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Abstract This paper investigates the time and
space complexity of word order computation in
the psycholinguistically motivated grammar for-
malism of Performance Grammar (PG). In PG,
the first stage of syntax assembly yields an unor-
dered tree ('mobile') consisting of a hierarchy of
lexical frames (lexically anchored elementary
trees). Associated with each lexical frame is a
linearizer—a Finite-State Automaton that locally
computes the left-to-right order of the branches
of the frame. Linearization takes place after the
promotion component may have raised certain
constituents (e.g. Wh- or focused phrases) into
the domain of lexical frames higher up in the
syntactic mobile. We show that the worst-case
time and space complexity of analyzing input
strings of length n is O(n5) and O(n4), respec-
tively. This result compares favorably with the
time complexity of word-order computations in
Tree Adjoining Grammar (TAG). A comparison
with Head-Driven Phrase Structure Grammar
(HPSG) reveals that PG yields a more declara-
tive linearization method, provided that the FSA
is rewritten as an equivalent regular expression.

1. Performance Grammar
Performance Grammar (PG; Kempen, 1999)
is a psycholinguistically motivated grammar
formalism for analysis and generation. Some-
what simpli fied, and in the terminology of
TAGs (cf. Joshi & Schabes, 1997), PG de-
fines lexically anchored initial trees and gen-
erates derived trees synchronously linked to
conceptual structures described in the same
formalism (as in Synchronous TAGs; Shieber
& Schabes, 1990) and it factors dominance
relationships and linear precedence in surface
structure trees (Joshi, 1987). PG differs from
recent TAG versions in that there are no aux-
ili ary trees, and that adjunction is replaced by
a combination of substitution—the only

composition operation—and finite-state line-
arizers that take care of vertical movement
('promotion') of phrases and of the linear or-
der of branches of derived trees.
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Fig. 1. Simplifi ed lexical frames underlying
the sentences We know Dana hates Kim and
Kim we know Dana hates (example from Sag
& Wasow, 1999). Order of branches is arbi-
trary. The lines containing fill ed circles de-
note substitution (feature unification).

More precisely, PG's initial trees, called lexi-
cal frames, are 4-tiered mobiles. The top
layer of a frame consists of a single phrasal
node (called the 'root'; e.g. S, NP, ADJP, PP),
which is connected to one or more functional
nodes in the second layer (e.g., SUBJect,
HeaD, Direct OBJect, CoMPlement, MODi-
fier). At most one exemplar of a functional
node is allowed in the same frame, except for
MOD nodes, which may occur several times
(cf. the Kleene star: MOD*). Every func-
tional node dominates exactly one phrasal
node ('foot') in the third layer, except for HD
which immediately dominates a lexical (part-
of-speech) node. Each lexical frame is 'an-
chored' to exactly one lexical item: a 'lemma'
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printed in the fourth layer below the lexical
node serving as the frame's HeaD (Fig. 1).

Associated with nodes in the first and the
third layer are feature matrices (not discussed
any further here), which can be unified with
other matrices as part of the substitution pro-
cess. The unification operation is non-
recursive and always involves one root and
one foot node of two different lexical frames
(see the fill ed circles in Fig. 1). Only local in-
formation can prevent a substitution. No
feature information is percolated through the
derived tree.

Left-to-right order of the branches of a lexi-
cal frame is determined by the 'linearizer' as-
sociated with a lexical frame. We assume that
every lexical frame has a one-dimensional ar-
ray specifying a fixed number of positions
(slots, ‘ landing sites’) f or constituents. For
instance, verb frames (i.e., frames anchored
to a verb) have an array whose positions can
be occupied by a Subject NP, a Direct Object
NP, the Head verb, etc. Fig. 2 shows the 12
slots where constituents of English verb
frames can go. The positions numbered F1
through F3 make up the Forefield (from Ger.
Vorfeld) M1 through M7 belong to the Mid-
field (Mittelfeld); B1 and B2 are the Back-
field (Nachfeld). The annotations at the arcs
denote possible fill ers of the slots. For exam-
ple, slot F1 can be occupied by one constitu-
ent: either a focus carrying constituents (in
Main clauses only), a subordinating conjunc-
tion (in an adverbial MODifier clause), a
Wh-phrase 'promoted' out of a lower lexical
frame (see below), or a non-promoted Wh-
phrase. The HeaD verb of a clause is as-
signed the first Midfield slot (M1), possibly
preceded by the complementizer to and fol-
lowed by a particle. Lexical frames anchored
to other parts of speech than verbs (e.g. NP-
or PP-frames) have their own specialized
linearization arrays.

