brings us to the standard Selberg integral [3]

∫ 1

0
. . .

∫ 1

0

N∏
j=1

xα−1
j (1 − x j )

β−1
∏

1≤i< j≤N

|xi − x j |2γ dx1 . . . dxN

=
N∏

j=1

�rat (α + ( j − 1)γ )�rat (β + ( j − 1)γ )�rat (1 + jγ )

�rat (α + β + (n + j − 2)γ )�rat (1 + γ )
, (6.7)

where the integral converges for α,β > 0,γ > − min(1/N ,α/(N −
1),β/(N − 1)). Expression (6.7) defines the β-deformed matrix integral and gives
the three-point function of the standard undeformed 2d CFT, see, e.g., Sect. 4.1 of
[104].

6.4. A higher order elliptic Selberg integral. A two parameter extension of the elliptic
Selberg integral (6.1) is given by the integral
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V (t1, . . . , t8; t; p, q) = (p; p)N∞(q; q)N∞
2N N !

∫
TN

∏
1≤i< j≤N

�(t z±1
i z±1

j )

�(z±1
i z±1

j )

×
N∏

j=1

∏8
i=1 �(ti z

±1
j )

�(z±2
j )

N∏
j=1

dz j

2π iz j
, (6.8)

where the balancing condition reads t2(N−1)
∏8

i=1 ti = (pq)2. The symmetry transfor-
mation properties of this integral were found in [113] for N = 1 and in [99] for general
N . We are not presenting them here explicitly for brevity [for N = 1 they are described
by formula (2.19)]. We conjecture that integral (6.8) coincides with the four-point cor-
relation function for an elliptic deformation of 2d CFT for which the elliptic Selberg
integral defines the three-point function. Then the s-t-channels duality for this four-point
function is described by known symmetries of (6.8).

Again, taking appropriately the (trigonometric) limit p → 0 we can come to the two
parameter extension of the q-Selberg integral with further degeneration to the rational
level [100]. For arbitrary N and a special choice of one of the parameters, there emerges
the 2 F1-hypergeometric function describing the chiral part of the four point correlation
function (see formula (4.9) in [104]). A general 2 F1-function is obtained also for N = 1;
we skip explicit description of these well known results. In [82], the four point correlation
function of a q-deformed CFT was connected to a q-analog of the 2 F1-hypergeometric
function. We conjecture that an appropriate elliptic analog of the latter correlation func-
tion will be expressed in terms of the V -function of [116] given by N = 1 case of (6.8).
Apart from the mentioned limit p → 0, there exists a different degenerating limit for
the elliptic Selberg integral to the hyperbolic q-hypergeometric level [28], which was
discussed recently in detail in [38] where one of the resulting integrals was interpreted
as the partition function of a particular 3d N = 2 supersymmetric field theory model
(it is also expected to play a proper role in 2d CFT deformations).

7. Connection to the Knot Theory

In this section we discuss the connection of partition functions for some 3d supersym-
metric field theories and non-supersymmetric CS theories with the complexified gauge
groups to topological invariants of the knot theory [29,31,33,60,61]. In [38], the theory
of hyperbolic q-hypergeometric integrals has been exploited for checking and searching
for 3d supersymmetric dualities. Earlier it was proposed in [60] that the state integrals
for knots are also defined in terms of such integrals. In an independent approach to state
integrals [29], Dimofte proposed a new expression for the figure-eight knot state integral
and conjectured that it coincides with the one of [60]. Using the approach of [38] we
prove here this conjecture, as well as some other similar identities needed in [30].

The hyperbolic q-hypergeometric integrals can be rigorously obtained as reductions
of the EHIs [100] (for an earlier formal approach see, e.g., [28], and for a detailed
explicit analysis of reducing many integrals see [16]). The reduction procedure inherits
certain pieces of the unique symmetry properties of the original integrals and yields
many nontrivial identities at the hyperbolic level. The resulting hyperbolic integrals and
identities emerge in various physical problems. Here we stress that they describe partition
functions for 3d supersymmetric theories living on the squashed three-sphere and the
state integrals for the knots. As the most recent example of their relevance, we mention
a generalization of the AGT duality [2] to the duality inspired by the (3+3)-dimensional
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theories [31,39,63], with the non-supersymmetric CS theory living on a 3d manifold
M on the one side and 3d N = 2 supersymmetric theory living on the squashed sphere
on the other side.

7.1. The figure-eight knot. We start from the notation for hyperbolic gamma function
used in [38,117]. This function appeared in [41] under the name “noncompact quantum
dilogarithm”. For q = e2π iω1/ω2 and q̃ = e−2π iω2/ω1 with |q| < 1 we define

γ (u;ω1, ω2) = (e2π iu/ω1 q̃; q̃)∞
(e2π iu/ω2; q)∞

, γ (2)(u;ω1, ω2) = e−π iB2,2(u)/2γ (u;ω1, ω2),

where B2,2(u;ω1, ω2) is the second order Bernoulli polynomial,

B2,2(u;ω1, ω2) = u2

ω1ω2
− u

ω1
− u

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1

2
.

