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Abstract
A general canonical formalism for discrete systems is developed, which can
handle varying phase space dimensions and constraints. The central ingredient
is Hamilton’s principal function that generates canonical time evolution and
ensures that the canonical formalism reproduces the dynamics of the covariant
formulation following directly from the action. We apply this formalism to
simplicial gravity and (Euclidean) Regge calculus, in particular. A discrete
forward/backward evolution is realized by gluing/removing single simplices
step by step to/from a bulk triangulation and amounts to Pachner moves in the
triangulated hypersurfaces. As a result, the hypersurfaces evolve in a discrete
‘multi-fingered’ time through the full Regge solution. Pachner moves are an
elementary and ergodic class of homeomorphisms and generically change the
number of variables, but can be implemented as canonical transformations
on naturally extended phase spaces. Some moves introduce a priori free
data that, however, may become fixed a posteriori by constraints arising in
subsequent moves. The end result is a general and fully consistent formulation
of canonical Regge calculus, thereby removing a longstanding obstacle in
connecting covariant simplicial gravity models to canonical frameworks. The
presented scheme is, therefore, interesting in view of many approaches to
quantum gravity, but may also prove useful for numerical implementations.
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1. Introduction

Over the last few decades, discrete gravity theories and models have been employed as useful
tools in the study of numerous aspects of both classical and quantum gravity. The discrete
structures usually provide, on the one hand, formulations that are amenable to numerical
investigations [1, 2], and on the other hand, a regulator that is particularly convenient for
the construction and definition of (UV-finite) quantum gravity models [3–9]. An auxiliary
discretization of a continuum theory can, however, introduce a number of discretization
artifacts as well as break continuum symmetries; in particular, the continuum diffeomorphism
symmetry of general relativity is generically broken in discrete gravity [3, 4, 10–14].

The vast majority of research in discrete gravity has been performed in the covariant
setting, i.e. by means of formulations directly following from an action. Specifically, in
the quantum theory, one has thereby benefited from the many numerical methods devised
for lattice gauge theories, which are based on Euclidean path-integral techniques [4–6]. In
contrast to this, efforts to construct canonical formulations of discrete gravity have been few
and far between; first attempts [15] were based on a discretized space, but a continuous time.
However, consistency requires that the canonical theory reproduces exactly the dynamics and
(possibly broken) symmetries of the covariant formulation, i.e. solutions of the canonical
theory must replicate those following directly from the action. In particular, a canonical
framework consistent with the discrete action ought to yield a discrete time evolution. A first
consistent canonical formulation of simplicial gravity3 has only appeared recently [10, 11]
and was based on ideas from the ‘consistent discretizations program’ [16] and an evolution
scheme presented in [17]. However, this canonical evolution scheme was only applicable to
a special class of triangulations with both fixed topology and connectivity of the ‘spatial’
triangulated hypersurfaces and no consistent canonical formulation of simplicial gravity has
been constructed in full generality thus far.

3 By ‘simplicial gravity’, we mean a gravitational theory based on simplices and triangulations, as opposed to the
more general term ‘discrete gravity’, which may encompass also other discretization schemes.
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One of the major obstacles in the quest of a general canonical formulation of simplicial
gravity has been the issue of foliating a D-dimensional covariant solution by (D − 1)-
dimensional triangulated hypersurfaces, which are generically comprised of different numbers
of subsimplices, which, in turn, carry the variables of the theory. The dimension of
configuration or phase spaces associated with such discrete slices must therefore vary and
a canonical evolution scheme thereby calls for mappings between phase spaces of different
dimension.

Why should one attempt to construct a general formulation of canonical simplicial gravity
in the first place? The general answer is that classically this provides a better notion of discrete
dynamics and time evolution, and furthermore, in quantum gravity, one is interested in,
e.g., transition amplitudes between different three-geometries, which generally requires to be
able to identify the corresponding quantum states as elements of a Hilbert space of three-
geometries. But there are further practical reasons why it appears useful to be able to treat a
changing/evolving lattice with varying numbers of physical and gauge degrees of freedom in a
canonical framework. For instance: (i) there are plenty of physical situations whose description
may be facilitated via an adaptation of the discretization in time. For (discrete) gravity, the
prime example is an expanding or contracting universe, while a more extreme example is
the ‘no boundary’ proposal [18]. (ii) Such a framework may foster the scope of numerical
implementations. (iii) It may be advantageous for quantization and help in comparing or even
connecting various approaches to quantum gravity. Most of the latter can be roughly divided
into two categories, namely canonical continuum quantizations (e.g. loop quantum gravity
[19, 20]) and covariant path integral formulations, regularized by a discrete lattice structure
(e.g. causal dynamical triangulations [6], spin foams [8, 9, 20], quantum Regge calculus [3],
etc). A link between such approaches remains elusive thus far4. It seems that a consistent
canonical framework for simplicial gravity is a prerequisite for at least comparing these
two categories, especially in view of loop quantum gravity, on the one hand, which involves
changing ‘spatial’ graphs, and spin foams, on the other hand, which are based on triangulations.

Motivated by these potential benefits, it is the goal of this paper to overcome the technical
obstacles first at the classical level by devising a canonical (discrete) evolution scheme for
triangulations, which

(1) is general and applicable to arbitrary triangulations (of fixed ‘spatial’ topology, but varying
‘spatial’ hypersurfaces) satisfying the equations of motion following from an action,

(2) is local (i.e. for practical reasons, one may restrict oneself to a finite number of equations),
and

(3) may be interpreted entirely from the perspective of the (D−1)-dimensional hypersurfaces.

The underlying basic idea is to build up a D-dimensional triangulation (satisfying the equations
of motion) step by step by gluing at every discrete evolution step one single D-simplex onto the
(D − 1)-dimensional hypersurface of the previous piece of triangulation. Backward evolution
is analogously obtained by removing single D-simplices from the bulk triangulation. In such a
way—in analogy to the evolution of hypersurfaces in canonical general relativity—a ‘spatial’
triangulated hypersurface evolves in a discrete ‘multi-fingered’ or ‘bubble’ time through the
full D-dimensional solution. As we shall see, the gluing/removal moves that we permit can be
interpreted within the hypersurfaces as Pachner moves, which are an elementary and ergodic
class of topology-preserving moves, mapping between any triangulations of the same topology
by finite sequences. This local evolution scheme has to be constructed consistently in such a
way that the equations of motion are satisfied at every step and requires the discrete action to

4 With the exception of the loop-quantum-gravity and spin-foam formulations of the topological 3D theory, which
were shown to be equivalent [21].
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be additive. The latter is fulfilled for a particular discretization of general relativity, namely
length Regge calculus, for which we will develop this evolution scheme here in 3D and 4D.
However, the scheme is more general and, through a suitable change of variables, applicable
to other simplicial gravity theories (with additive action) as well.

In order to incorporate these ideas in a canonical framework, we must first of all extend
the theory of discrete dynamics from the regular [22] (i.e. for systems without constraints)
to the irregular case where constraints necessarily occur (see also [16]), before applying this
to simplicial gravity. The central idea of our canonical framework is to resort to Hamilton’s
principal function as a generating function for a canonical time evolution; in our irregular case,
this time evolution map will only be defined on and between constraint surfaces. Additionally,
equations of motion transform naturally into certain canonical constraints, which permit to
suitably extend phase spaces, associated with hypersurfaces in such a way as to implement the
Pachner moves as canonical transformations. Because of the a priori (i.e. prior to extension)
varying phase space dimensions, the space of initial data corresponding to a given hypersurface
cannot, in general, correspond to the space of solutions (modulo gauge) and we generically
have to expect a high degree of non-uniqueness. Indeed, as we shall discuss in more detail
in the main body of this paper, not every Pachner move will invoke equations of motion and
rather allow for data that can be a priori freely chosen at that step, but may become fixed
a posteriori by additional constraints arising in subsequent moves. Nevertheless, the end result
is a general and fully consistent formulation of canonical Regge calculus.

This new canonical framework can also be viewed as a method to generate solutions and
is, furthermore, susceptible to quantization. In particular, it admits the advantage that by using
the action as a generating function, the eventual canonical quantum theory should directly
correspond to the path-integral formulation based on the same discrete action.

The rest of this paper is organized as follows. In section 2, we provide the basic
ideas to deal with systems with changing phase space dimensions and summarizes all
necessary facts for generating functions of relevant canonical transformations. Subsequently, in
section 3, we outline the elementary evolution scheme for triangulations, which amounts to
Pachner moves in the hypersurfaces and review essential background knowledge of Regge
calculus. In section 4, we discuss in detail the Regge dynamics and implementation of Pachner
moves in 3D, elucidate how to start from a zero-dimensional phase space and exhibit in an
example the reproduction of the so-called tent moves in 3D by sequences of the Pachner
moves, while in section 5 we investigate the same points in 4D. In order to enhance the
readability of this paper, we decided to move more technical aspects to the end of the
manuscript, where after an introduction to the Lagrangian and canonical formalism for regular
discrete systems in section 6.1, we develop in section 6.2 a general formalism for singular
discrete systems, which, in particular, is also applicable to systems with varying phase space
dimension. We discuss the relevant symplectic structure and specify in which sense symplectic
forms are preserved, before applying this formalism to Pachner moves in section 6.3. In
section 7, we offer a brief interpretation of the constraints arising in the new framework, and
finally, section 8 contains the conclusions and an outlook to further work.

The application of the present framework to the 4D linearized theory will appear in a
companion paper [23].

2. Canonical discrete dynamics

The central idea [10, 16, 22, 24–26] for generating a canonical discrete dynamics is to employ
Hamilton’s principal function S̃ as a generating function for a canonical transformation, which
implements time evolution.

4
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Hamilton’s principal function S̃ is the action S evaluated on solutions. That is, we assume
that the action defines a well-defined boundary problem, with boundary data given by some
configuration variables xini and xfin associated with initial and final boundaries. (We will
assume that we can split the boundary into two parts.) Hamilton’s principal function S̃ is thus
a function of these boundary data xini and xfin. Since it arises by integrating out (i.e. solving
for) all the bulk variables, we might also use the term ‘effective action’, instead of Hamilton’s
principal function.

Furthermore, we assume that the action is additive in an appropriate sense. More precisely,
the action associated with a region that is comprised of two regions should be the sum of the
actions associated with each of the two regions:

S({x}A∪B) = S({x}A) + S({x}B), (2.1)

where {x}C denotes all the dynamical variables associated with the region C. As a consequence
of the fact that actions normally arise as spacetime integrals over Lagrangians, additivity can
usually be obtained by taking into account boundary terms.

If the regions are such that the boundary variables of A and B are {xini, xinter} and {xinter, xfin},
respectively, we find the following convolution property of Hamilton’s principal function:

S̃(xini, xfin) = extrxinter [S̃(xini, xinter) + S̃(xinter, xfin)]. (2.2)

Here ‘extr’ indicates that we look for the value of xinter that solves the variational problem of
the functional in square brackets in (2.2), i.e. a solution to the dynamical problem defined by
the action

S(xini, xinter, xfin) := S̃(xini, xinter) + S̃(xinter, xfin). (2.3)

Property (2.2) can be proven by splitting the variational problem over all variables associated
with the region A ∪ B (but keeping xini, xfin fixed) into three parts: one involving only the
variables inside A, the other one only involving the variables inside B and, finally, varying with
respect to the boundary data xinter.

The action on the left-hand side of (2.3) can, in fact, be understood as a discrete action of a
problem with two time steps. Usually, we do not have Hamilton’s principal function available
(which requires the solution of the continuum problem); however, one can approximate it for
small time intervals with some discrete (one time step) action, which is a function of initial
and final configuration data. Enumerating the time steps with a discrete label k, we will denote
such a choice by Sk := S(xk−1, xk).

In order to define a Legendre transform and time evolution from such a discrete action, we
can appeal to the standard formalism for Hamilton’s principal function. Hamilton’s principal
function is also a generating function of the first kind (i.e. depends on the old and new
configuration coordinates) and thereby determines the canonical time evolution:

− pk−1 := − ∂Sk

∂xk−1
, + pk := ∂Sk

∂xk
. (2.4)

(Recall that Sk := S(xk−1, xk).) We shall refer to the momenta − p as pre-momenta and to the
momenta + p as post-momenta because a discrete formulation (2.4) allows one to define two
momenta at every time step:

− pk := −∂Sk+1

∂xk
, + pk := ∂Sk

∂xk
. (2.5)

Note that the requirement + pk = − pk, which we term ‘momentum matching’, implements the
equations of motion (in the sense of (2.2)) for the variables xk. Or, conversely, the equations of
motion implement a momentum matching of forward and backward momenta, such that there
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are unique momenta for the variables at step k. Henceforth, we will often omit the superindices
+ and − at the momenta, implicitly assuming that momentum matching holds.

Accordingly, we can define two Legendre transformations from Qk−1 × Qk to the phase
spaces Pk−1 and Pk [22], where Qk is the configuration space at step k:

F
+Sk : (xk−1, xk) �→ (xk,

+ pk) =
(

xk,
∂Sk

∂xk

)
,

F
−Sk : (xk−1, xk) �→ (xk−1,

− pk−1) =
(

xk−1,− ∂Sk

∂xk−1

)
.

(2.6)

These Legendre transformations are, in general, not isomorphisms because in the discrete we
will allow for the general situation dimQk−1 �= dimQk. Constraints in phase space arise if the
image of the Legendre transform is not given by the entire phase space, but by a submanifold,
which is called the constraint manifold. Note that here we have two Legendre transformations,
and consequently, we will encounter two different kinds of constraints, which we call pre- and
post-constraints. Pre-constraints result from F

−Sk and constitute the conditions that the time
evolution step from (k − 1) to k can take place. (In other words, momentum matching can be
applied at the time step (k − 1).) Post-constraints, on the other hand, arise from F

+Sk and are
relations on phase space that are automatically satisfied by the momenta + pk (for all initial
values) after having performed an evolution step from (k − 1) to k. By momentum matching,
these post-constraints will provide conditions for the momenta − pk, i.e. the momenta for
the next evolution step. The symplectic structure in the presence of these constraints will be
discussed in detail in section 6.

The formalism outlined here can be easily applied to a discrete time evolution, at least
to the case where spacetime can be foliated into disjoint hypersurfaces, which, moreover,
carry the same number of variables. However, for a triangulation, this need not be the case.
Furthermore, we are striving for a local notion of time evolution, i.e. one in which only a
small region of a hypersurface is evolved, or pushed forward in time. Hypersurfaces will,
consequently, in general overlap. The goal to devise a general discrete time evolution scheme
therefore gives us the following problems to tackle.

(a) A time step may involve bulk variables. This will not severely complicate the situation,
since the Hamilton–Jacobi formalism, as described here, automatically takes care of this.

(b) Different time steps, i.e. hypersurfaces defining instants of time, may involve coinciding
subsets of variables. In other words, two hypersurfaces with different time labels may
partially overlap. This is an example of the ‘multi-fingered’ time evolution encountered
in diffeomorphism-invariant theories. This issue can also be handled easily; here, the
additivity of the action plays an essential role.

(c) The number of variables may actually differ from time step to time step. As a result,
the phase space dimensions change in general and we have to reconsider ‘canonical
evolution’.

Let us discuss these issues one by one.

(a) Assume that we can split the configuration variables xk at step k into two sets: ‘true
boundary variables’ xt

k and ‘internal (bulk) variables’ xi
k. Such a situation can be easily

constructed by starting from some elementary evolution scheme with time steps labeled
by k ∈ Z and then defining an effective evolution scheme where we consider only every
nth time step (or consider time steps of different basic lengths) and henceforth label these
rearranged steps by a different label n ∈ Z. That is, for these steps, we then have xt

n
and xi

n. For example, figure 1 depicts a triangulation that has been built up by simplices,
which can be grouped up into fat slices bounded by non-intersecting hypersurfaces �n.

6
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n

n + 1

Σn−1

Σn

Σn+1

Sn

Sn+1

Figure 1. Schematic illustration of a fat slicing of a triangulation. The triangulation can be built up
step by step by single simplices where we count such elementary steps by k ∈ Z. The elementary
steps can be grouped up into fat slices, which we now count by n ∈ Z.

Individual simplices are enumerated by k ∈ Z, while fat slices are enumerated by the new
label n ∈ Z. Now assume this to be a Regge triangulation where the lengths of edges
are the configuration variables and assign lengths of edges inside fat slice n and of edges
contained in �n to step n. Thus, at step n, we have the ‘bulk lengths’ li

n of edges that
reside inside the fat slice n, as well as the ‘true boundary lengths’ le

n of edges e ⊂ �n.
Consequently, the action associated with fat slice n + 1 does not depend on li

n and we
have the dependence Sn+1(le

n, li
n+1, le′

n+1), etc.
In such a situation, we can generally require that the action Sn(xn−1, xn) does not

depend on the internal variables xi
n−1, as these variables only appear between times

(n − 2) and (n − 1). The time evolution equations are then

− pn−1
t := − ∂Sn

∂xt
n−1

, + pn
t := ∂Sn

∂xt
n

,

− pn−1
i := − ∂Sn

∂xi
n−1

= 0, + pn
i := ∂Sn

∂xi
n

.

(2.7)

Hence, we have − pn−1
i = 0 and, by momentum matching, also + pn−1

i = 0 (which may lead
to further ‘secondary’ constraints). If the same kind of splitting into internal and boundary
variables occurs for all time steps n, we will obtain − pn

i = 0 for all n. The equations of
motion for the internal variables are then implemented via momentum matching

0 = − pn
i = + pn

i = ∂Sn

∂xi
n

. (2.8)

This situation will always arise if some class of variables only appears in the action Sn for
only one label n.

On the other hand, here we see the first occurrence of a pre-constraint; the constraint
hypersurface is defined by pi ≡ 0. This is a general feature: constraints appear as equations
of motion that involve only canonical data from one time step. By redefining the time label
of variables (here by summarizing several time steps enumerated by k into one labeled by
n), one can transform equations of motion into constraints.

The internal variables can be integrated out and we can define an effective action S̃n,
which only depends on the ‘true boundary’ variables xt

n−1 and xt
n. One can easily show

that this leads to an equivalent time evolution for the remaining variables.
(b) Assume that we have the same variables xb appearing in different time steps, for instance

xb
k+1 ≡ xb

k for some set of variables xb (we return here to a counting of time steps by k).
This generally happens if we implement a local time evolution, i.e. if the hypersurface in
every time step only changes in a specific region.