For Re(ω1), Re(ω2) > 0 and 0 < Re(u) < Re(ω1 + ω2) one has the following integral
representation for the hyperbolic gamma function

γ (2)(u;ω1, ω2) = exp

(
−PV

∫
R

eux

(1 − eω1x )(1 − eω2x )

dx

x

)
,

where ‘PV’ means the principal value integral.
Different notations and names for slight modifications of this function are used in

the literature, most of them were explicitly described in Appendix A of [117]. In [33],
the following “quantum dilogarithm” is employed

�(z; τ) = (−e(z + τ/2); e(τ ))∞
(−e((z − 1/2)/τ); e(−1/τ))∞

, (7.1)

where e(x) = e2π ix . One can easily find by comparison that

�(z; τ) = γ
(ω1 + ω2

2
+ zω2;ω1, ω2

)−1
, τ = ω1

ω2
. (7.2)

Consider the so-called state integral for the figure eight knot 41 which was found first
by Hikami in [60] and studied further in [29,31,33,61]. We stick to the notation of paper
[33] where this integral is given by formula (4.46) and has the form

I = e2π iu/�+u

√
2π�

∫ ∞

−∞
�((p − u)/2π i; �/π i)

�(−(p + u)/2π i; �/π i)
e−2pu/�dp. (7.3)

This integral describes also the partition function of non-supersymmetric CS theory with
the complexified gauge group SL(2, C) living on the 3d manifold M = S3\41 [33].
Denoting ω1 = b, ω2 = b−1, τ = b2 and changing the variables p → 2π ip, u →
2π iu, � → π iτ in (7.3), we obtain

I = e2π i(2+b2)u/b2
∫ i∞

−i∞
�(p − u; b2)

�(−p − u; b2)
e−8π ipu/b2

dp, (7.4)
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where we drop the multiplier
√

2π/i
√

� in front of the integral. Using relation (7.2), we
can write

I = e2π i(2+b2)u/b2
∫ i∞

−i∞

γ
(

b+1/b
2 − p+u

b ; b, b−1
)

γ
(

b+1/b
2 + p−u

b ; b, b−1
) e−8π ipu/b2

dp. (7.5)

We apply the inversion formula γ (u, b + 1/b − u; b, b−1) = eπ iB2,2(u;b,b−1) to move
the denominator γ -function to the numerator and pass from the γ -function to the γ (2)-
function. This yields another form of the integral:

I = e2π i(2+b2)u/b2
∫ i∞

−i∞
γ (2)

(
b + 1/b

2
− p ± u

b
; b, b−1

)
e−6π ipu/b2

dp. (7.6)

Consider now integral (6.77) from [29] (as suggested there normalization without the
multiplier 2−1/2e(4π2−�

2)/24�
2
). After changing the notation in it similar to the integral

I , we come to the following expression:

Ĩ = e−2π iu
∫ i∞

−i∞
γ (2)

(
b + 1/b

2
− p ± u

b
; b, b−1

)
e6π ipu/b2

dp. (7.7)

One can see that the difference between expressions (7.6) and (7.7) is in the coefficients
in front of the integrals and in the sign of the exponent of the integrand.

Let us take now the n = 1 case of the integral I I 1
n,(3,3)∗a(μ;−; λ; τ) defined on p.

218 of [16]. Replacing the integration variable x → p/b in it and changing slightly its
normalizing multiplier, we come to the integral

Z E (μ1, μ2, σ ) =
∫ i∞

−i∞

2∏
i=1

γ (2)(μi − p/b; b, b−1)eπ iσ p/bdp, (7.8)

where μ1, μ2, and σ are some free parameters.
Remarkably, our original integral of interest I (7.6) is a special subcase of (7.8),

which is obtained after imposing the constraints

μ1 = (b + 1/b)/2 − u/b, μ2 = (b + 1/b)/2 + u/b, σ = −6u/b. (7.9)

Using the results of [38], we see that expression (7.7) with arbitrary μ1, μ2, σ

describes the partition function (that is why it is denoted as Z E ) of 3d N = 2 theory living
on the squashed three-sphere with theU (1)gauge group and two quarks, which is referred
to as the “electric theory”. The global symmetry group is SU (2)×U (1)A ×U (1)R . We
do not discuss the vector superfield having well known properties. The matter content
with the corresponding charges is presented in the following table:

U (1) SU (2) U (1)A U (1)R

q −1 f 1 1
2
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Integral (7.8) has the transformation formula described in Theorem 5.6.20 of [16]:

eπ i(4μ1μ2−μ2
3+(b+1/b)μ3−(b+1/b)2/4)/2+π i(b2+1/b2)/24 Z E (μ1, μ2, 2μ3 − μ1 − μ2)

= Z M (μ; λ), (7.10)

where

Z M (μ1, μ2, μ3; λ) =
∫ i∞

−i∞

3∏
i=1

γ (2)(μi − p/b; b, b−1)eπ iλp/b−3π ip2/2b2
dp, (7.11)

with μ3 being a new parameter introduced through the balancing condition μ1+μ2+μ3 =
λ−(b +1/b)/2. This condition relates fugacities associated with the SU (3) flavor group
acting on quarks and the Fayet-Illiopoulos term λ.

Expression (7.11) represents the partition function of a “magnetic theory” defined as
the 3d N = 2 CS theory with U (1)3/2 gauge group and 3 quarks. The global symmetry
group of the magnetic theory is SU (3)×U (1)A ×U (1)R . Note that the flavor groups of
the electric and magnetic theories differ although the number of independent variables
is the same for both statistical sums. The matter fields together with the corresponding
charges are presented in the table below

U (1)3/2 SU (3) U (1)A U (1)R

q −1 f 1 1
2

The duality between these two 3d theories is one of very many dualities not considered
in [38] due to their abundance.

Now we can easily prove the equality of two forms of the figure-eight knot state
integrals (7.6) and (7.7), I = Ĩ . Evidently, expression (7.11) is symmetric in parameters
μ1, μ2, and μ3. If we substitute in the left-hand side of (7.10) restrictions (7.9), we
obtain the integral I up to some factor. Now we permute the parameters in the left-
hand side (μ1, μ2, μ3) → (μ3, μ1, μ2) (which is permitted because of the identity) and
substitute anew the same restrictions (7.9). As a result we obtain the integral Ĩ up to the
same multiplier as before. Equating both expressions, we prove that I = Ĩ .

Moreover, we can use further this permutational symmetry and replace in the left-
hand side of (7.10) (μ1, μ2, μ3) → (μ2, μ3, μ1), and impose constraints (7.9). As a
result we come to one more form of the figure-eight knot state integral

I = Ĩ = Î := e2π iu(1−6u)/b2
∫ i∞

−i∞
γ (2)

(
b+1/b

2
− 3u+ p

b
,

b+1/b

2
+

u− p

b
; b, b−1

)
dp,

(7.12)

which was not considered in [29,33,60,61].
As observed in [31,39], there is an extension of the AGT duality [2] to the situation

when the 6-dimensional space-time is decomposed as a (3 + 3)d manifold with the
duality relation between the complexified CS theories living on some 3d manifold M
and 3d supersymmetric field theories. Our equality of partition functions (7.10) gives
an explicit example of such a duality. In it the CS theory with SL(2, C) gauge group on
M = S3\41 is dual to the 3d theory with U (1) gauge group and two flavors, which is
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also dual to the 3d CS theory with U (1)3/2 gauge group and three flavors, as described
above.

Now we are coming to the main point of this section, namely, to derivation of the
identities presented above from the theory of EHIs. Identity (7.10) arises from the reduc-
tion of a transformation formula of [113] for the elliptic extension of the Euler-Gauss
hypergeometric function (2.18). From the physical point of view EHIs describe SCIs for
4d supersymmetric field theories and, analogously to [51], we can claim that important
ingredients of the knot theory are coming from the 4d space-time. In the considered
example, the state integral model for the figure-eight knot is obtained from 4d N = 1
SYM theory with S P(2) gauge group and 8 quarks, which was studied in detail in [118].

The V -function obeys symmetry transformation (2.19). First, we reduce it to the level
of hyperbolic q-hypergeometric integrals by means of the reparametrization of variables

y = e2π ir z, t j = e2π irμ j , j = 1, . . . , 8, p = e2π ibr , q = e2π ir/b, (7.13)

[here the base parameter p should not be mixed up with the integration variable p in
(7.3)] and the subsequent limit r → 0. In this limit the elliptic gamma function has the
asymptotics [103]

�(e2π ir z; e2π irb, e2π ir/b) =
r→0

e−π i(2z−b−1/b)/12rγ (2)(z; b, b−1). (7.14)

Using it in the reduction, one obtains an integral lying on the top of a list of integrals
emerging as degenerations of the V -function (we omit some simple diverging exponen-
tial multiplier appearing in this limit),

Ih(μ1, . . . , μ8) =
∫ i∞

−i∞

∏8
i=1 γ (2)(μi ± z; b, b−1)

γ (2)(±2z; b, b−1)
dz, (7.15)

with the balancing condition
∑8

i=1 μi = 2(b + 1/b). It has the following symmetry
transformation formula descending from the elliptic one

Ih(μ1, . . . , μ8) =
∏

1≤i< j≤4

γ (2)(μi + μ j , μi+4 + μ j+4; b, b−1)Ih(ν1, . . . , ν8), (7.16)

where νi = μi + ξ, νi+4 = μi+4 − ξ, i = 1, 2, 3, 4, and the parameter ξ is

2ξ =
8∑

i=5

μi − b − 1/b = b + 1/b −
4∑

i=1

μi .