7
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First, let us consider the case that xb is not dynamically involved in the time evolution
at all, i.e. we want to implement the evolution equations

xb
k+1 = xb

k, pk+1
b = pk

b. (2.9)

It is not possible to implement these equation by using the action as a generating function
of the first kind, as the fact that xb are not dynamically involved means that neither xb

k
nor xb

k+1 appear in the action Sk+1. However, for these variables, we can use the identity
transformation generated either by a generating function of the second (depending on
old configuration and new momentum variables) or the third kind (depending on new
configuration and old momentum variables):

G2
(
xk

b, pk+1
b

) = −xb
k pk+1

b , pk
b = −∂G2

∂xk
b

= pk+1
b , xk+1

b = − ∂G2

∂ pk+1
b

= xk
b,

G3
(
xk+1

b , pk
b

) = xb
k+1 pk

b, pk+1
b = ∂G3

∂xb
k+1

= pk
b, xk

b = ∂G3

∂ pb
k

= xb
k+1. (2.10)

Another case that will appear is that some configuration variables do not evolve
xe

k = xe
k+1, while the associated momenta, however, change as either xe

k or xe
k+1 appear in

the action Sk+1 (but not both for the same index e). That is, in accordance with (2.6), we
want to implement either

pk
e = pk+1

e − ∂Sk+1(xk)

∂xe
k

or pk+1
e = pk

e + ∂Sk+1(xk+1)

∂xe
k+1

, (2.11)

which we call ‘momentum updating’. This can still be implemented via a generating
function of the second or the third kind by simply adding either G2 or G3, respectively, to
the action Sk+1. As Sk+1 either only depends on the old configuration variables xe

k or only
on the new configuration variables xe

k+1, the type of the generating function, in fact, does
not change. One can check that these generating functions lead to the evolution equations
we wished for.

Note that with these definitions, all momenta at any given time step can also be
defined by

− pk := −∂Sk−(x−
k )

∂xk
, + pk := ∂Sk+(x+

k )

∂xk
, (2.12)

where Sk−(x−
k ) denotes the action associated with the region, which lies to the future of

the hypersurface with label k and Sk+(x+
k ) the action associated with the region in the

past of this hypersurface (see figure 2). Here, x−
k denotes all variables associated with �k

and the future region, while x+
k denotes all variables associated with �k and the past of it.

Moreover, xk can be any configuration variable5.
This will also include the case, where, say, the variable x appears in the past of

time k, but not in the future. The equation of motion is then automatically implemented
by − pk = 0 and momentum matching. In other words, in general, we can actually add
variables, which are not ‘true dynamical variables’, i.e. which are not associated with the
hypersurface �k but rather to the future or past of it. Then, one of the associated momenta
+ pk or − pk will be zero, thus enforcing the equations of motion by momentum matching
+ pk = − pk.

This allows us to deal with problem

5 In (2.12), if the same variable x appears with multiple time labels xk = xk+1, . . ., it is understood that the action is
expressed only as a function of x = xk.

8
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Future

Past

Σk Sk−

Sk+

Figure 2. Hypersurface �k separating ‘past’ and ‘future’ regions at step k.

3D perspective:

t

−→

2D perspective:

Σk

t

−→

Σk+1

1–3 Pachner move

Figure 3. 3D example: gluing a single tetrahedron onto a single triangle in the 2D boundary
hypersurface of a 3D bulk triangulation. From the perspective of the 2D hypersurface, this gluing
move appears as a subdivision of the triangle t. That is, the move appears as a 1–3 Pachner move
in the hypersurface. This is a specific example of the situation described earlier where the numbers
of variables associated with the two hypersurfaces before and after the new move differ due to the
three new edges.

(c) the case where the number of configuration variables and, therefore, the dimensions of the
phase spaces associated with different hypersurfaces �k−1 and �k differ. We can formally
extend the phase spaces by including any variables into the phase space at time (k − 1),

which only appear at time k but do not have a natural associated variable at time (k − 1),
and vice versa. Then, we can have phase spaces of equal dimensions at the two time steps
and we can implement time evolution by a canonical transformation.

Say, we have a new variable xn
k+1 that appears at time step (k + 1) but not at time

step k (for a similar situation in 3D Regge calculus see figure 3) and the action Sk+1 only
depends on xn

k+1 but not on xn
k . Accordingly, we extend the phase space at time k by the

9
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pair
(
xn

k, pk
n

)
and may use the action as a generating function of the first kind, resulting in

the evolution equations

− pk
n = −∂Sk+1

∂xn
k

= 0, + pk+1
n = ∂Sk+1

∂xn
k+1

. (2.13)

The variable xn
k remains undetermined, for it does not appear at all in the action

Sk+1. We may fix its value to xn
k = xn

k+1, such that it appears as an initial datum for
time step k, determining the data at time step k + 1. Furthermore, in (2.13), the pre-
constraint − pk

n = 0 shows up as a constraint on the variable pk
n, which appears at time

k for the ‘first time’. Hence, by momentum matching, it does not place any restrictions
on the dynamical variables at step k. (If one also extended the phase spaces at previous
time steps by this variable, the momentum pn would also be vanishing.) Additionally,
we will also encounter a post-constraint: assuming that N further variable pairs

(
xi

k, pk
i

)
are involved, the time evolution will map from a (2N + 2)-dimensional phase space to
another (2N + 2)-dimensional phase space (using that xn

k = xn
k+1). However, this map is

not defined on the full phase space, because the pre-constraint pk
n = 0 has to hold. As a

consequence, the image of the map can be maximally (2N + 1)-dimensional, implying
the occurrence of also a post-constraint. Indeed, in the examples, in the following, it will
turn out that the second equation in (2.13) only involves variables from time step (k + 1)

and, hence, constitutes a constraint.
Conversely, the case of an old variable xo

k that does not have an equivalent at time
(k + 1) can be treated analogously, i.e. we extend the phase space at time (k + 1) by the
pair

(
xo

k+1, pk+1
o

)
. This time we obtain a post-constraint + pk+1

n = 0. Likewise, we will
also find a pre-constraint, which in the case of the Pachner moves will always be given
by

− pk
o = − ∂Sk+1

∂xo
k

, (2.14)

i.e. this equation will only involve variables from time step k. Through momentum
matching, − pk

o = + pk
o, this constraint effectuates the equation of motion ∂S/∂xo = 0, as

xo appears in Sk+1 for the ‘last time’.

In the following section, we will implement Pachner moves as time evolution maps in
simplicial gravity and, with the help of these examples, explain the concepts encountered here
in greater depth.

3. Pachner moves as time evolution maps

In the previous section, we presented a general method to derive a canonical time evolution
scheme from a given discrete action. The advantage of this method is that the canonical
evolution equations will exactly reproduce the equations of motion of the (discrete) covariant
formalism. This is, in general, different from the procedure of first deriving a continuum
canonical formalism from the continuum action and subsequently discretizing this continuum
canonical formalism [15]. In the case of general relativity, where diffeomorphism symmetry
plays a fundamental role, the latter method usually leads to (classically) anomalous constraint
algebras [4, 12, 15].

A canonical evolution scheme for Regge calculus, which reproduces the covariant
equations of motion, has been presented in [10, 11, 24]. However, this scheme was only
applicable to a special class of triangulations, namely those which can be evolved from a
hypersurface by the so-called tent moves. These tent moves [17] are special local evolution
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’Future’

’Past’

Figure 4. Removal moves for the ‘past triangulation’ are equivalent to gluing moves for the ‘future
triangulation’ and vice versa.

moves that do not change the topology and the triangulation (i.e. the connectivity of the
triangulation) of the ‘equal time’ hypersurfaces. Hence, in this case, one does not encounter
phase spaces of different dimensions.

In this work, we will advance and devise a general canonical framework applicable
to arbitrary triangulations (of fixed ‘spatial’ topology) by implementing an elementary and
ergodic class of local evolution moves, the so-called Pachner moves [27]. Pachner moves are
elementary in that they involve only a fixed number of simplices during each move and are,
furthermore, topology-preserving and ergodic, i.e. can map between any triangulations of the
same topology by finite sequences. In particular, the tent moves (see sections 4.4 and 5.5),
which can involve an arbitrary number of simplices, can, in fact, be decomposed into Pachner
moves.

More precisely, the evolution moves to be implemented below can be interpreted entirely
within the ‘spatial’ hypersurfaces (as local changes) and appear as Pachner moves therein: if
we take the (D − 1)-dimensional hypersurface � as the boundary of a D-dimensional bulk
triangulation, the Pachner moves in � arise by gluing a single D-simplex to, or removing one
D-simplex from the bulk triangulation [27]. Note that here we only allow for gluing processes
of top-dimensional simplices, which identify faces of one dimension less of a given simplex
with faces of equal dimension in the hypersurface (and analogously for removal procedures).
For instance, figure 3 depicts the 3D example of the 1–3 Pachner move in the 2D hypersurface.
All other Pachner moves in (D − 1) dimensions can be similarly produced by gluings or
removals of single D-simplices in the D-dimensional bulk triangulation.

This elementary procedure provides a more compelling connection between the covariant
and the canonical picture: the discrete evolution of the hypersurface can be reinterpreted
as building up the bulk triangulation, and, hence, the (discrete) spacetime step by step
by simplices. In analogy to the situation in canonical general relativity, the triangulated
hypersurface evolves in a discrete ‘multi-fingered’ (or ‘bubble’) time through the full (discrete)
spacetime solution. In this light, every gluing move at a given evolution step k, which adds a
simplex to the ‘past triangulation’, can also be viewed as a removal move, which subtracts a
simplex from the ‘future triangulation’, and vice versa (see figure 4 for a schematic illustration).
Formally, this is guaranteed by momentum matching.

Since Pachner moves have inverses and, thus, in order to establish a genuine
implementation of Pachner moves into the mathematical formalism, we have to ensure
that every phase space map Pachner f corresponding to the action of a Pachner move on a
hypersurface has an inverse that corresponds to the action of its inverse move (of course, via

11
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the gluing/removal correspondence applied to the same simplex), i.e. Pachner f ◦ Pachner−1
f = id.

This, indeed, will be the case.
As Pachner moves do not change the topology of a triangulation, a (D − 1)-dimensional

hypersurface with topology T evolved by Pachner moves will lead to a D-dimensional
triangulation of topology [0, 1] × T. Hence, just as usual canonical evolution schemes, also
the present scheme assumes or implements a non-changing topology of the ‘equal time’
triangulations. This might be advantageous, for instance, for quantization, if one wants to
suppress topology changes of spatial hypersurfaces (interpreted as the production of baby
universes). Specifically, the approach of causal dynamical triangulations (CDT) [6] shows that
this can lead to a much more regular large scale limit than in the case of (Euclidean) dynamical
triangulations [5, 28], where arbitrary topology changes are allowed for6.

On the other hand, a Pachner move evolution scheme allows for a change of the number
of variables ‘in time’. There are numerous physical situations, where it might be interesting
to adapt the discretization (density) in time, e.g., for an expanding or contracting universe. In
fact, we will show that, akin to the ‘no-boundary’ proposal [18], we can start with an ‘empty
triangulation’, obtain the boundary of a D-simplex in the next time step and evolve this to a
bigger and bigger triangulation.

Furthermore, Pachner moves implement the idea of a ‘fluctuating lattice’ in a controlled
manner, i.e. the idea that the lattice, or discretization, is not fixed in time (or spacetime) but
is either summed over or is determined by dynamical considerations. Indeed, we will see
that even the classical dynamics may prefer or suppress certain Pachner moves and, hence,
determine the evolution of the connectivity of the triangulation itself.

3.1. Regge calculus

In this paper, we will develop this evolution scheme for a particular discretization of
general relativity, namely Regge calculus [2, 29]. However, the basic ideas are general and
straightforwardly adaptable to other discretization schemes fulfilling the basic prerequisite
of additivity of the action; whenever we glue or remove an elementary building block, i.e. a
simplex, we have to add or subtract the corresponding piece of action.

To begin with, we will review some basic notions of Regge calculus based on length
variables, before studying the details of the individual Pachner moves in sections 4 and 5.
For formulations using other geometric variables, see, e.g., [30, 31]. Standard Regge calculus
is based on a fixed triangulation where the basic variables are simply the length variables
associated with the edges of this triangulation. These length variables (assuming generalized
triangle inequalities are satisfied, which we will always do) specify a piecewise linear geometry
for the triangulation in question. The equations of motion are determined by a variational
principle from an action, the Regge action, which can be viewed as a discretization of the
Einstein–Hilbert action.

The (Euclidean) Regge action (without a cosmological constant term) for a D-dimensional
triangulation T with boundary ∂T and interior T ◦ := T\∂T is given [2, 32] by

S =
∑
h⊂T ◦

Vh εh +
∑
h⊂∂T

Vh ψh, (3.1)

6 The evolution moves implemented here yield triangulations akin to the triangulations employed in CDT. The
splitting off of baby universes, aka spatial topology changes, on the other hand, would require the implementation of
moves distinct from the Pachner moves. For instance, in D dimensions, one could allow for a move that identifies all
D+1 (D−1)-faces of a D-simplex with D+1 (D−1)-simplices in a (D−1)-dimensional hypersurface. Furthermore,
by only allowing top-dimensional simplices to be glued onto faces of one dimension less, we are disallowing singular
moves that, e.g., only identify a single vertex of the new simplex with a single vertex of the hypersurface.

12
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where h stands for the (D − 2)-dimensional subsimplices (sometimes called ‘hinges’) of T ,
i.e. edges e in 3D and triangles t in 4D. Vh denotes the volume of the hinge h. The deficit
angles εh and exterior angles ψh are given by

εh = 2π −
∑
σ⊂h

θσ
h for h ⊂ T ◦,

ψh = kh π −
∑
σ⊂h

θσ
h for h ⊂ ∂T,

(3.2)

and in both cases, the sum ranges over all D-dimensional simplices σ , which contain h, and
θσ

h is the interior dihedral angle in the simplex σ between the two (D − 1)-dimensional
subsimplices that meet at h ⊂ σ . The number kh is fixed according to how many pieces l of
triangulations are glued along the hinge in question: because of the boundary term in (3.1), the
action is additive if we glue two pieces of triangulations together and choose kh = 1. In the
canonical evolution scheme, we will glue top-dimensional simplices to bulk triangulations.
That is, the smallest triangulations we consider is just one tetrahedron τ in 3D or one 4-simplex
σ in 4D, of which the actions are just boundary terms:

Sτ =
∑
e⊂τ

le
(
keπ − θτ

e

)
,

Sσ =
∑
t⊂σ

At
(
ktπ − θσ

t

)
,

(3.3)

where le denotes the length of the edge e and At denotes the area of the triangle t. Again, ke

and kt are to be determined by the gluing process. In the canonical evolution scheme presented
below, we will either have ke, kt = 1 or ke, kt = 0.

The equations of motion are obtained by varying the action (3.1) with respect to the
lengths le of the edges in T ◦ (while keeping the edge lengths in the boundary ∂T fixed). The
boundary term in (3.1) ensures that, for all edges e ∈ T ◦, the Regge equations read∑

h⊃e

∂Vh

∂le
εh = 0. (3.4)

Note that in 3D the equations of motions enforce εe = 0, i.e. vanishing deficit angles and
therefore vanishing curvature.

Finally, the variation of the deficit angles appearing in the action vanishes because of the
Schläfli identities∑

e⊂τ

le ∂θτ
e

∂le′ = 0,

∑
t⊂σ

At
∂θσ

t

∂le′ = 0.

(3.5)

4. Pachner moves for 3D Regge calculus

In the next subsections, we will spell out the details of the dynamics of Pachner moves for
3D Regge gravity (without a cosmological constant). Before delving into the details, we will
make a few remarks on the dynamics of 3D gravity. As mentioned in the previous section,
the equations of motion for gravity require that all deficit angles vanish and thereby that the
piecewise flat geometry is flat. In the canonical description, we describe the dynamics of the
2D hypersurface, i.e. the changes in the intrinsic and extrinsic geometry of the hypersurface
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evolving through the 3D spacetime. As the latter is flat, we will essentially describe different
embeddings of a 2D hypersurface into flat 3D space.

This allows us to determine Hamilton’s principal function: since the deficit angles vanish
for solutions, only the boundary term remains:

S̃(le) =
∑
e⊂∂T

leψe(l
e). (4.1)

Here, le are the lengths of the edges in the boundary of the triangulation. The momenta are
given by the derivatives of Hamilton’s principal function with respect to the edge lengths.
Because of the Schläfli identity, the terms with derivatives of the exterior angles vanish and
we obtain (the different signs in (2.4) can be taken into account by taking the appropriate
orientation of the exterior angles)

pe = ψe. (4.2)

Thus, the momenta conjugate to the length variables are given by the exterior angles. The same
result was obtained in [33] starting from a first-order (connection) formulation of discrete
gravity.

As a consequence of the fact that the Pachner move dynamics allows to add degrees of
freedom during the evolution, we can start from a small triangulated hypersurface and evolve
to a much bigger one. In particular, we can start from an empty triangulation at time k = 0.
This can be seen as just a technical method, however, might also be useful (in 4D) to explore
the ‘no-boundary proposal’ [18].

In order to produce a triangulation with a hypersurface of, e.g., spherical topology, we can
start with an evolution move from the empty triangulation to the boundary of a tetrahedron7.
A tetrahedron has six boundary edges ln

1 , n = 1, . . . , 6, and hence, the phase space at time
k = 1 is 12 dimensional. Accordingly, we can extend the phase space at time k = 0 by the six
pairs

(
ln
0 , p0

n

)
.

Using the one-tetrahedron action as a generating function of the first kind,

G0−1
(
ln
0 , ln

1

) = Sτ (l
n
1 ) =

∑
n⊂τ

ln
1

(
π − θτ

n (ln
1 )

)
, (4.3)

the equations of motion amount to

p0
n = 0, p1

n = ∂Sτ

∂ln
1

= π − θn
(
ln
1

)
. (4.4)

That is, ln
1 remain undetermined. However, we can set ln

0 = ln
1 with the understanding that ln

1
are initial data, which appear only at time step k = 1. The momenta at k = 0 are constrained to
vanish. But also at time k = 1, we obtain a post-constraint because all the momenta are given
as functions of the length variables at time k = 1. Indeed, this equation just expresses the
fact that the momenta are exterior angles, which for a flat tetrahedron are determined by the
intrinsic geometry of the boundary surface, i.e. the length variables. Hence, we have a totally
constrained system, as all the momenta are determined as functions of the length variables.

This hypersurface can be evolved into a more complicated hypersurface (with spherical
topology) by means of the Pachner moves described below. Momentum updating will then
take care of the geometrical updating of the exterior angles, i.e. the exterior angles change
according to the dihedral angles that are added/subtracted by gluing/removing tetrahedra
onto/from the hypersurface.

The dynamics of 3D gravity is special because the fact that the system is totally constrained
does not even change for more complicated triangulations (of spherical topology); through

7 We could equally well begin by producing initial hypersurfaces of more complicated topology.
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constraints all momenta at time k will be determined by the length variables of step k. These
constraints express the fact that we are always dealing with a 2D hypersurface embedded
into 3D flat space and that, furthermore, the momenta are the exterior angles. Accordingly,
if we considered a parallel transport of a 3D vector along a small loop around a vertex v of
the hypersurface, we should obtain an identity transformation. This parallel transport can be
expressed [34, 35] as a sequence of rotations

Pv = R(αe1e2 )R(ψe2 )R(αe2e3 )R(ψe3 ) · · · R(ψe1 )
!= Id, (4.5)

where e1, e2, . . . denote some cyclic ordering of the edges around the vertex v, R(αeiei+1 )

denotes the rotation in the plane spanned by the two edges ei and ei+1 with the angle αeiei+1 ,
and R(ψei ) denotes the rotation around the edge ei by an angle ψei . Note that the exterior angles
equal the momenta and that the interior angles αee′ can be expressed as functions of the length
variables (in the 2D star of the vertex). Hence, the condition that the 3D parallel transport
matrix should be the identity gives us three (as the matrix is in SO(3)) constraints on the phase
space data for every vertex in the hypersurface. For a triangulation of spherical topology, we
have 3�v = �e + 6 for the number of vertices �v and the number of edges �e. Therefore, we
have at least as many constraints as configuration (or momentum variables). In fact, there are
six more constraints than edges, because there exist six relations between the constraints (as
can be checked explicitly for the example of the tetrahedron). These six relations correspond
to the three global rotations and three global translations, which change the embedding of the
2D triangulation in 3D flat space, but do not change any of the geometrical data, i.e. neither
lengths nor exterior angles.