To get the desired transformation formula (7.10) one should use the following asymptotic
formulas when some of the parameters go to infinity

lim
u→∞ e

π i
2 B2,2(u)γ (2)(u) = 1, for arg b < arg u < arg 1/b + π,

lim
u→∞ e− π i

2 B2,2(u)γ (2)(u) = 1, for arg b − π < arg u < arg 1/b.
(7.17)

The proof of formula (7.10) by van de Bult presented in [16] is rather bulky. Starting
from the key transformation formula (7.16) one has to pass step by step from one level
of complexity to another one in the list of integrals obtained from Ih by diminishing the
number of independent parameters. Therefore we are not presenting it here explicitly
although it is very straightforward.
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7.2. The trefoil knot. Let us apply the same procedure to the state integral model of the
trefoil knot described by formula (6.59) in [29] (where we omit a coefficient in front of
the integral):

J =
∫ ∞

−∞
�

(
− p

2π i
; �

π i

)
�

(
p − c

2π i
; �

π i

)
epu/2�dp. (7.18)

After rewriting this expression as in the figure-eight knot case (replacing p →
2π ip, c → 2π ic, � → π iτ , etc), we come to the integral

J = eπ i(1+b4−6c2)/12b2
∫ i∞

−i∞
γ (2)

(
b + 1/b

2
+

p

b
,

b + 1/b

2
− p − c

b
; b, b−1

)

×eπ ip(3c−p)/b2
dp. (7.19)

Consider now the integral I I 1
1,(3,3)a(μ, ν; λ) on p. 218 in [16]. We choose the integration

variable in it z = p/b, impose the constraints μ = (b + 1/b)/2, ν = (b + 1/b)/2 +
c/b, λ = 3c/b, and denote the resulting function as Z̃ E (μ, ν, λ):

Z̃ E (μ, ν, λ) =
∫ i∞

−i∞
γ (2)(μ − z, ν + z; b, b−1)eπ iλz−π iz2

dz, (7.20)

which describes the partition function of a 3d N = 2 SYM theory with U (1) gauge
group and two quarks. According to Theorem 5.6.19 of [16], it obeys the following
transformation formula:

Z̃ E (μ, ν, λ) = Z̃ M (μ + σ ′, ν − σ ′)eπ i(λ2+(μ+ν)2−2(b+1/b)(μ+ν))/4, (7.21)

where 4σ ′ = ν − μ − λ and

Z̃ M (α, β) = 1

2

∫ i∞

−i∞
γ (2)(α ± y, β ± y; b, b−1)

γ (2)(±2y; b, b−1)
e−4π iy2

dy, (7.22)

which is the partition function of a 3d N = 2 CS theory with SU (2)1/2 gauge group and
two quarks. Comparing with [29], we see that integral (7.20) coincides with the product
wavefunction in the transformed basis. To get the state integral model for the trefoil knot
one has to specify μ+ν = b + 1/b. Then expression (7.18) simplifies (set c = 0 in it and
apply the inversion formula) becoming a Gaussian integral which is easily evaluated.
Again, one can use equality (7.21) for the connection of 3d complexified CS theory
living on M̃ = S3\31 with 3d supersymmetric field theories.

7.3. Some other integrals. In the rest of this section we would like to consider some
other hyperbolic integrals which appear in this context [19,20,42] and describe their
connection to EHIs. There is a nice Fourier transformation formula for the hyperbolic
gamma function [19,42] (in particular, in [29] it is given by formula (6.54)). Let us define

JE =
∫ i∞

−i∞
γ (2)(μ − z/b; b, b−1)eπ i(2λz/b−z2/b2)/2dz. (7.23)
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To match the definition of [29] one should fix the parameters as μ = (b+1/b)/2, λ = 2x .

Expression (7.23) can be found in [16], where it is defined as the integral I I 0
1,(3,2)a(μ; λ).

This integral is computable exactly, as described in Theorem 5.6.8 of [16],

JE = JM := γ (2)((b + 1/b)/4 + λ/2 − μ/2; b, b−1)

×eπ i(−3μ2+(λ−(b+1/b)/2)2+2μ(3λ+(b+1/b)/2))/4−π i(b2+1/b2)/24. (7.24)

To see the coincidence with formula (6.54) from [29] one should take into account the
inversion formula for the hyperbolic gamma functions. Physically, the equality JE = JM
is obtained from the reduction of SCIs for the 4d N = 1 SYM theory with the SU (2)

gauge group and 6 quarks and its dual, and, mathematically, it emerges as a reduction
of the elliptic beta integral [112].