The constraints (4.5) will be preserved by the Pachner moves, as these Pachner moves
will implement the equations of motions, i.e. flatness of the 3D triangulation. Furthermore,
momentum updating will ensure that the momenta are always given by the exterior angles
of the 2D hypersurface. Consequently, the canonical data at every time step will describe a
2D triangulation embedded into flat 3D space for which the relations (4.5) hold. Moreover,
as we shall see shortly, the 1–3 Pachner move generates one vertex and in conjunction with
this vertex also three (post-) constraints of the form (4.4), which are just a rewriting of the
form (4.5) for three-valent vertices8. The 2–2 Pachner move and the 3–1 Pachner move will
not generate vertices and therefore also no additional constraints. The dynamics prescribed
by these moves will, however, preserve the constraints of the form (4.5) for the reasons just
given.

As a mnemonic, for the description of the Pachner move dynamics in both 3D and 4D, we
will use the following edge indices in order to label and appropriately distinguish the various
length and momentum variables:

• e labels edges contained in the D-simplex of the Pachner move, which occur in both �k

and �k+1,
• n labels new edges introduced by a Pachner move, which occur in �k+1 but not �k,
• o labels old edges removed by a Pachner move, which occur in �k but not �k+1,
• b labels edges contained in both �k and �k+1 which are not involved in the Pachner move

and from that perspective may be considered as boundary edges.

8 The difference between the two forms of constraints is that (4.4) is linear in the momenta, whereas (4.5) involves
cos pe. Indeed, the constraints should rather involve the square (or the cos) of the momenta as in the continuum. This,
however, can also be taken into account in (4.4): Constraints quadratic in the momenta indicate that the constraint
hypersurface has two pieces corresponding to the two roots of the quadratic equations. The two pieces correspond to
the possibility of allowing for both orientations of the tetrahedron (i.e. allowing both signs for the exterior angles).
We can replace (4.4) by cos pn = cos ψn to take care of this fact.
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Σk Σk

a)( b)(

Figure 5. (a) The 1–3 gluing and (b) the 1–3 removal Pachner moves. The dashed edges are the
three new edges.

4.1. The 1–3 Pachner move

Consider a 3D triangulation with a boundary �k that we will consider as a 2D hypersurface at
time k. Glue to this boundary a tetrahedron τ such that one of the triangles is identified with a
triangle t in the 2D hypersurface �k. We obtain a new boundary �k+1. From the perspective
of the hypersurface, this gluing can be interpreted as a 1–3 Pachner move, i.e. the triangle t
is replaced by three triangles, that share one vertex v in the middle and have the same 1D
boundary, consisting of three edges as the original triangle t (see figure 3).

Note that the tetrahedron can be glued with two different orientations to the hypersurface.
This can be interpreted as gluing the tetrahedron either on the upper side (with a future pointing
tip) or on the bottom side (with a past pointing tip) to the hypersurface, or, alternatively, as
gluing or removing a tetrahedron to or from the bulk triangulation, respectively (see figure 5).
The Regge actions for the different orientations of the tetrahedron just differ by a global
sign (which can be understood to arise from the oriented exterior angles). This agrees with
the interpretation of gluing or removing a tetrahedron with, say, positive orientation: if we
remove a tetrahedron from the bulk triangulation, we would have to subtract the action for the
positively oriented tetrahedron, the alternative is to add the action (glue the tetrahedron) with
the negative orientation.

Every Pachner move in 2D and 3D can be interpreted as gluing a simplex in one of the
two different orientations to the 3D and 4D bulk, respectively. These two possibilities can,
in general, also be seen as gluing and removing a simplex with, say, positive orientation,
respectively. We will henceforth assume that the two possibilities are encoded in the
orientations and therefore in the signs of the exterior angles in the action (3.3). Thereby,
we can summarize these two cases into just one, which we will mostly refer to ‘as gluing a
simplex’ to the bulk triangulation or hypersurface.

In the 1–3 Pachner move, one triangle t is replaced by the same triangle subdivided into
three new triangles (see figure 6). Therefore, for this Pachner move, we will have edges of
three different types: edges eb not participating in the dynamics, three edges e in the boundary
of the triangle t, for which le

k = le
k+1 and the three new edges en with lengths ln

k+1, which only
appear at time step (k + 1), but not at k. We will regard the action

Sτ =
∑
e⊂τ

le
k+1

(−θτ
e

(
le
k+1, ln

k+1

)) +
∑
n⊂τ

ln
k+1

(
π − θτ

n

(
le
k+1, ln

k+1

))
(4.6)
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en
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Figure 6. The 1–3 Pachner move and its inverse, i.e. the 3–1 Pachner move.

associated with the tetrahedron glued to the hypersurface as a function of the three new edge
lengths ln

k+1 and the three edge lengths le
k+1. Note that we fixed the factors ke appearing in (3.3)

to kn = 1 for the new edges ln and to ke = 0 for the ‘boundary edges’ le. This will also work
for the other moves; we will choose ke = 0 for all boundary edges and kn = 1 or ko = 1 for
edges that either appear or ‘disappear’ during the evolution move. In this way, the π factors
add up correctly to 2π after a sufficient number of evolution moves.

According to the discussion below (2.11), we add the generating function G3(le
k+1, pk

e)

for the edges of type e and b to the action. Hence, the generating function is

G1−3
(
lb
k+1, pk

b; le
k+1, pk

e; ln
k , ln

k+1

) =
∑

b

lb
k+1 pk

b +
∑

e

le
k+1 pk

e + Sτ

(
le
k+1, ln

k+1

)
. (4.7)

The equations of motion are then

lb
k = lb

k+1, pk+1
b = pk

b, (4.8)

le
k = le

k+1, pk+1
e = pk

e + ∂Sτ

∂le
k+1

= pk
e − θe

(
le
k+1, ln

k+1

)
, (4.9)

pk
n = 0, pk+1

n = ∂Sτ

∂ln
k+1

= π − θn
(
le
k+1, ln

k+1

)
. (4.10)

The momenta pe are just updated to agree with the exterior angles of the evolved spatial
hypersurface. The momenta pk

n at time step k have to vanish, since ln
k are not dynamical

variables at this time step. As was mentioned in the discussion at the end of section 2, we
have to expect a post-constraint for every new edge variable ln. Indeed, equations (4.10) are
constraints, requiring that the new momenta pk+1

n are again given by the exterior angles of the
new hypersurface (coinciding with the three exterior angles of the added tetrahedron), which,
however, can be expressed as functions of the length variables le

k+1 and ln
k+1 only.

Note that for this evolution step not only ln
k remain undetermined, but also ln

k+1 can be
chosen arbitrarily (the generalized triangle inequalities have to be satisfied though). We will
set ln

k = ln
k+1, so that ln

k can be interpreted as initial data that determine the data at time (k +1).
Later we shall see that also for some types of Pachner moves (in 4D) the edge lengths of new
edges can be chosen arbitrarily. This freedom can be understood as a choice of initial data,
which becomes only relevant at the time step, at which the new edges appear. On the other
hand, we will also see (in 4D) that pre-constraints, appearing in consecutive evolution moves,
might fix these edge lengths a posteriori.

4.2. The 2–2 Pachner move

Consider the situation in which a tetrahedron τ is glued to �k in such a way that two of its
triangles, t1 and t2, and thus five of its edges are identified with two neighboring triangles
and their five edges in �k. This gluing move (with positive orientation) is only possible if the
extrinsic dihedral angle ψk

o at the edge e = o along which the two triangles in �k are identified
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t1

t1

t2

t2 Σk

Figure 7. The gluing/removal 2–2 Pachner move involves two triangles t1 and t2 in hypersurface
�k.

2–2

2–2

o
n

Figure 8. The 2–2 Pachner move is its own inverse.

is negative. If it is positive, it is only possible to remove the corresponding tetrahedron τ

from the triangulation, or, alternatively, to add a tetrahedron with negative orientation, see
figure 7. From the perspective of the hypersurface, these elementary moves appear as 2–2
Pachner moves. That is, two triangles sharing an edge e = o are replaced by two triangles
sharing a new edge e = n (see figure 8).

Note that while this move removes one edge o from the hypersurface and, instead,
introduces the new edge n, it does not introduce a new vertex. Again, the two pairs of
triangles have the same boundary of four edges e and four vertices. The edges o and n are
transversal, i.e. o and n are connecting the two opposite pairs of vertices. Additionally, the 2–2
Pachner move is its own inverse, which from the 3D perspective is taken into account via the
gluing/removing convention (and the different global signs in the action for the cases with
different orientations) for the Pachner moves.

There are four kinds of edge lengths: apart from lb
k/k+1, le

k/k+1 and one length ln
k+1, we also

have one length lo
k that appears only at time step k but not at (k + 1). Thus, we will extend the

phase spaces at times k and (k + 1) by the pairs
(
ln
k , pk

n

)
and

(
lo
k+1, pk+1

o

)
, respectively.

Accordingly, we will choose a generating function of the first kind in the variables ln and
lo and of the third kind in the variables lb and le:

G2−2
(
lb
k+1, pk

b; le
k+1, pk

e; lo
k , lo

k+1; ln
k , ln

k+1

) =
∑

b

lb
k+1 pk

b +
∑

e

le
k+1 pk

e + Sτ

(
le
k+1, lo

k , ln
k+1

)
,

(4.11)

where

Sτ (l
e
k+1, lo

k , ln
k+1) =

∑
e⊂τ

le
k+1

(−θτ
e

(
le
k+1, lo

k , ln
k+1

)) + ln
k+1

(
π − θτ

n

(
le
k+1, lo

k , ln
k+1

))
+ lo

k

(
π − θτ

o

(
le
k+1, lo

k , ln
k+1

))
. (4.12)
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The equations of motion are given by

lb
k = lb

k+1, pk+1
b = pk

b, (4.13)

le
k = le

k+1, pk+1
e = pk

e + ∂Sτ

∂le
k+1

= pk
e − θe

(
le
k+1, ln

k+1

)
, (4.14)

pk
n = 0, pk+1

n = ∂Sτ

∂ln
k+1

= π − θn
(
le
k+1, lo

k , ln
k+1

)
, (4.15)

pk+1
o = 0, pk

o = − ∂Sτ

∂ln
k+1

= −π + θn
(
le
k+1, lo

k , ln
k+1

)
. (4.16)

As discussed generally, we have pk+1
o = 0 and pk

n = 0. In contrast to the 1–3 move, where
the new edge lengths ln

k and ln
k+1 were undetermined at both time steps, here the edge length

ln
k+1 is determined by equation (4.16) as a function of the initial data, which also involve lo

k at
time k. (Again, we can define ln

k = ln
k+1 but this time the interpretation of ln

k as additional new
data do not apply, rather ln

k is in this case constrained, i.e. determined by the other initial data
at time k. The same applies to lo

k+1 if we go backward in time.) Note that—via momentum
matching—(4.16) implements the Einstein equations εo = 0 for the edge o, which becomes a
bulk edge in the course of the 2–2 (gluing) move. Equation (4.16) demands that − pk

o is given
by the (oriented) exterior angle of the tetrahedron that is glued to the hypersurface. Momentum
matching, on the other hand, imposes − pk

o = + pk
o, where + pk

o is determined by the previous
moves and given by the (oriented) exterior angle of the hypersurface determined by the bulk,
and thus that these two exterior angles add up to a vanishing deficit angle around the edge o.
This condition will, in general, fix the edge length ln

k+1 as the exterior (or dihedral) angle at
the opposite edge o of the tetrahedron depends on this length.

The difference to the 1–3 move is that here we have both a ‘new edge’ and an ‘old
edge’. Hence, the argument in section 2, according to which we have to expect a pre-constraint
(because of the ‘old edge’) and a post-constraint (because of the ‘new edge’), does not apply, as
this argument relied on determining the maximal dimension of the image of the time evolution
map. Here, the counting changes since we have both a new and an old variable, and due to the
conditions pk

n = 0 and pk+1
o = 0, we do not necessarily expect a further constraint based on

this argument (where we ignore that lo
k+1 remains undetermined). A priori, with the exception

of pk+1
o = 0, all momenta at time (k + 1) involve edge lengths from time k and time (k + 1),

in particular, (4.15) for pn
k+1.9

The fact that there are no new post-constraints arising in the 2–2 move should, however,
not be confused with the feature that the system under consideration is totally constrained (i.e.
for spherical topology of �, all momenta are constrained as functions of the edge lengths).
Rather, the 2–2 move preserves the (flatness) constraints, which encode that the hypersurface
in question bounds a flat bulk triangulation, by implementing the flatness condition for the
edge that becomes a bulk edge.

9 Since lo remains undetermined at time (k+1) and ln at time k, one might wonder whether it is possible to summarize
the two variables lo and ln into just one variable (with two different time labels). Indeed, it is possible [36] to define a
canonical time evolution in this way; the method presented here, however, is more similar to the 1–3 and 3–1 moves
and, moreover, to the Pachner moves in 4D. Nevertheless, this remark shows that canonical time evolution maps can
be redefined by just relabeling or identifying variables with each other. We will see a similar situation in the tent move
evolution in sections 4.4 and 5.5, where several Pachner move steps are grouped together and labeled as a single tent
move time step.
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1–3

3–1

eo

eo

eo

v

Figure 9. The 1–3 and 3–1 Pachner moves.

4.3. The 3–1 Pachner move

The 3–1 move is the inverse of the 1–3 move. Consider, therefore, a three-valent vertex v in
�k whose adjacent three edges eo are equipped with extrinsic dihedral angles ψo, which are all
negative, i.e. the vertex is pointing into the hypersurface and represents the tip of a tetrahedron
that is upside down. In this situation, we can glue a tetrahedron τ to this surface by identifying
the three triangles sharing vertex v in τ with the corresponding ones in �k. Consider now the
opposite situation, where all ψo at the three-valent vertex are positive. In this case, the vertex
represents the tip of a tetrahedron τ that is sticking out of the hypersurface and we may remove
this tetrahedron (or equivalently glue a tetrahedron with opposite orientation). These situations
are depicted in figure 5 if the orientation of the arrows is reversed. From the perspective of the
hypersurface, these elementary moves appear as a 3–1 Pachner move, see figure 9. Prior to
this move, all six edges involved in the move are edges in �k. During the move, the vertex v,
as well as the eo, is removed (as these become internal to the bulk triangulation).

By virtue of the fact that there are no new edges introduced during the move, the equations
of motion play rather the role of constraints in this case which have to be satisfied in order for
this move to be allowed. Since up to �k we have always solved the equations of motion during
the elementary evolution steps, the entire triangulation up to �k will be embedded in a flat 3D
manifold. The three equations of motion of the edges, which become internal, therefore, do
not add any new constraints and are thus trivially satisfied.

The 3–1 move is the inverse to the 1–3 move; hence, we have three kinds of edge lengths:
apart from lb

k/k+1 and le
k/k+1 there are three edge lengths of type lo

k that appear only at time step
k but not at (k + 1). We therefore extend the phase space associated with �k+1 by three pairs(
lo
k+1, pk+1

o

)
.

We choose the action to be a function of the edge lengths at time k and, accordingly, use
for edges of types e and b a generating function of second type. According to the general
description, we have

G3−1
(
lb
k , pk+1

b ; le
k , pk+1

e ; lo
k , lo

k+1

) = −
∑

b

lb
k pk+1

b −
∑

e

le
k pk+1

e + Sτ

(
le
k , lo

k

)
(4.17)

with

Sτ

(
le
k , lo

k

) =
∑
e⊂τ

le
k

(−θτ
e

(
le
k , lo

k

)) +
∑
o⊂τ

lo
k

(
π − θτ

o

(
le
k , lo

k

))
. (4.18)

The equations of motions are then given by

lb
k+1 = lb

k , pk
b = pk+1

b , (4.19)

le
k+1 = le

k , pk
e = pk+1

e − ∂Sτ

∂le
k

= pk+1
e + θe

(
le
k , lo

k

)
, (4.20)

pk+1
o = 0, pk

o = −∂Sτ

∂lo
k

= −π + θo
(
le
k , lo

k

)
. (4.21)
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vn

vn+1

1

2

3
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Figure 10. A 3D tent move applied to a four-valent vertex vn in a 2D Cauchy hypersurface. This
four-valent tent move can be reproduced through a gluing sequence of four tetrahedra, which
correspond to a sequence of one 1–3, two 2–2 and one 3–1 Pachner moves in the hypersurface.

The second equation in (4.20) defines the updated momenta pk+1
e as a function of the phase

space variables at time k, while the second equation of (4.21) is a pre-constraint, this time on the
phase space variables at time k. That is, to perform this 3–1 move, this condition on the phase
space variables has to be satisfied. Again, as for the 2–2 move, these pre-constraints implement
the equations of motions, namely flatness for the edges that become bulk edges during the
move. In general, there are two possibilities: either (i) the pre-constraints are automatically
satisfied, if we consider a hypersurface that has been evolved in the manner described here
by Pachner moves, or (ii) the constraints are only satisfied for specific initial data, including
the kind of additional initial data, which arise, e.g., by the 1–3 Pachner move. For the 3D
case, only the first possibility takes place as argued above. In 4D, on the other hand, we will
generally encounter the second possibility, namely data that are a priori free to choose in a
certain Pachner move may become fixed by pre-constraints arising in later moves.

4.4. Example: 3D tent moves

The Pachner moves generically change the connectivity and the number of edges in the
triangulation. There are, however, combinations of Pachner moves, e.g., the so-called tent
moves [17, 11, 10], which do not change the connectivity of the triangulations and therefore
induce a canonical dynamics in the standard interpretation, i.e. between phase spaces of equal
dimensions.

A tent move can be constructed by picking some vertex vn
10 in a (D − 1)-dimensional

triangulated hypersurface �n and subsequently defining a new vertex vn+1 to the ‘future’ of
vn that must be connected by an edge to vn (the ‘tent pole’). Denote all other vertices in �n

to which vn is connected by 1, . . . , N. Connect vn+1 to each of these vertices 1, . . . , N by N
edges. The new vertex vn+1 then lies in the new hypersurface �n+1 and is N-valent in �n+1

as vn is in �n (the tent pole is now internal), and for every (D − 1)-simplex σ (vni j · · ·),
i, j ∈ 1, . . . , N, there is now a (D − 1)-simplex σ (vn+1i j · · ·). That is, the triangulations of
the two hypersurfaces are the same. Note that each tent move only involves the (D − 1) star
of the vertex vn in �n. The situation for a four-valent 3D tent move is illustrated in figure 10.