The equality JE = JM defines one of the simplest examples of dualities between
two 3d supersymmetric field theories. The electric theory is a 3d N = 2 CS theory
with U (1)1/2 gauge group and one quark Q, while the magnetic theory is just a free 3d
N = 2 theory of one chiral field X . Again, such dualities were skipped in [38] because
of their abundance, where for brevity only the first steps of the reduction procedure from
4d SCIs to 3d partition functions were considered explicitly. The identities presented in
this section lie further in the reduction hierarchy of EHIs to the hyperbolic level.

The equality of partition functions considered in [63] (later also discussed in
[31,123,124]) is obtained as a reduction of the V -function identities as well [16].
The equality of statistical sums of the initial theory and the mirror dual is taken from
[20], where it was proven using the Fourier transformation formula [42]. The partition
function of the 3d mass-deformed T [SU (2)] SYM theory coincides with the integral
I I 1

1,(2,2)(μ1, μ2, ν1, ν2; λ) from [16] (again we take ω1 = b, ω2 = 1/b):

K (μ1, μ2, ν1, ν2, λ) =
∫ i∞

−i∞

2∏
i=1

γ (2)(μi − z, νi + z; b, b−1)eπ iλzdz, (7.25)

where one should restrict the parameters to obtain the expression from [63] as follows:

μ1 = ν1 = b + 1/b

4
− m

2
+ μ, μ2 = ν2 = b + 1/b

4
− m

2
− μ, λ = −4ξ.

Integral (7.25) has the transformation formula described in Theorem 5.6.17 of [16]:

K (μ1, μ2, ν1, ν2, λ) = K̃ (σ1, . . . , σ4)e
π i(4σ̃ 2−2μ1μ2−2ν1ν2)/2

×γ (2)((±λ − μ1 − μ2 − ν1 − ν2)/2 + b + 1/b; b, b−1),

(7.26)

where

K̃ (σ1, . . . , σ4) = 1

2

∫ i∞

−i∞

∏4
i=1 γ (2)(σi ± y; b, b−1)

γ (2)(±2y; b, b−1)
e−2π iy2

dy,

σ1,2 = μ1,2 + σ̃ , σ3,4 = ν1,2 − σ̃ , 4σ̃ = ν1 + ν2 − μ1 − μ2 − λ.

(7.27)

There is a transformation formula for the integral K̃ described in Theorem 5.6.14 (for
n = 1) in [16]:

K̃ (σ1, . . . , σ4) = K̃ (ρ1, . . . , ρ4)
∏

1≤i< j≤4

γ (2)(σi + σ j ; b, b−1)e−π i(b+1/b)ξ , (7.28)

where 2ξ = b + 1/b − ∑4
i=1 σi , ρi = σi + ξ, i = 1, 2, 3, 4.
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Combining together formula (7.26), symmetry transformation (7.28) and, finally,
again (7.26) (taking into account that (7.27) is symmetric in all the parameters σi ), one
gets the symmetry transformation

K ((b + 1/b)/4 − m/2 ± μ, (b + 1/b)/4 − m/2 ± μ,−4ξ)γ (2)(−m; b, b−1)

= K (m/2 ± ξ, m/2 ± ξ,−4μ)γ (2)(m; b, b−1). (7.29)

Generalizing to arbitrary parameters μ1, μ2, ν1, ν2 one obtains formula (A.31) from
[20]. Described symmetry transformation formulas allow one to derive more identities
apart from (7.29), which should be explored separately. Here our aim was to show that all
known examples of the equalities of partition functions from the literature are obtained as
reductions of the identities for EHIs (actually, here we have discussed only the reduction
of the elliptic beta integral and the V -function). There is also an interesting connection
of the partition function of mass-deformed T [SU (2)] theory with the Liouville theory
[63], where it coincides with the S-duality kernel connecting conformal blocks [125].
Note also that it can be derived from SCI of 4d N = 2 SYM theory with SU (2) gauge
group and 4 hypermultiplets [50].

We conclude this section by stating that the arguments given above are quite gen-
eral and can be applied to any state integral model. Other examples for different knots
presented in [61] are obtained from the reduction of SCIs of 4d N = 1 quiver super-
symmetric field theories and coincide with the partition functions of 3d N = 2 theories
in which one restricts fugacities associated with the matter content of the theory. The
results of this section may be useful for a better understanding of a generalization of the
AGT duality [2], connecting 4d and 2d theories, to the duality connecting 3d CS and
3d N = 2 supersymmetric field theories [30,31,39,63].