10 Note that henceforth, in order to avoid confusion, we will enumerate tent moves by n ∈ Z, while the elementary
Pachner moves into which the tent moves can be decomposed are counted by k ∈ Z.

21



Class. Quantum Grav. 29 (2012) 115009 B Dittrich and P A Höhn

The new piece of D-dimensional triangulation between �n and �n+1 with the N + 1
new edges e(vn+1i) and e(vnvn+1) can be decomposed into a sequence of gluings of single
D-simplices and the tent move evolution may therefore be described in terms of a sequence
of Pachner moves in the hypersurface. In particular, in 3D simply pick an N-valent vertex in
some �n and perform one 1–3 Pachner move, (N − 2) 2–2 Pachner moves and a final 3–1
Pachner move in order to generate �n+1.

To define the Pachner move dynamics, we used the Regge action as (part of) a generating
function so that the resulting canonical dynamics leads to the same equations of motions as
the ones obtained by varying the action. We can again employ the Regge action to define the
canonical evolution corresponding directly to the tent moves [10, 11, 24]. By construction, this
dynamics will coincide with the one obtained by performing the sequence of Pachner moves
(matching appropriately the edge labels). This highlights the remarks put forward earlier that
canonical time evolution maps may be redefined by relabeling variables. For the tent move
dynamics, we can either keep the length of the tent pole as an internal variable in the sense
of problem (a) in section 2, see equations (2.7), or, alternatively, integrate this length out and
work with Hamilton’s principal function as a generating function:

To this end, note that the 3D triangulation—the ‘tent’—we are gluing to the hypersurface
has two 2D boundaries given by the 2D stars of the vertices vn and vn+1. These two 2D
boundaries meet in a 1D boundary, given by the (cyclically ordered) vertices 1, . . . , N and the
edges connecting these vertices. The tent consists of N tetrahedra sharing the tent pole as an
edge, and therefore each having vertices vn, vn+1 and i, i + 1. The tent pole is an internal edge,
whereas the 2D boundary has edges e(vn, i), e(vn+1, i) and edges e(i, i + 1) with edge lengths
li
n, li

n+1, i = 1, . . . N, and li,i+1
n = li,i+1

n+1 , respectively. We can solve the equation of motion for
the tent pole as a function of the boundary edges. This equation of motion will just require that
the deficit angle around the tent pole is vanishing. Using this result in the action, we obtain
Hamilton’s principal function for the ‘tent’

S̃tent
(
li
n, li

n+1, li,i+1
n+1

) = −
∑

i

li,i+1
n+1 θ

τ (vn,vn+1,i,i+1)

i,i+1 +
∑

i

li
n

(
π − θ

τ (vn,vn+1,i,i+1)

vni − θ
τ (vn,vn+1,i−1,i)
vni

)
+

∑
i

li
n+1

(
π − θ

τ (vn,vn+1,i,i+1)

vn+1i − θ
τ (vn,vn+1,i−1,i)
vn+1i

)
. (4.22)

Taking into account the additional terms li,i+1
n+1 pn

i,i+1 in the generating function, we obtain the
following equations of motion:

li,i+1
n = li,i+1

n+1 ,

pn+1
i,i+1 = pn

i,i+1 − θ
τ (vn,vn+1,i,i+1)

i,i+1 ,
(4.23)

pn
i = −π + θ

τ (vn,vn+1,i,i+1)

vni + θ
τ (vn,vn+1,i−1,i)
vni , (4.24)

pn+1
i = π − θ

τ (vn,vn+1,i,i+1)

vn+1i − θ
τ (vn,vn+1,i−1,i)
vn+1i , (4.25)

where again the Schläfli identity was used. Now, a priori the dihedral angles on the right-hand
side of equations (4.24) and (4.25) depend on both sets of edge lengths li

n and li+1
n . But, for

instance, for the tent move at a three-valent vertex, the right-hand side of (4.25) does not
depend on the lengths li

n and we obtain three post-constraints. (The geometry around the
new vertex is the one around a vertex of a flat tetrahedron and the dihedral angles can be
expressed as functions of the six edge lengths li

n+1, li,i+1
n+1 .) Likewise, (4.24) will give us three

pre-constraints as the right-hand side can be expressed as a function of li
n, li,i+1

n only. For tent
moves at higher valent vertices, we can still conclude that we have three pre-constraints and
three post-constraints of the form (4.5). To this end, one just has to use the same arguments as
for (4.5) applied to the triangulation of the tent, which itself is a flat triangulation.
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Hence, we will have three pre-constraints and three post-constraints for the tent move.
From this we can conclude that three of the edge lengths li

n+1 remain undetermined by the
equations of motion (4.23)–(4.25). (Correspondingly, there is a three-parameter set of initial
data at step n, which can be evolved to the same data at time (n + 1), and vice versa.) These
are the same three parameters that are left undetermined by the 1–3 move in section 4.1 and
correspond to lapse and shift degrees of freedom. The three post-constraints of the 1–3 move
are of the form as encountered here and the present discussion shows that these constraints
remain preserved through all the additional Pachner moves that make up the tent move. Also,
the pre-constraints, which need be fulfilled so that the final 3–1 move can be performed, will
automatically be satisfied, if the triangulation has been correctly evolved by Pachner moves.

Finally, we remark that the lapse and shift degrees of freedom that remain free in the
tent move can be chosen to be infinitesimally small. This allows to recover a continuous time
evolution (plus Hamiltonian and constraints generating this evolution, which coincide with
(4.5)) from the discrete time evolution presented here.

5. Pachner moves for 4D Regge calculus

While the 3D Regge dynamics leads to flat geometries, the 4D Regge equations allow for
curved solutions. This renders the 4D dynamics significantly more complicated than in the
3D case; in particular, the preservation of the constraints will generally not hold. Related to
this is the fact that lapse and shift degrees of freedom will, in general, not remain free but will
become fixed by pre-constraints (unless one considers initial data that lead to flat solutions).

The Regge action for a 4D triangulation (without cosmological constant) is given by (3.1)
and (3.2) for h = t:

S =
∑
t⊂T ◦

Atεt +
∑
t⊂∂T

Atψt . (5.1)

The equations of motion for an inner edge e read∑
t⊃e

∂At

∂le
εt = 0, (5.2)

which—depending on the boundary data—allow for flat solutions εt = 0, as well as solutions
with curvature εt �= 0.

Despite the latter, we can show that Hamilton’s principal function reduces to a boundary
term (as is the case in the continuum). To this end, multiply each of the equations in (5.2) with
the length le and sum over all (inner) edges. We will employ the Euler identity (see, e.g., [37])

∑
e⊂t

le ∂At

∂le
= 2At (5.3)

for the area of a triangle. Using the equations of motion (5.2), we can write

0 =
∑
e⊂T ◦

le
∑
t⊂e

∂At

∂le
εt

= 2
∑
t⊂T ◦

t

Atεt +
∑
t⊂T ∂

t

∑
e⊂t∩e⊂T ◦

le ∂At

∂le
εt, (5.4)

where T ◦
t denotes the set of triangles, which have all three edges contained in the bulk T ◦,

and T ∂
t denotes the set of triangles in T ◦ where at least one of the edges is in the boundary

∂T . (Note that an inner triangle can have either one, two or all three edges in the boundary.)
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Employing equations (5.3) and (5.4) in the action (5.1), we discover that Hamilton’s principal
function

S̃ = 1

2

∑
e⊂∂T

le

⎡
⎣ ∑

t⊃e∩t⊂T ∂
t

∂At

∂le
εt +

∑
t⊃e∩t⊂∂T

∂At

∂le
ψt

⎤
⎦ (5.5)

is given by a boundary term. The form of this last expression suggests that the momenta are
given by the combination of exterior angles and deficit angles ‘near’ the boundary in square
brackets on the right-hand side of (5.5):

pe =
∑

t⊃e ∩ t⊂T ◦

∂At

∂le
εt +

∑
t⊃e ∩ t⊂∂T

∂At

∂le
ψt (5.6)

Indeed, momentum updating during the Pachner move evolution will confirm this.
As in 3D, we can produce a Regge triangulation with boundary topology given by the

3-sphere11 by considering first an evolution move from the empty hypersurface to the boundary
of a 4-simplex. The generating function would simply be given by the 1-simplex action

G0−1
(
ln
0 , ln

1

) = Sσ

(
ln
1

) =
∑

t

At
(
π − θσ

t

)
(5.7)

and gives rise to the following equations of motion:

p0
n = 0, p1

n = ∂Sσ

∂ln
1

=
∑
t⊃e

∂At

∂ln
1

(
π − θσ

t

)
. (5.8)

Again, just as in the 3D case, we also obtain post-constraints here that determine all 10
momenta at time k = 1 as a function of the edge lengths at time k = 1. Hence, the boundary
of a simplex is a totally constrained system. This property does not change under 1–4 Pachner
moves (yielding the so-called stacked spheres), which will introduce four post-constraints for
every four new edge lengths added as configuration variables. This sector of the 4D dynamics
behaves very similarly to 3D gravity and was also discussed in [38]. Furthermore, a derivation
of the symplectic structure for this sector, starting from a first-order formulation of canonical
discrete gravity, may be found in [38]. The results obtained there are in agreement with (5.6).
The reason why this sector is totally constrained is that the 1–4 Pachner moves neither lead
to inner triangles nor inner edges. Hence, the hypersurface triangulations produced by means
of this move allow for bulk triangulations without any inner triangles that could carry inner
curvature. That is, we are considering again just flat triangulations.

This will, in general, change if in addition we consider 2–3, 3–2 and 4–1 Pachner moves.
As the 1–4 Pachner move will not lead to any additional inner triangles or edges but adds four
boundary edges, we can consider it as just adding lapse and shift degrees of freedom. Indeed,
the four new edge lengths will remain free parameters, at least before doing any other moves.
The 2–3 Pachner move, on the other hand, generates an inner triangle but no inner edge. We
shall see that this move can be interpreted as adding a curvature degree of freedom (or physical
degree of freedom as opposed to the lapse and shift gauge degrees of freedom). The 3–2 move,
furthermore, produces an inner edge for which the Regge equation of motion—canonically in
the form of a pre-constraint—must be satisfied. Consequently, this move can be considered
as the ‘true evolution step’ in the sense that it requires the solution of an equation of motion,
involving curvature degrees of freedom. Finally, the 4–1 Pachner move generates six inner
triangles and four inner edges and will feature four pre-constraints. For the same reasons as
in the 3D case, the pre-constraints will be automatically satisfied if we consider initial data
leading to a flat solution. For curved solutions, however, these pre-constraints will fix some
free parameters introduced in the previous steps.

11 Once more, we could equally well start by producing an initial hypersurface of more complicated topology.
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1–4

4–1

Figure 11. The 1–4 Pachner move and its inverse, i.e. the 4–1 Pachner move.

5.1. The 1–4 Pachner move

This move is the 4D analog of the 1–3 Pachner move discussed in section 4.1. Glue a 4-simplex
σ onto a given 3D hypersurface �k in such a way that its ‘bottom tetrahedron’ τ is identified
with a tetrahedron in �k. Similarly, consider the situation in which one simplex σ that shares
one tetrahedron τ with �k is removed from a given triangulation (equivalent to adding a
tetrahedron with opposite orientation).

This move acts as a 1–4 Pachner move on �k. It introduces one new vertex and four new
edges into the new hypersurface, but it does not render any edges internal. The 1–4 Pachner
moves replaces the tetrahedron τ with the subdivided tetrahedron (consisting of four smaller
tetrahedra); the boundary of the tetrahedron τ does not change and we have the same four
triangles te and six edges le before and after the move. Through the subdivision, there will
appear four new edges en and six new triangles tn adjacent to these new edges; see figure 11.

Since there are no edges that become internal, there are no equations of motion to
be satisfied. As a consequence, the lengths of the four new edges, labeled by n, can be
freely chosen. That is, one has a fourfold freedom in choosing the ‘tip’ of σ , which can be
parametrized by lapse N and shift Nα variables. As opposed to the 3D case (and the continuum),
this freedom will, in general, be restricted by the appearance of pre-constraints in later moves
(see also the discussion in section 5.5 about tent moves).

We proceed in the same way as for the 1–3 move and use the generating function

G1−4
(
lb
k+1, pk

b; le
k+1, pk

e; ln
k , ln

k+1

) =
∑

b

lb
k+1 pk

b +
∑

e

le
k+1 pk

e + Sσ

(
le
k+1, ln

k+1

)
, (5.9)

where we use the action of a single simplex

Sσ =
∑
te⊂σ

Ate

(
le
k+1, ln

k+1

)(−θσ
te

(
le
k+1, ln

k+1

)) +
∑
tn⊂σ

Atn

(
le
k+1, ln

k+1

)(
π − θσ

tn

(
le
k+1, ln

k+1

))
. (5.10)

The evolution equations are then

lb
k = lb

k+1, pk+1
b = pk

b, (5.11)

le
k = le

k+1, pk+1
e = pk

e + ∂Sσ

∂le
k+1

= pk
e −

∑
te⊂σ

∂Ate

∂le
k+1

θσ
te +

∑
tn⊂σ

∂Atn

∂le
k+1

(
π − θσ

tn

)
, (5.12)

pk
n = 0, pk+1

n = ∂Sσ

∂ln
k+1

=
∑
tn⊂σ

∂Atn

∂ln
k+1

(
π − θσ

tn

)
. (5.13)

As for the 1–3 move, ln
k and ln

k+1 remain arbitrary, nevertheless, we can obtain ln
k = ln

k+1.
Again, we encounter post-constraints for every new edge, namely the second equation in (5.13).
These post-constraints fix the momenta as a specific combination of the exterior angles. At a
four-valent vertex, which can be seen as the tip of a 4-simplex, this combination of exterior
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2–3

3–2

to n

Figure 12. The 2–3 Pachner move and its inverse, i.e. the 3–2 Pachner move.

angles can be expressed as a function of the adjacent length variables (namely the lengths of
the simplex σ ). Such a post-constraint will always appear if we produce a boundary edge in the
course of evolution at which no bulk triangles (as potential carriers of curvature) are hinging.

In the later discussion, we shall see that these constraints are, in general, not preserved
by the other moves. Additionally, the free data, i.e. the lengths of the four new edges, may,
in general, become fixed by pre-constraints of later moves. This is related to the fact that
the Regge discretization does not preserve the diffeomorphism symmetry of the continuum
[10, 11]. The constraints and the free data discussed here, therefore, correspond to the
Hamiltonian and diffeomorphism constraints and the gauge freedom (of lapse and shift)
of the continuum. Through the breaking of diffeomorphism symmetry by discretization, the
constraints encountered here will generally not be preserved by the other Pachner moves but,
instead, turned into the so-called pseudo-constraints [10, 11, 16, 24]. These are equations of
motion for canonical data of two different times, in which these data are only weakly coupled
to each other. (More precisely, the eigenvalues of the appropriate Hessian matrix associated
with these equations of motion will turn out to be small compared to those of a Hessian
associated with proper evolution equations.)

5.2. The 2–3 Pachner move

Next, let us discuss the 2–3 move that turns out to generate a dynamical (or physical) degree
of freedom.

Consider the situation in which a 4-simplex σ is glued to �k in such a way that two
of its (adjacent) tetrahedra are identified with two (adjacent) tetrahedra in �k. This gluing
process is only possible when these two tetrahedra in �k are not part of the same 4-simplex
in the underlying triangulation (for the five vertices of these two tetrahedra are already the
five vertices of σ ). In contrast to the 2–2 move in 3D, the extrinsic curvature angle around
the triangle to along which the two adjacent tetrahedra are identified need not a priori (i.e.
kinematically) to be negative12. On the other hand, we can remove such a simplex from the
triangulation (or, equivalently, add a simplex with opposite orientation), if the extrinsic angle
around to is positive, the two adjacent tetrahedra reside in the same σ and there is a piece of
triangulation underneath �k. From the perspective of the hypersurface, this evolution move
amounts to a 2–3 Pachner move.

Two tetrahedra sharing a triangle to and having a boundary consisting of six triangles te

and nine edges e are replaced by three tetrahedra sharing a new edge n and sharing pairwise
three new triangles tn; see figure 12. As for all the Pachner moves, the boundary of the three
new tetrahedra is the same as for the two tetrahedra we started with. Consequently, during

12 Due to the flat embedding in 3D Regge calculus (without a cosmological constant), the extrinsic angle ψk
o around

the edge e = o in the configuration of the 2–2 Pachner move in section 4.2 must be negative for a 2–2 gluing move to
be possible such that eventually εo = 0 (for non-degenerate simplices, the dihedral angles are always positive).
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this move, no edge will become internal, and therefore, there will be no additional equations
of motion, which we could solve for the length of the new edge. Furthermore, the triangle to

becomes a bulk triangle in the gluing move. This is important, since after the move, the bulk
triangle can carry a non-vanishing deficit angle, i.e. curvature. This deficit angle depends on
the value of the new edge and as this can be freely chosen, we are generating a curvature degree
of freedom13. This is different from the four free edge lengths that arise in the 1–4 move, which
rather correspond to lapse and shift, and, therefore, gauge variables, in the continuum.

Because of the new edge at step (k + 1), we extend the phase space at step k by the pair(
ln
k , pk

n

)
. We use the generating function

G2−3
(
lb
k+1, pk

b; le
k+1, pk

e; ln
k , ln

k+1

) =
∑

b

lb
k+1 pk

b +
∑

e

le
k+1 pk

e + Sσ

(
le
k+1, ln

k+1

)
, (5.14)

where in this case the action of the 4-simplex under consideration is given by

Sσ

(
le
k+1, ln

k+1

) =
∑
te⊂σ

Ate

(
le
k+1, ln

k+1

)(−θσ
te

(
le
k+1, ln

k+1

)) + Ato

(
le
k+1, ln

k+1

)(
π − θσ

to

(
le
k+1, ln

k+1

))
+

∑
tn⊂σ

Atn

(
le
k+1, ln

k+1

)(
π − θσ

tn

(
le
k+1, ln

k+1

))
. (5.15)

The evolution equations read

lb
k = lb

k+1, pk+1
b = pk

b, (5.16)

le
k = le

k+1, pk+1
e = pk

e + ∂Sσ

∂le
k+1

= pk
e −

∑
te⊂σ

∂Ate

∂le
k+1

θσ
te + ∂Ato

∂le
k+1

(
π − θσ

to

)

+
∑
tn⊂σ

∂Atn

∂le
k+1

(
π − θσ

tn

)
, (5.17)

pk
n = 0, pk+1

n = ∂Sσ

∂ln
k+1

=
∑
tn⊂σ

∂Atn

∂ln
k+1

(
π − θσ

tn

)
. (5.18)

The second equation in (5.17) determines the momenta pk+1
e at time k + 1 as a function

of the ones at time k, as well as the new edge lengths ln
k+1 and le

k+1 = le
k . The new lengths

ln
k and ln

k+1 remain undetermined, but we may again choose ln
k = ln

k+1. Accordingly, we find
a post-constraint at time (k + 1), namely the second equation in (5.18). It determines the
new momentum variable as a function of the edge lengths at step (k + 1). Geometrically, this
constraint arises as by construction there are no bulk, but only boundary triangles hinging at
the new edge. Hence, we can compute the exterior angle from the boundary geometry alone,
i.e. the length variables of the hypersurface �k+1.

5.3. The 3–2 Pachner move

The 3–2 Pachner move is the inverse of the 2–3 move: a 4-simplex σ is glued onto �k in
such a way that three of its (adjacent) tetrahedra, sharing an edge o, are identified with three
adjacent tetrahedra in �k. This gluing is possible only when these three tetrahedra reside in
three distinct 4-simplices of the triangulation underlying �k. As in the case of the 2–3 move
and by virtue of the possible absence of a flat embedding, the extrinsic angles at the three

13 For instance, it is possible to generate the complete 4D star of a triangle, i.e. rendering it internal, by starting
out with one 4-simplex and performing a sequence of 1–4 Pachner moves on it and a final 2–3 move. During this
sequence, the triangle shared by all simplices has become internal, but there are only boundary edges. This star of the
triangle, therefore, carries curvature without any internal edges. Hence, there are no Regge equations to be satisfied.

27



Class. Quantum Grav. 29 (2012) 115009 B Dittrich and P A Höhn

2–3

3–2

tn o

Figure 13. The 2–3 Pachner move and its inverse, i.e. the 3–2 Pachner move.

triangles to, which are each shared by two of the three tetrahedra in �k need not a priori to
be negative; the values of the resulting deficit angles around these triangles will eventually be
determined by the dynamics. Likewise, one can remove a simplex σ from the triangulation
underlying �k (or, equivalently, glue a simplex with opposite orientation to �k), if the three
extrinsic angles are positive and the three tetrahedra are part of the same 4-simplex. These
gluings/removals appear as 3–2 Pachner moves, i.e. three tetrahedra sharing one edge o and
pairwise three triangles to are replaced with two tetrahedra sharing one triangle tn, such that
the boundary of the two complexes, consisting of six triangles te and nine edges e remains
unchanged (see figure 13). The edge o will become internal; in consequence, we will have
to satisfy the equation of motion corresponding to this edge. This equation of motion will be
implemented via a pre-constraint and momentum matching. It may either not be possible at all
to satisfy this pre-constraint, or only for specific choices of parameters, i.e. length variables,
which appeared in the previous moves.

Since we have a variable lo
k that does not appear at step (k +1), we extend the phase space

at time (k + 1) by the pair
(
lo
k+1, pk+1

o

)
. The generating function for the 3–2 move reads
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, (5.19)

where the action Sσ is given by
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The equations of motion amount to

lb
k+1 = lb

k , pk
b = pk+1

b , (5.21)
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, (5.22)

pk+1
o = 0, pk

o = −∂Sσ

∂lo
k

= −
∑
to⊂σ

∂Ato

∂lo
k

(
π − θσ

to

)
. (5.23)

This time, the second equation in (5.22) determines the momenta pk+1
e at step (k + 1) as

a function of the ones at time k and the old edge lengths lo
k and le

k .
The second equation in (5.23), on the other hand, is a pre-constraint. It requires that

the momentum pk
o be given as a function of the edge lengths at time k. This equation is
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automatically satisfied if the edge o has just been created by a 2–3 move, but in general this
condition may not be satisfied. In this case, one either has to tune the new length variables that
arose in the previous 2–3 or 1–4 moves, or perform a different move.

5.4. The 4–1 Pachner move

Finally, let us consider the 4–1 move, which is the inverse of the 1–4 move (see figure 11). A
complex of four tetrahedra sharing a vertex, four edges o and six triangles to is replaced by one
tetrahedron, such that the boundary of four triangles te and six edges e remains unchanged. The
4–1 gluing move is only possible if these four tetrahedra are part of four different 4-simplices
in the underlying triangulation, while the six extrinsic angles at the six to are kinematically
unrestricted. From the 4D perspective, the four ‘old’ edges become bulk edges; consequently,
we will have four equations of motion to satisfy. These take the form of pre-constraints and
eventually determine the resulting six deficit angles around to. The prerequisite for the 4–1
removal move, on the other hand, is clearly that the four relevant tetrahedra reside in the same
4-simplex and the six extrinsic angles at the six to are positive.

We extend the phase space at time (k + 1) by the four pairs (lo
k+1, pk+1

o ) and define the
generating function

G4−1
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lb
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) = −
∑

b
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b −
∑

e

le
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e + Sσ

(
le
k , lo

k

)
, (5.24)

where we use the action of the single 4-simplex under consideration
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The equations of motion are then

lb
k = lb
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b , (5.26)
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lo
k+1 remain undetermined, as these do not appear at all. Again, we can choose lo

k = lo
k+1 to

carry these data along as boundary data. The second equation in (5.28) represents four pre-
constraints, which have to be satisfied by the canonical data at time k so that the 4–1 move can
be performed. This will, in general, restrict the free parameters that appeared in the previous
moves.

5.5. Example: 4D tent moves

As a specific example, we can also consider tent moves in 4D, which, as already explained
in section 4.4, can be obtained by a succession of Pachner moves. In particular, an N-valent
tent move in 4D can be reproduced through a sequence of one 1–4 move, (N − 3) 2–3 moves,
(N − 3) 3–2 moves and one final 4–1 Pachner move14.

14 Note that the ordering of the 2–3 and 3–2 Pachner moves is not entirely fixed: one always has to start with a 1–4
move to introduce the new vertex vn+1 and a subsequent 2–3 move and finish off with a 3–2 move prior to the final
4–1 move (which removes vn from �n+1), but the ordering of the 2–3 and 3–2 moves in between can be chosen freely
(according to the given configuration).
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Here, we will discuss two tent move configurations: the first one at a four-valent vertex
leads to flat dynamics, while, in contrast to this, the second example involves curvature and
the role of the pre- and post-constraints differs considerably from that in the first example.

To begin with, consider the simplest tent move configuration in 4D, namely the four-valent
tent move. Starting from a four-valent vertex v0 in the boundary surface �0 of a single 4-
simplex, perform first one 1–4 and one 2–3 move, which introduce five new (freely choosable)
edge lengths. Finally, perform one 3–2 move to remove one of the edges e(v0i), i ∈ 1, . . . , 4,
and one 4–1 move to remove the remaining three edges e(v0 j) and the tent pole e(v0v1) from
the new �1 and solve the corresponding five equations of motion or pre-constraints.

After the 3–2 move, the boundary configuration, in fact, corresponds to the configuration
of a stacked sphere, namely to the configuration of one simplex on which one 1–4 move has
been performed with the tip of the second simplex pushed ‘inward’. A stacked sphere is a
triangulation of the 3-sphere, which can be obtained by performing a sequence of 1–4 Pachner
moves on the 3D boundary surface of a single 4-simplex and therefore necessarily possesses a
4D flat interior as there are no internal edges. Any triangulation whose boundary corresponds
to a stacked sphere configuration possesses flat solutions independent of the existence of
internal triangles (up to possible discretization artifacts [10]).

That is, the 3–2 Pachner move plays a key role here in that its pre-constraint (or equation
of motion) generally imposes flatness of the deficit angle around the internal triangle generated
in the course of the previous 2–3 move and thus establishes one non-trivial condition among
the five free parameters of the 1–4 and 2–3 moves. Hence, there exists a four-parameter family
of solutions to the equation of motion of the 3–2 Pachner move, all of which correspond to flat
geometries. Therefore, these solutions also automatically solve the equations of motion of the
final 4–1 Pachner move (the boundary configuration after the 4–1 move also corresponds to a
stacked sphere). Thus, the four pre-constraints of the final 4–1 move are automatically satisfied
and no further non-trivial conditions on the remaining four parameters arise. Accordingly, after
the 4–1 Pachner move four parameters coordinatizing the position of the vertex remain free
and one obtains a fourfold gauge symmetry associated with lapse and shift degrees of freedom.

This situation changes for N-valent tent moves with N � 5, since the boundary
configuration at none of the individual Pachner move steps corresponds to a stacked sphere and
therefore does not necessarily imply flatness. But non-vanishing curvature in Regge calculus
generically breaks the vertex displacement gauge symmetry [10, 11] and all free parameters
become fixed. In particular, both the 3–2 and the 4–1 moves attach internal triangles to the edges
in the hypersurface, which generally introduces a dependence on data from other evolution
steps, e.g., see equation (5.6). The (post-) constraints after the 1–4 move will, in general, not
be preserved by the following Pachner moves. Instead, these transform into pseudo-constraints
[11]. Pseudo-constraints can be understood as equations between the phase space data at time
k, which further depend (weakly) on phase space data from the neighbouring time steps.

As the second example consider, for simplicity, a ‘symmetry-reduced’ tent move at a
five-valent vertex v0, also used in [10, 11], where only two dynamical length variables, an and
bn, arise at each tent move step n, apart from the tent pole length. There are six tetrahedra in
�0 with vertices

v0124, v0134, v0234, v0125, v0135, v0235. (5.29)

Accordingly, we will have nine triangles of the form t(v0i j), with i, j = 1, . . . 5, in this
triangulation, five edges of the form e(v0i) and nine edges of the form e(i j) (all possible
ordered combinations of i, j ∈ {1, . . . , 5} with the exception 45). This situation is depicted in
figure 14.
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Figure 14. Illustration of the symmetry-reduced 3D star of a five-valent vertex v0, consisting of
the six tetrahedra (5.29).

‘Symmetry reduction’ here means that all the lengths of the boundary edges e(i j) are set
to 115 and imposing le(vni) = an, i = 1, 2, 3, and le(vn4) = le(vn5) = bn at each tent move step n.

The 4-simplices associated with the Pachner moves reproducing this tent move are then
all of the same type σ (v0v1i jκ), where i, j take values in 1, 2, 3 and κ in 4, 5. Hence, the
first 1–4 move already introduces all three new (freely choosable) parameters a1, b1 and the
length of the tent pole between v0 and v1, which we will call t1. Specifically, let us consider
the case where we glue the six 4-simplices onto the tetrahedra (5.29) in the following order:
1. σ (v0v1124), 2. σ (v0v1134), 3. σ (v0v1125), 4. σ (v0v1135), 5. σ (v0v1234), 6. σ (v0v1235),
which corresponds to one 1–4 move, two subsequent 2–3 moves followed by two 3–2 moves
and a final 4–1 move. These Pachner moves are then to be implemented canonically by
equations (5.11), (5.13), (5.16)–(5.18), (5.21)–(5.23), (5.26) and (5.28). The necessary action
contribution of each of these six simplices is of the general form

Sσ (v0v1i jκ) = 2Aa
t

(
c1π − θa

t

) + Ab
t

(
c2π − θb

t

) + A0
a

(
c3π − θ0

a

)
+ A1

a

(
c4π − θ1

a

) + 2A0
b

(
c5π − θ0

b

) + 2A1
b

(
c6π − θ1

b

) − Aθ, (5.30)

where

θ0
a , A0

a are the dihedral angle and the area of the triangle 
(v0i j),
θ0

b , A0
b are the dihedral angle and the area of the triangle 
(v0iκ),

θa
t , Aa

t are the dihedral angle and the area of the triangle 
(v0v1i),
θb

t , Ab
t are the dihedral angle and the area of the triangle 
(v0v1κ),

θ1
a , A1

a are the dihedral angle and the area of the triangle 
(v1i j),
θ1

b , A1
b are the dihedral angle and the area of the triangle 
(v1iκ),

θ, A are the dihedral angle and the area of the triangle 
(i jκ),

respectively, and cm ∈ {
0, 1

2 , 1
}
, m = 1, . . . , 6, depending on whether the corresponding

triangle has been present prior to the move under consideration, is newly introduced or
becomes internal (see the discussion in the paragraph following (3.2) in section 3.1).

In what follows, we confine our focus to pre-constraints rather than post-constraints since
the latter are automatically satisfied after the moves. The pre-constraint for e(v01) of the first
3–2 move coincides with the equation of motion for the a0-edges, the pre-constraint for e(v04)

of the second 3–2 move with that of the b0-edges and the single pre-constraint of the 4–1 move

15 This is possible since the vacuum Regge equations are invariant under global rescalings.
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Table 1. Momentum updating for the five-valent symmetry-reduced tent move decomposed into
Pachner moves. Only the pre-constraint for a0 is eventually satisfied. The rows provide the updated
momentum values after the Pachner move given in the left column (following the sequence of the
main text). Initial data as given in the text. Two of the three new lengths of the first 1–4 move
were chosen as t1 = 0.2600, b1 = 1.3400. The 3–2 move pre-constraint (5.23) for edge e(v01)

(which translates into p0
1 = 0 after the move) is solved for a1 = 1.4052. (Due to symmetry, the

pre-constraints (5.28) associated with e(v02) and e(v03) of the 4–1 move are then automatically
satisfied and translate into p0

2 = 0 = p0
3 after the final move.) The pre-constraints for the edge

e(v04) of the second 3–2 move and the pre-constraints of the 4–1 move for edge e(v05) and the
tent pole are violated, i.e. p0

4, p0
5, pt1 �= 0.

Move p0
1 p0

2 p0
3 p0

4 p0
5 pt1 p1

1 p1
2 p1

3 p1
4 p1

5

1–4 2.5119 2.5119 1.5088 0.2082 1.2272 5.4351 −1.0316 −1.0316 0 1.1903 0
2–3 −0.1145 2.5119 2.5119 −2.2703 1.2272 3.1184 1.5135 −1.0316 −1.0316 3.5106 0
2–3 −2.7011 −0.0747 2.5119 −2.2703 0.2082 −1.0557 3.9286 1.3834 −1.0316 3.5106 1.1903
3–2 0 −0.0747 −0.0747 −2.2703 −2.2703 −3.3723 1.3463 1.3834 1.3834 3.5106 3.5106
3–2 0 −2.7011 −2.7011 −1.4644 −2.2703 −7.5464 1.3463 3.9286 3.9286 2.7552 3.5106
4–1 0 0 0 −1.4644 −1.4644 −2.1113 1.3463 1.3463 1.3463 2.7552 2.7552

(recall the ‘symmetry reduction’) is equivalent to the equation of motion for the length t1 of
the tent pole e(v0v1).

In the general (not symmetry-reduced) situation, we would have four parameters
introduced by the first 1–4 move and further two parameters introduced by the following
two 2–3 moves. The latter two parameters determine the curvature, i.e. the deficit angles
on the triangles that become bulk triangles during the completion of these moves. In the
symmetry-reduced situation, on the other hand, the 1–4 move already introduces all three
parameters that are allowed by our choice of symmetry reduction. One of these corresponds
to a lapse degree of freedom (determining the height of the tent pole), and the other two can
be interpreted as determining the value of the curvature. As we shall discuss, in general, all
parameters introduced by the 1–4 and 2–3 moves will be fixed by the pre-constraints of the
subsequent 3–2 and 4–1 moves.

At the level of the momenta, the above symmetry reduction only holds when a tent move
step is complete, however, not for the individual Pachner moves into which the tent move can
be decomposed, since the momenta at the different edges (of an identical length) get updated
in different order depending on the order of the Pachner moves. For this reason, we consider
the momenta of each of the edges individually, which we denote by p0

i , p0
κ for the initial data

and p1
i , p1

κ for those associated with the new edges. (Note that the upper index here counts tent
rather than Pachner moves.)

The whole point of elaborating on this example is to demonstrate that, in contrast to the
four-valent tent move, it is possible to solve only a subset of the equations of motion (or
equivalently, pre-constraints) for a0, b0, t1 and violate the remaining ones. This implies that
the pre-constraints of the five-valent tent move are, in general, independent, not automatically
satisfied and fix parameters that were previously free.

For instance, consider the following three examples based on the same initial data
a0 = 1.1690, p0

1 = p0
2 = p0

3 = 1.5088, b0 = 1.1436, p0
4 = p0

5 = 1.2272: (a) table 1
shows the example of a situation where only the pre-constraint for a0 is solved but not the ones
for b0 and t1, (b) table 2 provides an example where the pre-constraints for a0 and b0 are solved,
but not the one for t1 and (c) table 3 demonstrates an example where all three pre-constraints
are satisfied. Vanishing momenta indicate that a constraint (or equation of motion) is satisfied.
In these three examples, we choose to use the pre-constraints for a0 and b0 to fix the new
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Table 2. Momentum updating for the five-valent symmetry-reduced tent move decomposed into
Pachner moves. Only the pre-constraints for both a0 and b0 are eventually satisfied. Further
explanation and initial data are the same as given in the caption of table 1 and the text, respectively.
We chose t1 = 0.2000. The pre-constraints for edges e(v01) and e(v04) of the two 3–2 moves were
solved for a1 = 1.3448 and b1 = 1.2985. The pre-constraint for the tent pole arising in the final
4–1 move is ‘almost solved’, however, still violated (pt1 = 0.0003 > 0, while the other constraints
are satisfied to order 10−12). The latter is a consequence of the fact that the present configuration
yields a near-flat geometry in which the vertex displacement symmetry of the flat regime is almost
preserved [10, 11].

Move p0
1 p0

2 p0
3 p0

4 p0
5 pt1 p1

1 p1
2 p1

3 p1
4 p1

5

1–4 2.1317 2.1317 1.5088 0.7195 1.2272 5.1219 −0.6116 −0.6116 0 0.6253 0
2–3 −0.1145 2.1317 2.1317 −1.3172 1.2272 3.1121 1.5659 −0.6116 −0.6116 2.5562 0
2–3 −2.3208 −0.0747 2.1317 −1.3172 0.7195 0.0001 3.6559 1.4784 −0.6116 2.5562 0.6253
3–2 0 −0.0747 −0.0747 −1.3172 −1.3172 −2.0097 1.4397 1.4784 1.4784 2.5562 2.5562
3–2 0 −2.3208 −2.3208 0 −1.3172 −5.1217 1.4397 3.6559 3.6559 1.3084 2.5562
4–1 0 0 0 0 0 0.0003 1.4397 1.4397 1.4397 1.3084 1.3084

Table 3. Momentum updating for an example of the five-valent symmetry-reduced tent move
decomposed into Pachner moves where all three pre-constraints of a0, b0 and t1 are eventually
satisfied. Further explanation and initial data are the same as given in the caption of table 1 and the
text, respectively. The three pre-constraints are numerically solved by t1 = 0.3039, a1 = 1.4387
and b1 = 1.3832.

move p0
1 p0

2 p0
3 p0

4 p0
5 pt1 p1

1 p1
2 p1

3 p1
4 p1

5

1–4 2.2970 2.2970 1.5088 0.7969 1.2272 5.4635 −0.7724 −0.7724 0 0.6121 0
2–3 −0.1145 2.2970 2.2970 −1.3947 1.2272 3.3397 1.5390 −0.7724 −0.7724 2.6485 0
2–3 −2.4861 −0.0747 2.2970 −1.3947 0.7969 0 3.7361 1.4247 −0.7724 2.6485 0.6121
3–2 0 −0.0747 −0.0747 −1.3947 −1.3947 −2.1238 1.4027 1.4247 1.4247 2.6485 2.6485
3–2 0 −2.4861 −2.4861 0 −1.3947 −5.4635 1.4027 3.7361 3.7361 1.3528 2.6485
4–1 0 0 0 0 0 0 1.4027 1.4027 1.4027 1.3528 1.3528

lengths a1 and b1, respectively, and the pre-constraint for t1 to fix t1,16 but note that other
choices of which length to fix by which constraint are possible.