8. Reduction to the 2d Vortex Partition Function

Dimensional reductions of field theories are usually considered directly at the level of
physical degrees of freedom. As discussed in the previous section, often it is easier to
make such reductions at the level of collective objects such as partition or correlation
functions and topological indices. In particular, partition functions of the field theories
on the squashed three-sphere S3

b can be derived from 4d SCIs [38] (the case of ordinary
S3 corresponds to the limit ω1 = ω−1

2 → 1). An obvious question is whether one can
proceed further and reduce 3d partition functions to 2d statistical sums? The squashed
three-sphere is isomorphic to S2 × S1 and by shrinking the radius of S1 to zero one
reduces this manifold to S2, which is a two-dimensional space-time. One obtains in this
way the vortex partition function for a 2d supersymmetric sigma-model. This partition
function is the object of recent active studies [13,14,32,52,109,129]. Its relation to the
3d Omega background is discussed in [31]. From the mathematical point of view the
4d/3d correspondence of [38] is described by the reduction of EHIs to the hyperbolic
q-hypergeometric integrals (see, e.g., [28,100]). Here we proceed with further reduction
to the rational level [100] described by the integrals employing elementary functions and
the standard gamma function. In [88], it was found that introducing into 4d SCI of the
surface operators leads to the 2d (4, 4) SCFT coupled to the 4d theory; here we obtain a
more complete 2d picture. A different type of 2d partition function associated with SCIs
of N = 2 theories was considered recently in [49]. A new 2d/3d/4d correspondence has
been discovered in [117], where it was shown that both 4d SCIs and 3d partition functions
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of supersymmetric quiver theories describe statistical sums of certain integrable models
of 2d Ising-like spin systems with continuous values of spins.

Let us discuss first the reduction of 4d SCIs to 3d partition functions on the example
of Intriligator-Pouliot duality [67]. As shown in Sect. 2 above and in [37], one can
derive SCIs of 4d N = 1 SYM theories with the orthogonal gauge groups from the
corresponding S P(2N )-SCIs. But we can reduce the latter 4d SCIs to 3d partition
functions along the lines of [38]. This results in 3d dualities for both SYM [1] and CS
[53] theories and both S P(2N ) and U (N ) gauge groups. We stress that 4d SCIs and
dualities are defined as a rule by unique relations for EHIs, and at the 3d-level one obtains
the whole web of dualities/SCIs both for SYM and CS theories based on different gauge
groups.

More technically, we start from integral (2.1) describing SCI of the electric theory
of [67,37,119]. Reducing it to the hyperbolic level [100,28] one finds the following
integral (2.1) [16]:

Z = 1

N !
∫
CN

∏
1≤i< j≤N

1

γ (2)(±(zi − z j );ω1, ω2)

×e2π i(λ+1/2)(ω1+ω2)
∑N

j=1 z j /ω1ω2

N∏
i, j=1

γ (2)(μi − z j , νi + z j ;ω1, ω2)

N∏
j=1

dz j

i
√

ω1ω2
,

(8.1)

where C is the Mellin-Barnes type integration contour.
In [127], Willett and Yakov showed that this integral describes the partition function

[57,58,70] of the electric theory for Aharony duality [1], which is a 3d N = 2 SYM
theory living on the squashed three-sphere with the U (N ) gauge group, N f = N left
quarks forming the fundamental representation of U (N ), N f = N right quarks forming
the antifundamental representation of U (N ), and additional singlets V±. In (8.1), para-
meters z j , j = 1, . . . , N , are the fugacities associated with the gauge group U (N ), λ

is associated with the Fayet-Illiopoulos term (the coefficient 4(λ + 1/2)(ω1 + ω2) is
introduced for convenience). Parameters μi , νi , i = 1, . . . , N , are the fugacities of the
SU (N ) × SU (N ) non-abelian global symmetry group, which are normalized by taking
into account the abelian part of the global symmetry U (1)A × U (1)J × U (1)R .

Consider the limit ω2 → ∞ using the hyperbolic gamma function asymptotics

γ (2)(z;ω1, ω2) =
ω2→∞

(
ω2

2πω1

) 1
2 −z

�rat (z/ω1)√
2π

.

The 3d partition function (8.1) then reduces to

Zlim = ω
N/2
2

N !ω3N/2
1

(
ω2

ω1

)−∑N
i=1(μi +νi )

Zvortex , (8.2)

where Zvortex is the function appearing after formula (2.6) in [52] for N f = N :

Zvortex =
∫
CN

e
2π i(λ+1/2)

∑N
j=1

z j
ω1

∏
1≤i< j≤N �rat

(
zi −z j

ω1
,

z j −zi
ω1

)
N∏

i, j=1

�rat

(
μi −z j

ω1
,
νi +z j

ω1

) N∏
j=1

dz j

2π i
.

(8.3)



Elliptic Hypergeometry of Supersymmetric Dualities 479

The multiplier
∏

i 
= j �rat ((ai − a j )/ω1) standing in front of the integral in [52] is not
relevant for our discussion and is omitted.

Expression (8.3) defines the vortex partition function for 2d (2, 2) supersymmetric
field theory with U (N ) gauge group and N f = N flavors. Its representation as a sum
over Young diagrams can be obtained from the partition function of 4d N = 2 SYM
theory [90,91] in the limit ω2 → ∞ [109]. More precisely, in this limit one should also
normalize the variable associated with the instanton parameter to compensate additional
divergences emerging for ω2 → ∞. In [52], it was realized that the latter sum over
Young diagrams (instantons) can be rewritten as a single contour integral (8.3), which
leads to a better understanding of this function from the mathematical point of view.