In conclusion, after the two 3–2 moves, two of the three new parameters (i.e. lengths)
are, in general, fixed and one has a one-parameter family of solutions to the two equations of
motion of these two moves (with table 2 giving one particular example). However, generally,
these solutions are not automatically solutions to the equation of motion of the final 4–1 move.
That is, here the three pre-constraints are, in general, independent and completely fix the three
free parameters of the initial 1–4 move in which case solutions to all moves exist, but not
a parameter family of solutions and therefore no gauge symmetry arises. Nevertheless, the
subset of the one-parameter family of solutions to the two equations of motion of the 3–2
moves corresponding to flat configurations does automatically solve the pre-constraint of the
4–1 move and no further non-trivial condition arises on the parameters17. That is, in this special
case, one parameter remains unrestricted after the 4–1 move (the length of the tent pole) and
one obtains gauge symmetry.

16 In fact, prior to the 3–2 moves and the implementation of the pre-constraints, the new lengths can, in principle, be
of any value and only get tuned after imposing the constraints. However, here we set the lengths of the new edges to
the value determined by one or more pre-constraints already from the start.
17 There are two independent deficit angles in this symmetry-reduced setup, such that flatness imposes two independent
conditions among the three free parameters a1, b1, t1, which allow one to write, e.g., a1 and b1 as a function of t1. Due
to flatness, by (5.2), the three equations of motion (or pre-constraints) for a0, b0 and t1 are automatically satisfied.
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This may be further understood from a covariant point of view, namely an analysis of the
Hessian of the action (second partial derivatives of the action with respect to t1, a1, b1, t2)
associated with two tent move steps, which was explored in [10]. There it was shown
numerically that the Hessian possesses a non-vanishing eigenvalue (corresponding to the lapse
degree of freedom) in the presence of curvature, which approaches zero as the configuration
approaches flatness. Furthermore, the momenta associated with the edges are in general given
by

pn
e = −∂ S̃n+1

∂le
n

, (5.31)

where S̃n+1 is the effective action of tent move step n + 1 with the length variable of the tent
pole integrated out. In [10, 11], it was shown that the matrix of derivatives of these momenta
with respect to le

n+1 is non-invertible too, if the Hessian is degenerate. In this flat case, the
conditions of the implicit function theorem are violated and we cannot solve for the lengths
le
n+1 as a function of le

n and pn
e. That is, the data at step n do not determine the data at step n+1,

and in particular, the free parameters of the 1–4 and 2–3 moves are not all fixed, reflecting
the gauge symmetry. Conversely, when the Hessian is invertible in the presence of curvature,
it is possible to solve for le

n+1 as a function of the lengths and momenta at step n. For the
symmetry-reduced five-valent tent move discussed here, the latter means that given the aim
to construct a tent move from the data present at step n, the three a priori free parameters of
the 1–4 move are eventually completely fixed by the three pre-constraints of the 3–2 and 4–1
Pachner moves. There is therefore no gauge symmetry left in the presence of curvature.

Consequently, in 4D for non-flat configurations, the pre-constraints provide conditions
among the canonical data (for instance, on the a priori free parameters introduced in the
previous 1–4 and 2–3 moves) and actually implement the equations of motions. In 3D, the
post-constraints arising after the 1–3 moves are preserved by the other moves and exactly match
the pre-constraints that come with the 3–1 moves. Hence, in 3D, we are in the situation where
the pre-constraints are automatically satisfied by canonical data generated by the previous
Pachner moves, i.e. the pre-constraints coincide with the post-constraints.

The situation is different in 4D. Here, the post-constraints from the 1–4 and 2–3 moves
generally do not match up with the pre-constraints of the 4–1 and 3–2 moves. Thus, the
parameters introduced by the 1–4 and 2–3 moves will, in general, become fixed by the pre-
constraints of the 4–1 and 3–2 moves. (Of course, whether all parameters get fixed depends,
for example, on the number of different moves that one is performing.) For initial data leading
to flat configurations, however, we have seen that the pre-constraints for the 4–1 moves are
automatically satisfied by the canonical data generated by the previous Pachner moves. This
converts the four parameters introduced by the 1–4 move to four gauge degrees of freedom
(in the sense that the solution for given boundary conditions on an initial and final time slice
is not uniquely determined).

6. Symplectic structures for discrete canonical dynamics

The Pachner move dynamics involves phase spaces of different dimension. Hence, the question
arises in which sense these maps can be canonical, i.e. preserve a symplectic structure. We will
discuss this issue in this section by first considering regular systems, and subsequently general
singular systems, where we have to deal with constraints. In particular, we will introduce in
more detail the concepts of pre- and post-constraints. Finally, we will consider the situation
for Pachner moves, and, more generally, for dynamics (generated by an action) that involves
a change in phase space variables.
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6.1. Regular systems

Here, we will review the general Lagrangian and Hamiltonian dynamics of discrete systems;
for regular systems, which we will define shortly, see the exposition [22]. However, we need
to specifically discuss singular systems, which appear in the Pachner move dynamics (see also
the discussions in [16] on constraints in discrete dynamics).

To start with, we will consider regular systems, where by definition constraints will not
occur. Consider a system with the configuration spaces Qk

∼= Q of equal dimension at every
time step k. We coordinatizeQk by xi

k, where i is in some index set determined by the dimension
of Q. Time evolution is generated by the discrete action contributions Sk = Sk(xk−1, xk). These
discrete actions may be ‘effective ones’, i.e. arising from Hamilton’s principal function and
summarizing several basic time steps into one effective time step (as, e.g., in the tent moves).

Consider three consecutive time steps k = 0, 1, 2 and the boundary value problem between
times k = 0 and k = 2. That is, we have boundary data xi

0 and xi
2 and must extremize

S := S1(x0, x1) + S2(x1, x2) (6.1)

with respect to x1. This gives the equations of motion

0 = ∂S1

∂x1
+ ∂S2

∂x1
, (6.2)

which we assume to be solvable uniquely for x1 as a function of x0, x2. In case that

det
∂2S2

∂x1∂x2
�= 0, (6.3)

we can invert these solutions for (x1, x2) to obtain the Lagrangian time evolution map

L1 : (x0, x1) �→ (x1, x2) (6.4)

from Q0 × Q1 to Q1 × Q2. Condition (6.3) has to hold for regular systems.
From the discrete action, we can define the so-called Lagrangian one- and two-forms. For

regular systems, these will turn out to be pullbacks via the Legendre transform of the canonical
one- and two-forms. The significance of the Lagrangian two-form is that it is preserved under
the time evolution map (6.4). This is the reason for the Hamiltonian time evolution map (in
phase space) being symplectic with respect to the canonical two-form.

To start with, we define two canonical one-forms on Q1 × Q2 from the variation of the
action:

θ−
1 (x1, x2) = −∂S2

∂xi
1

dxi
1,

θ+
2 (x1, x2) = ∂S2

∂xi
2

dxi
2,

(6.5)

where we sum over repeated indices i, j. Note that dS2 = θ+
2 − θ−

1 and, since d ◦ dS2 = 0, we
can define the (single) Lagrange two-form

�2(x1, x2) = −dθ+
2 = −dθ−

1 = − ∂2S2

∂xi
1∂x j

2

dxi
1 ∧ dx j

2. (6.6)

This time evolution map is preserved under the time evolution map (6.4):

�1 = L∗
1�2, (6.7)

where L∗
1 denotes the pullback of L1. To see this, consider S from (6.1) as a function on

Q0 × Q1 by using for x2 the solutions x2(x0, x1) of the time evolution map (6.4). Taking the
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exterior derivative of S on Q0 ×Q1, we will obtain only boundary terms because the equations
of motion with respect to the inner variable x1 hold:

dS (x0, x1) = ∂S1

∂xi
0

dxi
0 + ∂S2

∂x j
2

(
∂x j

2

∂xi
0

dxi
0 + ∂x j

2

∂xi
1

dxi
1

)

= − θ−
1 + L∗

1θ
+
2 . (6.8)

Again, as d ◦ d = 0 and exterior derivatives commute with pullbacks, we also find

�1 = L∗
1�2. (6.9)

This argument can be easily generalized to any time-step difference (k1, k2).
In order to discuss the dynamics in phase space, we introduce the Legendre transformations

F
+Sk : (xk−1, xk) �→ (xk,

+ pk) =
(

xk,
∂Sk

∂xk

)
,

F
−Sk : (xk−1, xk) �→ (xk−1,

− pk−1) =
(

xk−1,− ∂Sk

∂xk−1

) (6.10)

from Qk−1 ×Qk to the phase spaces Pk−1 and Pk (these are cotangent bundles of Qk and Qk−1

respectively) which we call post- and pre-Legendre transformations, respectively. The
regularity condition (6.3) ensures that the Legendre transformations are (locally) invertible.
The Hamiltonian time evolution

H1 : (x1,
− p1) �→ (x2,

+ p2) (6.11)

can be defined via the Legendre transform from the Lagrangian one (6.4) and coincides
with the time evolution map generated by S2 via the equations in (2.4). Furthermore, it is
straightforward to check that the Lagrangian one- and two-forms, (6.5) and (6.6), arise from
pulling back the canonical one- and two-forms, pi dxi and dxi ∧ dpi, respectively, with the
Legendre transformation (6.10). This can be used to show that the Hamiltonian time evolution
is symplectic, i.e. preserves the canonical two-form.

Diagrammatically,

Qk−1 ×Qk
Lk

> Qk ×Qk+1

Pk−1
Hk−1

>

−

< Pk
Hk

>

−

<

+

>
Pk+1 .

+

>

6.2. Singular systems

Let us now consider the situation where the regularity condition (6.3) is violated, yet
Qk−1

∼= Qk, i.e. where an equal number of left and right null vectors Li
1 and Ri

2 occurs,
satisfying

Li
1

∂2S2

∂xi
1∂x j

2

= 0,
∂2S2

∂xi
1∂x j

2

Rj
2 = 0 (6.12)

in some open neighborhood in Q1 × Q2. (To avoid excessively many indices, we will not
introduce another index numbering the null vectors in this section.)

First, we will discuss the consequences for the Lagrangian discrete time evolution, which
is defined as the space of solutions to (6.2), namely as the submanifold in Q0 × Q1 × Q2

satisfying

0 = ∂S1

∂xi
1

+ ∂S2

∂xi
1

. (6.13)
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Given a particular solution, i.e. a configuration (x0, x1, x2) satisfying (6.13), note that also an
infinitesimally displaced configuration (x0, x1, x2 + εR2) is a solution. Hence, the solution x2

as a function of x0, x1 is not uniquely determined and arbitrariness arises. We could call the
directions R2 ‘preliminary gauge directions’. Note, however, that the a priori free parameters
corresponding to these directions may get fixed a posteriori by entering the equations of
motion of later time evolution steps. Therefore, ‘gauge’ can a priori really only refer to the
dynamics of the single time step from k = 1 to k = 2. In fact, the null vectors Li

1 and Ri
2 of the

Lagrangian two-form do not necessarily extend to null vectors of the Hessian of the action,
which, in turn, define the proper gauge symmetries of the action.

Notwithstanding the arbitrariness in the solutions, we can define a Lagrangian time
evolution map from Q0 × Q1 to Q1 × Q2. Since x2 is not uniquely determined, however, we
either have to fix N a priori free parameters (if there are N independent null vectors R2) or
map to ‘gauge equivalence classes’. Either way, instead of the time evolution mapping onto a
2Q-dimensional space, where Q is the dimension of configuration space Q, it maps at most
onto a (2Q − N)-dimensional one. Thus, either the time evolution map is only defined on
some (constraint) submanifold of Q0 ×Q1 or the map is not injective. A combination of both
possibilities could also occur.

Assume for the moment that such constraints do not occur so that we can define a
Lagrangian time evolution map L1 on the full configuration space Q0 × Q1. To this end,
just fix some ‘gauge parameters’ λ2 in Q1 × Q2 to determine x2 uniquely as a function of
x0 and x1. Note that at this step, S(x0, x1), i.e. the action (6.1) evaluated on the solution as a
function of the initial data x0, x1, will generally depend on this ‘gauge’ choice. In this case,
the Lagrangian two-form is, obviously, degenerate: the coordinate expression (6.6) directly
shows that it possesses 2N null directions Li

1 and Ri
2. Nevertheless, arguments (6.8) and (6.9),

showing that the Lagrangian two-form is preserved under the Lagrangian time evolution, still
hold true in exactly the same way as for regular systems.

Let us turn to the Hamiltonian dynamics. Due to the N left and N right null vectors (6.12),
the rank of both Legendre transformations

F
+S2 : (x1, x2) �→ (x2,

+ p2) =
(

x2,
∂S2

∂x2

)

F
−S2 : (x1, x2) �→ (x1,

− p1) =
(

x1,−∂S2

∂x1

) (6.14)

is 2Q−N. Hence, the Legendre transformations are not onto. In general, F
±S2 simultaneously

fail to be isomorphisms if and only if condition (6.3) is violated, i.e. if and only if the
Lagrangian two-form (6.6) is degenerate. The image will be given by (2Q − N)-dimensional
submanifolds in the two phase spaces P1 and P2, which we will call C−

1 and C+
2 , respectively.

We emphasize dim C−
1 = dim C+

2 .

Definition 6.1. The image of the pre-Legendre transform, C−
1 := Im(F−S2) ⊂ P1, is called the

pre-constraint surface. The image of the post-Legendre transform, C+
2 := Im(F+S2) ⊂ P2, is

called the post-constraint surface.

Note that the pre-constraints are automatically satisfied by the pre-momenta − p1, yet constitute
the conditions that need to be satisfied on P1 so that a Hamiltonian evolution can be defined.
On the other hand, the post-constraints are automatically satisfied by the post-momenta + p2

after a time evolution from time k = 1 to time k = 2 has taken place, but constitute non-trivial
conditions for the pre-momenta − p2. In general, the pre- and post-constraint surfaces at a
given step k do not coincide, C+

k �= C−
k . Momentum matching requires that one restricts to

C+
k ∩ C−

k .
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The N pre-constraints C−
1 are defined through the equation

0 = C−
1 (x1,

− p1)∣∣− p1=− ∂S2
∂x1

(x1,x2)
, (6.15)

which has to hold for arbitrary x1 and x2. Differentiating equation (6.15) with respect to x2 and
with respect to x1, respectively, we find the relations

0 = ∂C−
1

∂− p1
j

∂2S2

∂x j
1∂xi

2

, (6.16)

0 = ∂C−
1

∂x j
1

− ∂C−
1

∂− p1
j

∂2S2

∂x j
1∂xi

1

. (6.17)

Since there are N independent left null vectors L j
1 of ∂2S2

∂x j
1∂xi

2

, we can conclude from (6.16) that

∂C−
1

∂− p1
j

=
∑

L

γC
L (x1, p1)L

j
1, (6.18)

where we sum over all N left null vectors L1 and γC
L (x1, p1) are appropriately chosen

coefficients (which also depend on the constraint under consideration). Similar relations can
be found for the partial derivatives of C+

2 . This specifies the gradients of the constraints; the
orthogonal subspace is then tangential to the constraint hypersurface C−

1 , respectively C+
2 .

The Hamiltonian time evolution map H1 will only be defined on the submanifold C−
1 . As

before, it can be generated by the discrete action:

− p1 = −∂S2

∂x1
, + p2 = ∂S2

∂x2
. (6.19)

This makes the appearance of pre- and post-constraints explicit. In particular, we can define pre-
and post-constraints independently from the Legendre transformation. Given a Hamiltonian
time evolution map, we declare the pre-image of this map as the submanifold of pre-constraints
and the image of this time evolution map determines the post-constraints. In the previous
sections, we have given the Hamiltonian time evolution maps for all the Pachner moves (and
hence, for all evolution maps involving a sequence of Pachner moves) based on momentum
updating between the respective constraint surfaces, which are defined in this manner. For
these cases, the pre-image and image of the maps could always be specified (but see also
section 6.3).

Furthermore, if we find a solution to the first of the equations in (6.19) for x2 as a function
of x1,

− p1, then the infinitesimally displaced configuration x2 + εR2 is also a solution. That
is, as in the Lagrangian picture, x2 is not uniquely defined. (Note that + p2 may also change
under the transformation generated by εR2.) Rather, we have N ‘preliminary gauge directions’
R2. The same can be said for expressing x1 as a function of x2,

+ p2, where now the ‘gauge’
directions are given by L1. Concretely, we have the gauge displacements

δLxi
1 = Li

1, δL p1
i = − ∂2S2

∂xi
1∂x j

1

L j
1. (6.20)

Note that these vectors are orthogonal to the gradients of the constraints C−
1 , and hence, the

‘gauge’ displacements are tangential to the constraint hypersurface C−
1 .

Given that H1 : C−
1 → C+

2 , H1 cannot be a symplectic mapping. Nevertheless, as regards
the preservation of the symplectic structure, consider the canonical two-forms

ω1 = dx j
1 ∧ dp1

j, ω2 = dx j
2 ∧ dp2

j. (6.21)

We can pull these two-forms back via the embeddings ι−1 : C−
1 → P1 and ι+2 : C+

2 → P2 to two-
forms on the constraint surfaces C−

1 and C+
2 , respectively. Note that the resulting two-forms are
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pre-symplectic forms. Accordingly, the following theorem proves that discrete Hamiltonian
time evolution rather is a pre-symplectic map.