This observation can be generalized to any number of flavors N f appearing in [52] by
starting from the partition function for 3d N = 2 SYM theory with U (N ) gauge group,
N f 
= N flavors, and looking at the same limit ω2 → ∞ accompanied by pulling some
of the parameters to infinity (i.e., by integrating out some of the quarks). Technically, one
should use the asymptotic expansion of the gamma function �rat (x) → √

2πe−x xx−1/2

for x → ∞. In principle one can get in the same manner the vortex partition functions
for 2d supersymmetric field theories with symplectic and orthogonal gauge groups and
different matter fields (the contribution of the adjoint matter field was considered in
[13,14]).

We conclude by several remarks on the importance of the observation made in this
section. First, it may be very useful for checking a 2d analog of Seiberg’s duality which
was recently proposed and studied in [62,111]. Second, this reduction is close to the one
studied in the literature on connections of 3d Chern-Simons theories with 2d supersym-
metric field theories [32] linking the vortex partition function to the BPS invariants of
dual geometries. Finally, perhaps the most important, 4d SCIs for N = 1 SYM theories
are connected to 4d partition functions for N = 2 SYM theories in the limit discussed
above.

9. Conclusion

In [118,119], we initiated the classification of EHIs on different root systems and
described all known examples of such integrals for AN , BCN , and G2 root systems
in association with N = 1 supersymmetric dualities. In [121], for all irreducible root
systems we described such integrals associated with N = 4 SYM theories; there are
also two more particular examples associated with N = 1 SYM E6 and F4 gauge group
theories.

In the present paper we have described all known cases when BCn-EHIs and
corresponding physical dualities with the symplectic gauge groups are reduced to
SCIs/dualities for orthogonal groups by a restriction of parameters entering the inte-
grals. Remarkably, there are EHIs for the BN and DN root systems which (currently)
cannot be obtained from integrals on the BCN root system — they come from SCIs
for N = 1 SYM SO(2N + 1) or SO(2N ) gauge group theories with the matter fields
in spinor representation. Description of this type of integrals is one of the main results
of the present paper. Physical dualities of the corresponding gauge theories lead to the
conjectures on the equality of respective SCIs. The latter conjectural identities for EHIs
use characters of the spinor representations, and they were not predicted by the math-
ematical developments prior to the supersymmetric duality ideas intervention. All of
them require now rigorous mathematical proofs.
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In addition to SCIs for N = 1 dualities considered in this paper, one can investi-
gate SCIs for electric-magnetic dualities for extended supersymmetric field theories: the
quiver N = 2 SYM theories with SO/S P gauge groups [121] or the S P/SO-groups
duality [55] in N = 4 SYM theory [47,121]. Note that SCIs for extended supersym-
metric theories can be obtained from SCIs of N = 1 theories by adjusting the matter
content appropriately together with the hypercharges, as described in [119,121]. In the
field theory lagrangians one should fix also appropriately the superpotentials.

As described in [119], one of the physical applications of the EHI identities uses
the reduction p = q = 0, which yields the Hilbert series counting gauge invariant
operators [59,98]. Another interesting application of our identities is connected with
the Seiberg type dualities for 3d super-Yang-Mills and Chern-Simons theories with
orthogonal gauge groups. Derivation of 3d partition functions out of 4d SCIs of [38]
yields the most efficient way of obtaining 3d-dualities. Technically, the reduction to 3d
theories is obtained after the parametrization in 4d SCIs of the integration variables,
global symmetry fugacities, and bases p and q similar to (7.13), with the subsequent
limit r → 0. As a result, 4d SCIs defined on S3 × S1 reduce to partition functions
on the squashed three-sphere S3

b [57,58,70]. In this limit the elliptic gamma function is
reduced to the hyperbolic gamma function. It is thus natural to expect that all the dualities
considered in [71] can be recovered by a reduction from the 4d SCIs considered in the
present paper. A more detailed description of the resulting hyperbolic integrals was given
in Sect. 7. The reduction procedure for 3d theories from the S P(2N ) to the SO(n) gauge
group is similar to the one in 4d theories without spinor matter. For that one needs the
duplication formula for the hyperbolic gamma function

γ (2)(2z;ω1, ω2) = γ (2)(z, z + ω1/2, z + ω2/2, z + (ω1 + ω2)/2;ω1, ω2).