Theorem 6.1. The discrete Hamiltonian time evolution map H1 : C−
1 → C+

2 satisfies(
ι−1

)∗
ω1 = H∗

1

(
ι+2

)∗
ω2. (6.22)

Proof. It is convenient to introduce coordinates
{
wI

k, yα
k , zk

α

}
with k = 1, 2 on C−

1 and C+
2 ,

respectively. The index I = 1, . . . N shall label ‘preliminary gauge directions’ (L1)
i
I and (R2)

i
I ,

while α = 1, . . . , Q − N labels coordinates associated with vectors (N1)
j
α and (M2)

j
α , which

are not null directions of �2. These coordinates can be chosen such that one obtains for the
embedding map ι−1 : (w1, y1, z1) �→ (x1, p1)

∂xi
1

∂wI
1

= (L1)
i
I,

∂ p1
i

∂wI
1

= − ∂2S2

∂xi
1∂x j

1

(L1)
j
I ,

∂xi
1

∂yα
1

= (N1)
i
α,

∂ p1
i

∂yα
1

= − ∂2S2

∂xi
1∂x j

1

(N1)
j
α,

∂xi
1

∂z1
α

= 0,
∂ p1

i

∂z1
α

= (
T −1

1

)α

j
,

and for ι+2 : (w2, y2, z2) �→ (x2, p2)

∂xi
2

∂wI
2

= (R2)
i
I,

∂ p2
i

∂wI
2

= ∂2S2

∂xi
2∂x j

2

(R2)
j
I ,

∂xi
2

∂yα
2

= (M2)
i
α,

∂ p2
i

∂yα
2

= ∂2S2

∂xi
2∂x j

2

(M2)
j
α,

∂xi
2

∂z2
α

= 0,
∂ p2

i

∂z2
α

= (T −1
2 )αj .(

T −1
1

)α

j and
(
T −1

2

)α

j are the vectors satisfying(
T −1

1

)α

j (L1)
j
I = (

T −1
2

)α

j (R2)
j
I = 0,(

T −1
1

)α

j (N1)
j
α′ = (

T −1
2

)α

j (M2)
j
α′ = δα

α′ ∀ I, α.
(6.23)

The pullbacks of the two forms can then be written as(
ι−1

)∗
ω1 =

∑
j

(
(L1)

j
I dwI

1 + (N1)
j
α dyα

1

)

∧
(

− ∂2S2

∂x j
1∂xi

1

(
(L1)

i
I′ dwI′

1 + (N1)
i
α′ dyα′

1

) + (
T −1

1

)α′

j dz1
α′

)
,

(
ι+2

)∗
ω2 =

∑
j

(
(R2)

j
I dwI

2 + (M2)
j
α dyα

2

)

∧
(

∂2S2

∂x j
2∂xi

2

(
(R2)

i
I′ dwI′

2 + (M2)
i
α′ dyα′

2

) + (
T −1

2

)α′

j
dz2

α′

)
.

First, the terms containing the second derivative of the action S2 vanish because they are
contracted with an antisymmetric form. Second, (6.23) entails(

ι−1
)∗

ω1 = dyα
1 ∧ dz1

α, (6.24)
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(
ι+2

)∗
ω2 = dyα

2 ∧ dz2
α. (6.25)

These expressions imply that the ‘preliminary gauge vectors’ δLI in (6.20) are degenerate
directions of the two-form

(
ι−1

)∗
ω1, whereas the corresponding δRI are degenerate directions

of
(
ι+2

)∗
ω2. Finally, expressing the Hamiltonian time evolution (6.19) directly in the coordinates

yα
k and zα

k , one can check that the Hamiltonian time evolution preserves the pullbacks of the
canonical forms as stated in the theorem. �

Hence, diagrammatically,

Qk−1 ×Qk
Lk

> Qk ×Qk+1

Pk−1 ⊃ C−
k−1

Hk−1
>

−

<
C+

k ∩ C−
k

Hk
>

−

<

+

>

C+
k+1 ⊂ Pk+1 .

+

>

6.3. Dynamical systems with changing phase space dimensions

Such singular systems as discussed above appear in the dynamics generated by the Pachner
moves. There we had to deal with the problem that the number of variables may change from
one time step to the next. Let us consider a simple example that will highlight the general
principle. Consider again three consecutive time steps with variables x0, x1 and x2. But now
assume that among the variables x2 there is a ‘new variable’ xn

2, in particular, that the number
of variables at time step k = 2 is Q + 1, whereas it is Q at times k = 0, 1. Although this
problem might be well posed as a boundary value problem keeping the data at k = 0, 2 fixed,
it will, in general, not be possible to turn it into a well-posed initial value problem with initial
data at times k = 0, 1.

To describe the situation nevertheless by an initial value problem, extend the configuration
spaces at times k = 0, 1 by the configuration variables xn

0 and xn
1, respectively. xn

2 can be
interpreted as an initial datum that becomes relevant only at step k = 2, yet which we are
allowed to already specify at time k = 0, e.g. as xn

2 = xn
1 = xn

0. The action pieces S1(x0, x1)

and S2(x1, x2) neither depend on xn
0 nor on xn

1 because these variables were just introduced for
book-keeping purposes. Accordingly, the dynamics from k = 0 via k = 1 to k = 2 is singular.
Let us assume, for simplicity, that the dynamics is otherwise regular.

The extension does not interfere at all with the dynamics of the other variables for the
time step from k = 0 to k = 1. Thus, extend also the phase spaces at times k = 0, k = 1 by
the pairs

(
xn

k, pk
n

)
; the Legendre transformations will map onto the constraint hypersurfaces

C−
0 = − p0

n = 0 and C+
1 = + p1

n = 0, respectively. The proof of theorem 6.1 shows that the
canonical two-forms restricted to the constraint hypersurfaces possess degenerate directions,
i.e. ‘preliminary gauge directions’. The corresponding variables xn

0 and xn
1 are a priori free

(Lagrange) parameters λ0 and λ1. Therefore, we can fix xn
0 and xn

1 to some arbitrary value. In
particular, we can fix these data to coincide with the value of xn

2. Note that the ‘reduced phase
space’, i.e. the constraint hypersurface modulo the ‘preliminary gauge direction’ (which is the
null direction of the restricted canonical two-form) coincides with the unextended phase space
we started with.

Next, let us consider the time step from time k = 1 to time k = 2 described on the
extended phase space P ′

1 and the phase space P2 (which already includes the pair (xn
2, p2

n)).
The matrix

∂2S2

∂xi
1∂x j

2

(6.26)
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has (due to our assumption only) one left null vector Li
1 = δi

n. Consequently, there is also a right
null vector Ri

2 and the Lagrangian two-form (6.6) possesses these two degenerate directions.
The Legendre transformations (6.14) will again not be surjective; for time k = 1, it will rather
map onto the constraint hypersurface C−

1 = − p1 = 0. This pre-constraint coincides with the
post-constraint + p1 = 0 from the previous time step. Moreover, we will have a post-constraint
C+

2 = 0 on the canonical data at k = 2.
As we have seen, we will also find ‘preliminary gauge directions’ associated with the

constraints. At time k = 1, the ‘gauge’ direction (6.20) just corresponds to the coordinate xn
2,

i.e. δLxi
1 = δi

n and δL p1
i = 0. At time k = 2, on the other hand, we have

δRxi
2 = Ri

2, δR p2
i = ∂2S2

∂xi
2∂x j

2

Rj
2. (6.27)

Theorem 6.1 shows that the Hamiltonian time evolution preserves the canonical two-forms
restricted to the constraint hypersurfaces. In the present example, (6.24) at k = 1 is just the
canonical two-form of the original 2Q-dimensional unextended phase space P1 that, however,
is used as a pre-symplectic form on a (2Q + 1)-dimensional constraint surface in the extended
phase spaceP ′

1. On the other hand, (6.25) at k = 2 is the restriction of the canonical two-form of
the (2Q + 2)-dimensional unextended phase space P2 to the (2Q + 1)-dimensional constraint
hypersurface C+

2 = 0. Its single degenerate direction is given in (6.27). Consequently, the
‘reduced phase space’ at k = 2 is 2Q dimensional just as the original P1. The phase space
extension from P1 to P ′

1 at k = 1 can be viewed as embedding the smaller phase space P1

into the bigger phase space P2; discrete time evolution proceeds such that the (restricted)
two-forms are preserved on this bigger phase space.

The case of ‘old variables’ xo
1 that disappear at time k = 2 can be discussed in the same

way by reversing the time direction.
As an extreme example, consider the cases described in sections 4 and 5, namely the

time evolution step from a zero-dimensional phase space to the phase space corresponding
to the boundary of a tetrahedron or 4-simplex, respectively. The initial phase space is zero-
dimensional and the phase space at time k = 1 12 or 20 dimensional, corresponding to the
boundary data of a tetrahedron or 4-simplex, respectively. In this case, the canonical two-forms
at k = 0 are just the zero forms as the initial phase space is zero dimensional. Indeed, the time
evolution preserves this property, as in both cases we had six and ten constraints, respectively,
fixing all the momenta as functions of the lengths variables. Moreover, one can check that
the canonical two-forms restricted to the constraint hypersurfaces are totally degenerate, i.e.
identically zero.

Finally, let us consider the local Pachner moves explicitly. These are rather directly defined
in the Hamiltonian picture. The reason is that the Lagrangian picture requires the knowledge
of configurations and velocities at a given time, which in the discrete case translates to
configuration data of two consecutive time steps. For a Pachner move (or any other evolution
move, like the tent move, which does not cover the entire hypersurface), however, the two
consecutive time steps overlap so that we do not have a full set of configuration data. In the
Hamiltonian picture, the velocities, or in the discrete, the configuration data of the second time
step, are replaced by the momenta, which are defined at the same time step as the configuration
data. That is, we just need one time slice to encode the canonical data.

For the Pachner moves of type M–N with N > M in 3D and 4D, we obtain K new edge
lengths (K = 1 for the 2–3 move and K = N for the 1–N move). We, therefore, extend the
phase space at time k by K pairs

(
ln
k , pk

n

)
, which are matched by the K new edge lengths

and conjugate momenta
(
ln
k+1, pk+1

n

)
at time k + 1. Additionally, we have pairs (lb, pb) that

do not change at all during this evolution move and variables (le, pe) for which only the
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momenta are updated. The Hamiltonian evolution map for this kind of Pachner moves (see,
e.g., (5.16)–(5.18)) is given by the following momentum updating

lb
k = lb

k+1, pk+1
b = pk

b, (6.28)

le
k = le

k+1, pk+1
e = pk

e + ∂Sσ

(
le
k+1, ln

k+1

)
∂le

k+1

, (6.29)

pk
n = 0, pk+1

n = ∂Sσ

(
le
k+1, ln

k+1

)
∂ln

k+1

. (6.30)

Here, Sσ stands for the action of the glued tetrahedron or 4-simplex and we choose this action
to be a function of the length variables at time k + 1.

Equations (6.30) contain K pre-constraints, namely Ck
n = pk

n, and K post-constraints,
namely

Ck+1
n = pk+1

n − ∂Sσ

(
le
k+1, ln

k+1

)
∂ln

k+1

, (6.31)

since this equation only involves canonical data from time step k + 1. Note also that the shape
(6.31) of the post-constraints ensures that they have vanishing Poisson brackets among each
other, i.e. they form and Abelian (sub-) algebra18. The same holds for the pre-constraints.
(This is consistent with the previous discussion showing that with every pre- or post-constraint
we can associate a degenerate direction of the symplectic forms restricted to the pre- or
post-constraint hypersurfaces. This actually means that the constraints are of first class.) Note,
however, that the pre-constraints, in general, do not Poisson commute with the post-constraints.

Apart from this, as we discussed for each Pachner move, the Hamiltonian evolution map
(6.28)–(6.30) does not specify all variables uniquely and we rather obtain ‘preliminary gauge
directions’ both at time k and k + 1. Note that these are ‘gauge’ only with respect to this
evolution move from step k to k + 1 and, more precisely, with respect to the symplectic forms
restricted to the constraint hypersurfaces arising in these moves. Subsequent moves might
result in a different set of (pre-) constraints with respect to which the original ‘preliminary
gauge directions’ no longer constitute degenerate directions of the restricted symplectic form.

At time k, the length variables ln
k remain undetermined so that we have δLxi

k = δi
nLn

k and
δL pk

i = 0 (where i stands for any of the indices b, e and n, and Ln
k are K linearly independent

vector fields). Also, at time k +1, we have K undetermined variables, namely the edge lengths
ln
k+1, which we referred to as a priori free parameters. These correspond to ‘preliminary gauge

directions’

δRli
k+1 = δi

nRn
k+1, δR pk+1

i = ∂2Sσ

∂li
k+1∂ln′

k+1

Rn′
k+1, (6.32)

where Rn
k+1 are K linearly independent vector fields. We have seen that the new edge lengths

ln
k+1 can be interpreted as additional initial data. These can turn either into physical degrees of

freedom (as for the 2–3 moves where the new edge length determines the deficit angle at the
bulk triangle generated by this move) or into proper gauge degrees of freedom (as for the 1–4
move for initial conditions leading to flat solutions). Additionally, the ln

k remain undetermined;
however, in the previous discussions, we pointed out that these can be ‘gauge fixed’ to be
equal to ln

k+1.
As for the case discussed in section 6.2, the ‘preliminary gauge directions’ are tangential

to the constraint hypersurfaces defined by the constraints Ck
n and Ck+1

n , respectively.

18 Dropping the evolution index k, one directly computes {Cn,Cn′ } = ∂2Sσ

∂ln∂ln′ − ∂2Sσ

∂ln′
∂ln = 0.
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We can consider for both time steps the canonical symplectic forms

ωk = dlb
k ∧ dpk

b + dle
k ∧ dpk

e + dln
k ∧ dpk

n,

ωk+1 = dlb
k+1 ∧ dpk+1

b + dle
k+1 ∧ dpk+1

e + dln
k+1 ∧ dpk+1

n

(6.33)

and restrict these to the constraint hypersurfaces in the respective phase spaces. For
the (extended) phase space Pk at time k, we can use the canonical embedding ιk :(
lb
k , pk

b, le
k , pk

e, ln
k

) �→ (
lb
k , pk

b, le
k , pk

e, ln
k , pk

n = 0
)
, and the pullback of the symplectic form

gives just the symplectic form of the unextended phase space

(ιk)
∗ωk = dlb

k ∧ dpk
b + dle

k ∧ dpk
e. (6.34)

For time step k + 1, consider the embedding

ιk+1 :
(
lb
k+1, pk+1

b , le
k+1, pk+1

e , ln
k+1

) �→
(

lb
k+1, pk+1

b , le
k+1, pk+1

e , ln
k+1, pn

k+1 = ∂Sσ

∂ln
k+1

)
. (6.35)

In this case, the pullback of the symplectic form is given by

(ιk+1)
∗ωk+1 = dlb

k+1 ∧ dpk+1
b + dle

k+1 ∧ dpk+1
e + dln

k+1 ∧ ∂2Sσ

∂ln
k+1∂le

k+1

dle
k+1. (6.36)

Now the time evolution equations (6.28)–(6.30) express the canonical coordinates at time
(k + 1) as the function of the canonical coordinates at time k and as the function of the length
variables ln

k+1 (as these are not determined by the time evolution map). Using this for the
symplectic form (6.36) at time k + 1, we can conclude that the time evolution map Hk defined
by (6.28)–(6.30) preserves the restricted symplectic forms:

H∗
k (ιk+1)

∗ωk+1 = dlb
k ∧ dpk

b + dle
k ∧ dpk

e + dle
k

∧ ∂2Sσ

∂le
k+1∂ln

k+1

dln
k+1 + dln

k+1 ∧ ∂2Sσ

∂ln
k+1∂le

k+1

dle
k+1

= dlb
k ∧ dpk

b + dle
k ∧ dpk

e. (6.37)

The Pachner moves of type N–M with N > M can be discussed analogously; one only
has to reverse the time direction. The key difference to those moves with M > N is, however,
that pre-constraints now arise before the move. The symplectic form is only preserved when
restricted to the post-constraint surface after the move and to the constraint surface defined by
both the post-constraints and the new pre-constraints before the move.

The 2–2 move in 3D is the only Pachner move for which we extended both the initial and
the final phase space because we had both an ‘old’ and a ‘new’ variable pair; see section 4.2.
The equations of motion were given by

lb
k = lb

k+1, pk+1
b = pk

b, (6.38)

le
k = le

k+1, pk+1
e = pk

e + ∂Sτ

(
le
k+1, lo

k , ln
k+1

)
∂le

k+1

, (6.39)

pk
n = 0, pk+1

n = ∂Sτ

(
le
k+1, lo

k , ln
k+1

)
∂ln

k+1

, (6.40)

pk+1
o = 0, pk

o = −∂Sτ

(
le
k+1, lo

k , ln
k+1

)
∂ln

k+1

. (6.41)
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Here, the only pre-constraint is pk
n = 0 and the only post-constraint is pk+1

o = 0. Note that
the second equations in both (6.40) and (6.41) do not constitute constraints as these depend
on canonical data of both times k and k + 1. Correspondingly, the only gauge directions one
encounters here arise from the fact that ln

k and lo
k+1 remain undetermined by the equations

of motion. Therefore, these can be gauge fixed to arbitrary values, for instance, ln
k = ln

k+1
(although the latter length needs to be determined from the equations of motion) and lo

k+1 = lo
k .

The canonical symplectic form on the extended phase spaces pulled back to the constraint
hypersurfaces just gives the canonical forms of the unextended phase spaces. Consequently,
we see that in this case the dynamics can be reduced to the unextended phase spaces. The only
configuration variables that change are lo

k �→ ln
k+1.

In summary, we have seen that we can define suitably preserved symplectic structures
for all Pachner moves. To this end, we introduced extended phase spaces to circumvent the
problem of changing phase space dimensions. However, we considered the canonical two-
forms restricted to the constraint hypersurfaces, and these constraint hypersurfaces, upon
factoring out the ‘preliminary gauge directions’, coincided with, or were submanifolds in the
original, unextended phase spaces.

An alternative construction is to extend the Hamiltonian time evolution maps so that these
are defined on the full (extended) phase spaces. For instance, considering the M–N moves
with N > M, the relevant changes from (6.28–6.30) would be

ln
k = ln

k+1, pk+1
n = pk

n + ∂Sσ

∂ln
k+1

. (6.42)

That is, we obtain for all variable pairs i = b, e, n

li
k+1 = li

k, pk+1
i = pk

i + ∂Sσ

∂li
k+1

. (6.43)

The time evolution map is defined on the full extended phase space and its image is given by
the full phase space at time k + 1. We can then impose the pre-constraints pk

n = 0. The post-
constraints are given as the image of the (pre-) constraint hypersurface under the time evolution
map. Maps of the form (6.43), which only involve momentum updating via a generating
function, preserve the canonical two-form (of the extended phase space)19. The previous
discussion showed that also the canonical two-form restricted to the constraint hypersurfaces
is preserved.

Such a construction is also possible for the 2–2 move, i.e. the extended dynamics would
also be of the form (6.43). The pre-constraint pn

k = 0 and the post-constraint po
k+1 = 0,

however, have to be imposed independently. The second equation in (6.42) then changes
into another post-constraint prescribing pk+1

n as a function of the six edge lengths li
k+1 of the

tetrahedron, where i = e, n, o. Alternatively, we can solve for the length lo
k+1 = lo

k as a function
of the five edge lengths ln

k+1, le
k+1 and the momentum pk+1

n . Also, the second equation of (6.43)
turns into a (pre-) constraint determining pk

o as a function of the six edge lengths li
k, i = e, n, o,

or, alternatively, ln
k = ln

k+1 as a function of the five edge lengths lo
k , le

k and pk
o. That is, we obtain

two constraints on each of the extended phase spaces Pk and Pk+1. These are second-class
constraints. Compared to the previous treatment, where we had for, say, Pk only pk

n = 0 as a
constraint and lk

n as a gauge degree of freedom, we can consider the second constraint between

19 Using the extended map H̄k defined by (6.43) and ωk+1 = dli
k+1 ∧ dpk+1

i , one immediately verifies by symmetry

and antisymmetry (H̄k )
∗ωk+1 = dli

k ∧ d(pk
i + ∂Sσ

∂li
k

) = dli
k ∧ dpk

i + ∂2Sσ

∂ li
k∂ li′

k

dli
k ∧ dli′

k = dli
k ∧ dpk

i = ωk .
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ln
k , lo

k , le
k and pk

o as a gauge fixing condition. This shows that also the induced symplectic forms
on the (gauge fixed and) constraint hypersurfaces are preserved under time evolution.