To get SO(2N +1) partition functions it is necessary to restrict three chemical potentials
to ω1/2, ω2/2, (ω1 + ω2)/2 (or two chemical potentials to ω1/2, ω2/2) and for the
SO(2N ) case one should fix four chemical potentials equal to 0, ω1/2, ω2/2, (ω1+ω2)/2
(or three chemical potentials equal to 0, ω1/2, ω2/2). This leads to a variety of 3d N = 2
supersymmetric dual theories (both SYM and CS theories) without spinor matter. To
construct 3d dualities for theories with the spinor matter one should follow the algorithm
suggested in [38]. As a final mathematical remark, we stress that all our computations
are performed analytically, i.e. we described exact (conjectural or proven) equalities of
the compared functions in all admissible domains of values of the parameters.
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Appendix A. Characters of Representations of Orthogonal Groups

In this appendix we describe characters of representations of orthogonal groups used in
the paper. For needed SU (N ) and S P(2N ) group characters, see Appendix A of [119],
and invariant measures for all classical groups are listed in Appendix B of that paper.
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SO(N )-Groups with even and odd N have substantially different properties and
should be considered separately. The characters for their spinor representations are
described most conveniently by the expressions involving square roots of z j -variables
which are not analytical. To overcome this obstacle we just double the root lengths
which results in the replacement in characters variables z j by z2

j and assume in the inte-
grals that z j lie on the unit circle with positive orientation. We remark that the adjoint
representation for orthogonal groups coincides with the TA-representation.

SO(2N ) group. The characters are expressed in terms of N independent variables zi , i =
1, . . . , N . For the fundamental representation one has

χ f,SO(2N ) =
N∑

i=1

z±1
i ≡

N∑
i=1

(zi + z−1
i ). (A.1)

The TS-representation character is

χTS ,SO(2N ) =
∑

1≤i< j≤N

z±1
i z±1

j +
N∑

i=1

z±2
i + N − 1, (A.2)

the TA-representation character is

χTA,SO(2N ) =
∑

1≤i< j≤N

z±1
i z±1

j + N . (A.3)

The needed spinor representation characters are listed case by case. For SO(2N )

groups there are two types of inequivalent spinors, denoted s and c. For SO(8), the
spinor representations s and c are 8-dimensional, self-conjugate, and their characters
have the form

χs,SO(8) = z±1 + z−1
∑

1≤i< j≤4

zi z j , (A.4)

where z = √
z1z2z3z4. For SO(10), the s-representation is 16-dimensional, it is complex

conjugate to c (so that the character for c can be obtained from the s-character by the
substitution z → 1/z). Its character is

χs,SO(10) = z + z−1
5∑

j=1

z j + z
∑

1≤i< j≤5

z−1
i z−1

j , (A.5)

where z = √
z1z2z3z4z5. For SO(12), the s- and c-representations are 32-dimensional,

self-conjugate, and have the character

χs,SO(12) = z±1 + z−1
6∑

j=1

z j + z
6∑

j=1

z−1
j , (A.6)

where z = √
z1z2z3z4z5z6. For SO(14), the s-representation is 64-dimensional, it is

complex-conjugate to c, and its character is (with z = √
z1z2z3z4z5z6z7)

χs,SO(14) = z + z−1
7∑

j=1

z j + z
∑

1≤i< j≤7

z−1
i z−1

j + z−1
∑

1≤i< j<k≤7

zi z j zk . (A.7)
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SO(2N +1) group. All the characters are expressed in terms of N independent variables
zi , i = 1, . . . , N . The fundamental representation character is

χ f,SO(2N+1) =
N∑

i=1

z±1
i + 1. (A.8)

The character for TS-representation is

χTS ,SO(2N+1) =
∑

1≤i< j≤N

z±1
i z±1

j +
N∑

i=1

z±2
i +

N∑
i=1

z±1
i + N , (A.9)

the character for the TA-representation is

χTA,SO(2N+1) =
∑

1≤i< j≤N

z±1
i z±1

j +
N∑

i=1

z±1
i + N . (A.10)

The spinor representation characters are given for the lowest rank groups only. For
SO(7), the spinor representation is 8-dimensional and its character is

χs,SO(7) = z±1 + z−1
3∑

j=1

z j + z
3∑

j=1

z−1
j , (A.11)

where z = √
z1z2z3. For SO(9), the spinor representation is 16-dimensional and its

character is

χs,SO(9) = z±1 + z−1
4∑

j=1

z j + z
4∑

j=1

z−1
j + z−1

∑
1≤i< j≤4

zi z j , (A.12)

where z = √
z1z2z3z4. For SO(11), the spinor representation is 32-dimensional and its

character is

χs,SO(11) = z±1 + z−1
5∑

j=1

z j + z
5∑

j=1

z−1
j + z−1

∑
1≤i< j≤5

zi z j + z
∑

1≤i< j≤5

(zi z j )
−1,

(A.13)

where z = √
z1z2z3z4z5. For SO(13), the spinor representation is 64-dimensional and

its character is (with z = √
z1z2z3z4z5z6)

χs,SO(13) = z±1 + z−1
6∑

j=1

z j + z
6∑

j=1

z−1
j + z−1

∑
1≤i< j≤6

zi z j + z
∑

1≤i< j≤6

(zi z j )
−1

+z−1
∑

1≤i< j<k≤6

zi z j zk . (A.14)
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