7. Interpretation and role of the constraints

In spite of the fact that the set of pre-constraints and the set of post-constraints each form an
Abelian (i.e. first-class) Poisson sub-algebra, they generally do not generate gauge symmetries
of the discrete action. First, the pre-constraints do not, in general, Poisson commute with the
post-constraints and both sets of constraints have to be imposed at each time step. Second,
their phase space flows are associated with null vectors of the Lagrangian two-form, but these
do not, in general, extend to null vectors of the Hessian of the action. However, a degenerate
Hessian on solutions implies the existence of flat directions at the extrema of the action and
thereby the presence of gauge symmetries. Rather, these constraints manifest non-uniqueness
of solutions and reflect the lack of knowledge at a given time step about the full solution (e.g.
as a consequence of varying phase space dimensions); in Regge calculus at some step k there
may not exist sufficient information about the triangulation at step k + 1 (or vice versa) and a
hypersurface may be ‘forgetful’ about the ‘past’ or ‘future’. For example, the post-constraints
associated with the new edges simply implement the fact that the lengths of these edges can be
freely varied in accordance with the canonical data at step k, but not that this will eventually
be a symmetry of the action.

On the other hand, the gauge symmetries in Regge calculus are given by those variations
of the edge lengths which leave the action invariant and correspond to the displacement in
flat directions of vertices in the bulk of the triangulation. These symmetries are generically
broken in the presence of curvature [10, 11, 13, 14]. Such a vertex displacement gauge
transformation is specified by the (four linearly independent) null eigenvectors of the Hessian
of the piece of action corresponding to the star of the vertex in question [10, 11, 24, 39].
The null eigenvectors—if existent—are, thus, associated with a given vertex and define the
flat (gauge) directions in which the vertex may be displaced without changing the action.
In contrast to this, a priori each pre- or post-constraint of the individual Pachner moves is
associated with a given edge in the hypersurface under consideration, rather than any particular
vertex. It describes the variation of the corresponding single edge length; however, there is no
invariant way of expressing this as the displacement of the one or the other vertex at the ends
of the edge in some embedding space. Nonetheless, in the canonical formalism, the variation
of the edges can be invariantly associated with the displacement of a given vertex v, if the
constraints of those edges in the hypersurface, which are adjacent to v, are contracted with
the four null eigenvectors associated with v [11];20 this implements a projection in gauge
directions and the correct number of gauge generators. At this stage, the contracted constraints
generate the gauge transformations defined by the null eigenvectors.

This was discussed for tent moves in [11], but will be studied in detail and more generally
in a forthcoming paper [23], where we will apply the present formalism to the 4D linearized
theory, based on an expansion around a flat solution to linear order. This linearized regime,
in fact, inherits the gauge freedom of the flat background solution and is relevant for the
continuum limit where the diffeomorphism symmetry of classical general relativity ought to
be restored and geometries are locally flat. This is where null eigenvectors of the Hessian
necessarily arise which, in turn, can be employed to construct proper gauge transformation
generating constraints that are associated with vertices.

20 Internal edges, or edges not yet occurring at a given step, do not matter because they come with vanishing momenta
and solved equations of motion.
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8. Discussion and outlook

In this paper, we have devised a general canonical formalism for discrete systems involving
varying phase space dimensions. To this end, we had to extend the general theory of discrete
dynamics from the regular to the irregular case in which constraints necessarily arise. The
basic ingredient of the new formalism is Hamilton’s principal function that may be used as a
generating function (of the first kind) for a canonical time evolution map. This time evolution
is generally only defined on a constraint surface and maps to another constraint surface; we
refer to the pre-image of the time evolution map as pre-constraint surface, while its image is
called post-constraint surface. The pre-constraints, on the one hand, constitute the conditions
that need be satisfied in order for the following time evolution step to be allowed. On the other
hand, the post-constraints are relations among the phase space data that are automatically
realized after an evolution step, however, may provide non-trivial conditions to be satisfied by
subsequent time steps. As shown in general, the symplectic forms restricted to the constraint
surfaces are preserved under such time evolution maps.

We have applied the new canonical formalism to simplicial gravity, in particular, and
thereby constructed a general and fully consistent formulation of (Euclidean) canonical Regge
calculus. However, the formalism is general and, therefore, adaptable to other discretization
schemes (with additive action). The general idea is to implement a canonical forward time
evolution by gluing single simplices step by step to a bulk triangulation, while backward
evolution is simply achieved by removing single simplices from the triangulation. The
prerequisite for this evolution scheme is additivity of the action. The (D − 1)-dimensional
hypersurfaces then evolve in a discrete ‘bubble’ time through the full D-dimensional Regge
solution akin to the evolution of hypersurfaces in canonical general relativity. Both the gluing
and the removal moves allowed in the present scheme can be interpreted entirely within the
(D − 1)-dimensional triangulated hypersurfaces as Pachner moves. Pachner moves are an
elementary and ergodic class of piecewise-linear homeomorphisms, which can map between
any two triangulations of a given topology by finite sequences (in fact, one could also implement
‘spatial’ topology changes—aka births of baby universes—by generalizing the class of allowed
gluing and removal moves; see section 3).

The central issue to be addressed when implementing the Pachner moves in a canonical
formalism is the varying phase space dimension since Pachner moves introduce and remove
edges. This obstacle can be handled in a straightforward manner by suitable phase space
extensions, which are controlled by constraints that arise naturally in this framework and
constitute the canonical incarnation of the equations of motion of edges to the ‘future’ or the
‘past’ of a given hypersurface. In this fashion, phase spaces before and after any Pachner move
can be brought to equal dimension, the moves can be implemented via momentum updating
as canonical transformations and the symplectic forms restricted to the constraint surfaces are
preserved under these moves. In fact, in an alternative construction without immediate use
of Hamilton’s principal function, the elementary time evolution map can also be extended
to the full extended phase spaces (i.e. disregarding any constraints) via momentum updating
and preserves the full symplectic structure. This requires, in addition, to impose the pre- and
post-constraints separately, since momentum updating by itself only specifies the difference
of the momenta before and after an elementary move, however, not the specific values.

The implementation of the individual Pachner moves follows one and the same recipe;
however, each of the Pachner moves assumes a special role in the evolution of the triangulation.
In 3D, the 1–3 move introduces one vertex and equips it with three constraints that generate
vertex displacements in the flat embedding space; the three new edge lengths thereby assume
a lapse and shift type gauge parameter interpretation. The pre- and post-constraints of the
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2–2 move21 simply preserve and implement flatness, while the pre-constraints of the 3–1
move are automatically satisfied and this move annihilates one vertex and three constraints
associated with it. The situation in 3D is special in that all vacuum solutions are necessarily
flat and the 3D Regge action is actually a so-called perfect action [37, 40], i.e. despite being
a discrete action it, nevertheless, reproduces the continuum dynamics and symmetries and
is triangulation independent. This has significant repercussions for the initial value problem
in the discrete: although usually the phase space corresponds to the space of solutions, this
cannot, in general, be expected when the phase space dimension varies, and here, sufficient
initial data are rather specified in the course of evolution. Notwithstanding this issue, in 3D, the
space of initial data does correspond to the space of solutions (modulo gauge) because there
are only global physical degrees of freedom (and the Pachner moves do not change the ‘spatial’
topology), while the bulk is necessarily flat and there exists a threefold gauge symmetry at
each vertex in the triangulation. The latter symmetry corresponds to lattice diffeomorphisms
and is a consequence of the action being perfect.

In 4D, however, the situation changes because of local degrees of freedom and generically
broken (diffeomorphism) symmetries; the 4D Regge action is not perfect and we face the issue
of non-uniqueness of solutions in the sense that different solutions arising from the same
initial data cannot be mapped into each other by gauge transformations because of the broken
symmetries and are thus inequivalent. As an extreme example of this non-uniqueness for
geometries with spherical ‘spatial’ topology, take the boundary of a 4-simplex as initial slice
that fits into any such triangulation and whose data thus by no means specify the ensuing
geometry (or, even more extremely, consider the ‘no boundary proposal’ for triangulations).
This is also manifested in the particular roles of the individual Pachner moves in 4D: the 1–4
move22 introduces a vertex along with four associated post-constraints, which are automatically
satisfied after the move and reflect the a priori free choice of the four new edge lengths. The
2–3 move generates a bulk triangle, while only adding a new boundary edge that comes
with a new post-constraint. Again, the length of this new edge, and thus, the value of the
curvature angle around the internal triangle, is a priori free; the move thereby introduces a
(free) curvature degree of freedom. These first two moves are the only Pachner moves for 4D
simplicial gravity, which introduce new edges and, however, at the same time, do not invoke
any equations of motion and, consequently, the new edge lengths are a priori free parameters.
In addition, the 3–2 move is only allowed if the pre-constraint corresponding to the equation
of motion of the edge that is rendered internal in the course of the move is satisfied. Likewise,
prior to the 4–1 move that annihilates one vertex, the four pre-constraints associated with the
four edges adjacent to the vertex, which become internal must be fulfilled. The pre-constraints
of these last two moves impose non-trivial conditions that, in general, require a tuning of the
free parameters of previous moves (see also the example of the symmetry-reduced five-valent
tent move in 4D in section 5.5). In short, in 4D, all new edge lengths are a priori free data
that, however, may become fixed a posteriori by the pre-constraints of subsequent 3–2 and
4–1 moves.

As regards the occurrence of gauge symmetries, we have argued in section 7 that
the pre- and post-constraints of the Pachner moves generally do not generate gauge
transformations. However, the vertex displacement gauge symmetry of Regge calculus exists
on flat configurations, and for this regime, the post-constraints of the 1–4 moves—in analogy
to the 1–3 moves in 3D—do constitute the gauge generators. In general, it depends on
the particular configuration and, in particular, on choices of data during subsequent moves,

21 Recall that these constraints, in contrast to those from all other moves in 3D and 4D, are only constraints on the
extended phase space.
22 Here, we focus solely on gluing moves.
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whether the 1–4 move introduces gauge generators. A specific example of this was treated in
section 5.5.

The formalism introduced here is very general and allows one to also consider evolution
maps in which arbitrary pieces of D-dimensional triangulations are glued onto (D − 1)-
dimensional hypersurfaces (under certain regularity conditions). These can be built up by
Pachner moves, but may also be considered in an ‘effective’ picture, where one time step
would involve a more complicated piece of triangulation than just a simplex. For the example
of the so-called tent moves, we have discussed the ‘effective evolution’ in 3D in section 4.4
and in 4D in section 5.5.

The new general canonical formalism for discrete systems involving varying phase space
dimensions, clearly, warrants further research. In particular, it remains to be investigated
under which precise conditions a priori free parameters in 4D canonical Regge calculus
remain free throughout evolution, i.e. are true gauge parameters, or, equivalently, under which
conditions post-constraints of previous steps match pre-constraints of later steps (but involving
the same hypersurface). This is a prerequisite for providing a constraint classification with clear
distinction between proper equations of motion and (pseudo-) constraints generating (broken)
gauge symmetries. The latter question stresses the close connection between constraints and
equations of motion, which often can be transformed into each other by relabeling time steps
(see the discussion in section 2) or by changing the slicing into equal time hypersurfaces.
Therefore, the question arises whether different choices of ‘effective’ time steps (or slicings of
the bulk spacetime) may influence the constraints associated with a given hypersurface. This
question will be important for quantization as one usually attempts to find a quantization of
the constraint hypersurfaces. These issues will be the topic of a separate paper [41].

In another forthcoming paper [23], we will address some of these issues explicitly in the
linearized theory that inherits the gauge symmetry of the flat background. The specific role
of each of the Pachner moves becomes clear in this regime, namely the 1–4 move generates
four gauge degrees of freedom and the same number of gauge generating constraints; the 2–3
move generates one ‘graviton’; the 3–2 move imposes the only proper, non-trivial equation of
motion and annihilates one ‘graviton’; and finally, the 4–1 move annihilates four gauge degrees
of freedom and the same number of gauge generating constraints, which are automatically
satisfied prior to the move. This allows for an explicit counting of both gauge and observable
degrees of freedom at each evolution step in a scenario of an evolving ‘spatial’ hypersurface.
For reasons of continuity, the role of the individual Pachner moves must also be the same in a
neighborhood of the linearized regime.

Furthermore, the new formalism can also be viewed as a specific algorithm to generate
solutions and might thereby be interesting for numerical investigations. During the evolution
it may happen that some variables can be solved only in the complex domain. This problem
also appears in the consistent discretization approach [42], where lapse and shift, which are
determined by the equations of motion, obtain complex values.

The interpretation of this phenomenon is that the initial data chosen are not suitable for
the discretization. It is related to the fact that gauge symmetries are broken, and therefore,
the corresponding constraints on initial data do not have to be implemented strictly. However,
there is still a remnant of the constraints, namely that a large set of initial data might be
unsuitable as it leads to complex (or unphysical large) lapse and shift parameters.

Although in this work we do not fully address the main underlying problem, namely
the fact that diffeomorphism symmetry is broken in 4D Regge gravity [10], this problem
might appear to be less severe than in an approach where the discretization is fixed from the
outset. The advantage of the present approach is that the choice of triangulation and therefore
discretization can be adjusted during evolution, i.e. a given sequence of Pachner moves might
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lead to complex solutions, whereas another sequence does not. For instance, one would expect
that to avoid complex solutions, one has to choose a finer triangulation for regions with high
curvature. The advantage of the approach proposed here is that such an adjustment can be
implemented during evolution.

In view of loop quantum gravity (LQG), which involves changing spatial graphs, and spin
foam models, which employ triangulations, it seems promising to attempt a quantization of
the Pachner moves and implement them as (possibly unitary) transformations on some Hilbert
space of ‘spatial’ geometries. This may help in investigating the connection between LQG and
spin foams (see also [43] for recent advances from the spin foam side); due to the fact that the
classical canonical formalism is based on using the action as a generating function, a canonical
quantization thereof should coincide with a covariant path-integral quantization of the theory.
Usually, a canonical program proceeds by quantizing the phase space (or rather the constraint
surface); here, the additional challenge emerges of how to incorporate the fact that initial data
continue to be specified during evolution and certain a priori free parameters become fixed
later on. These questions are related to the ‘general boundary proposal’ [44], which attempts to
generalize the notion of Cauchy hypersurfaces to arbitrary surfaces for quantum field theories.
A quantization of the Pachner moves may also shed some light on the ‘e±iS versus cos S’
debate in the spin foam community: because gluing and removal moves add and subtract
action contributions of simplices, respectively, an amplitude with a single exponential of the
action should correspond either to pure forward or backward evolution, while an amplitude
with the cosine of the action incorporates a superposition of both directions of evolution.

A final interesting question arises: Can one construct from the ideas presented here a
canonical formulation of CDT (see also [45])? Given that a priori all new lengths in 4D
canonical Regge calculus can be freely chosen, and in particular, all be fixed equal to 1,
while the births of baby universes are disallowed, can one construct ‘classical CDT solutions’
from this such that the pre- and post-constraints determine the connectivity by rejecting or
accepting certain Pachner moves? Presumably, this will generically not work and one might
have to allow, instead, for the lengths to take value in a small interval (1 − ε, 1 + ε). It would
be interesting to investigate whether a quantization with such restrictions can be connected
to CDT. This also requires an extension of the present scheme to Lorentzian signature and
an implementation of the condition that spacelike hypersurfaces remain spacelike throughout
evolution.
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[23] Dittrich B and Höhn P A in preparation
[24] Dittrich B 2009 Diffeomorphism symmetry in quantum gravity models Adv. Sci. Lett. 2 121 (arXiv:0810.3594

[gr-qc])
[25] Baez J and Gilliam J 1994 An algebraic approach to discrete mechanics Lett. Math. Phys. 31 205–12
[26] Rovelli C 2011 On the structure of a background independent quantum theory: Hamilton function, transition

amplitudes, classical limit and continuous limit arXiv:1108.0832 [gr-qc]
[27] Pachner U 1986 Konstruktionsmethoden und das kombinatorische homöomorphieproblem für triangulationen
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[41] Dittrich B and Höhn P A in preparation
[42] Bahr B, Gambini R and Pullin J 2012 Discretisations, constraints and diffeomorphisms in quantum gravity

SIGMA 8 002 (arXiv:1111.1879 [gr-qc])

51

http://dx.doi.org/10.1103/PhysRevD.12.385
http://dx.doi.org/10.1103/PhysRevD.23.565
http://dx.doi.org/10.1088/0264-9381/10/8/004
http://arxiv.org/abs/gr-qc/9303011
http://dx.doi.org/10.1007/BF02435787
http://arxiv.org/abs/gr-qc/9411008
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1088/0264-9381/21/15/R01
http://arxiv.org/abs/gr-qc/0404018
http://dx.doi.org/10.1017/CBO9780511755804
http://dx.doi.org/10.1088/0264-9381/22/9/017
http://arxiv.org/abs/gr-qc/0402110
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1166/asl.2009.1022
http://arxiv.org/abs/0810.3594
http://dx.doi.org/10.1007/BF00761712
http://arxiv.org/abs/1108.0832
http://dx.doi.org/10.1007/BF02941601
http://arxiv.org/abs/hep-th/9612069
http://dx.doi.org/10.1063/1.533333
http://arxiv.org/abs/gr-qc/0012035
http://dx.doi.org/10.1088/1367-2630/10/8/083006
http://arxiv.org/abs/0802.0864
http://dx.doi.org/10.1088/1367-2630/12/3/033010
http://arxiv.org/abs/0907.4325
http://dx.doi.org/10.1007/BF00757240
http://dx.doi.org/10.1088/0264-9381/11/4/015
http://arxiv.org/abs/gr-qc/9311035
http://dx.doi.org/10.1088/0264-9381/13/10/003
http://arxiv.org/abs/gr-qc/9603030
http://dx.doi.org/10.1088/0264-9381/13/7/009
http://arxiv.org/abs/gr-qc/9601011
http://dx.doi.org/10.1088/0264-9381/9/5/015
http://dx.doi.org/10.1088/0264-9381/21/9/020
http://arxiv.org/abs/gr-qc/0312043
http://dx.doi.org/10.1103/PhysRevD.80.124030
http://arxiv.org/abs/0907.4323
http://arxiv.org/abs/0909.5688
http://dx.doi.org/10.1088/0264-9381/28/6/065006
http://arxiv.org/abs/0807.2806
http://dx.doi.org/10.1103/PhysRevD.82.064026
http://arxiv.org/abs/1006.4295
http://dx.doi.org/10.1103/PhysRevD.76.104020
http://arxiv.org/abs/0707.4513
http://dx.doi.org/10.1103/PhysRevD.83.105026
http://arxiv.org/abs/1101.4775
http://dx.doi.org/10.1088/1367-2630/13/4/045009
http://arxiv.org/abs/1011.3667
http://arxiv.org/abs/1111.1879


Class. Quantum Grav. 29 (2012) 115009 B Dittrich and P A Höhn
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