A key property of linearization in PG is that
certain constituents may move out of their
'own' array and get 'promoted' to a position in
an array located at a higher level in the hier-
archy of lexical frames. Promotion takes
place when, due to subcategorization con-

straints, a linearization array is ‘ truncated’ ,
that is, instantiated incompletely. For in-
stance, if a verb takes a non-finite comple-
ment clause, the whole Forefield (slots F1
through F3) will be missing from the com-
plement's array. Due to incomplete instantia-
tion of the linearization array of a lexical
frame, one or more constituents of that lexi-
cal frame may be deprived of its landing site.
In that case, these constituents move up the
hierarchy of lexical frames, looking for an in-
stantiation of their landing site in a higher ar-
ray. The first (i.e. lowest) landing site is al-
ways chosen as the final destination.

Truncation of linearization arrays only affects
lateral (i.e. left- or right-peripheral) slots.
The slot occupied by the head of the phrase is
never truncated away, which implies that the
head of a lexical frame is never promoted.
How many slots at either side of the head are
actually instantiated, is determined strictly
locally, i.e. depends only on information
contained by the lexical frame the array be-
longs to, and its parent frame (its unification
partner).
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MOD Cl: CMPR/conj Compl. Cl: CMPR that
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Fig. 2. Linearization array for constituents of
S-frames. Placement conditions are anno-
tated on the arcs. E.g., „ SUBJ/NP|Wh“ at
slot F3 means: SUBJect, provided it is an NP
or a Wh-phrase; „ <“ indicates the prece-
dence relation between constituents sharing
a slot. MODifiers have not been depicted.

The mechanism controlli ng the distribution
of constituents over the instantiated slots of a
linearization array, is modeled as a Finite-
State Automaton (FSA). The FSA associated
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with a lexical frame traverses the instantiated
slots of its array from left to right. At each
slot, it inspects the set of constituents that are
waiting for placement in the array, and in-
serts there any constituents meeting the
placement conditions (arc labels in Fig. 2).

Fig. 3 ill ustrates promotion of a focused Di-
rect Object. Examples (1)-(4), taken from
Haegeman (1994), demonstrate some subtle
consequences of PG’s word ordering scheme
for Wh-questions1.
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Figure 3. Promotion/linearization at work for
the sentence Kim we know Dana hates. The
Direct OBJect of hates carr ies focus and
therefore needs an F1 slot as landing site.
Because the linearization array of hates has
been instantiated incompletely, Kim is pro-
moted into the array of the main clause.

(1) Who do you think left?
   [S[F1 Who M1 do M2 you B1

     [S[M1 think B1
[S[F1 F2 F3 M1 left]]]]]]

 (2) *Who do you think that left?
   [S[F1 Who M1 do M2 you B1

     [S[M1 think B1
[S[F1 F2 that F3 M1 left]]]]]]

(3) Who do you think Bill saw?
   [S[F1 Who M1 do M2 you B1

     [S[M1 think B1
[S[F1 F2 F3 Bill  M1 saw]]]]]]

 (4) Who do you think that Bill saw?
   [S[F1 Who M1 do M2 you B1

     [S[M1 think B1
[S[F1 F2 that F3 Bill M1 saw]]]]]]

                                                          
1 Our promotion scheme differs from the ‘ li fting’
scheme recently proposed by Kahane, Nasr & Ram-
bow (1998) in that we allow promotion exclusively
along lateral (i.e. truncated) regions of a linearization
array (thus ruling out, e.g., the promotion pattern in
example (2) above). Lifting does not seem to embody
an non-ad-hoc equivalent restriction.

As outlined in Kempen & Harbusch (1998)
and Kempen (1999), the PG’s word ordering
scheme enables generating the mildly con-
text-sensitive language anbncn, as well as to
account for the movement and word order
patterns in English, German and Dutch, in-
cluding certain rather complicated scram-
bling phenomena in German. The complexity
of these phenomena in contrast with the rela-
tive simplicity of this scheme suggests that
PG may give rise to very eff icient methods of
analyzing linear order. Below we show that
the worst-case time and space complexity is
O(n5) and O(n4), respectively.

2. Time and Space Complexity
Consider input string w=w1,...,wn of length n.
The overall analysis is divided into two steps:
1. Enumerating the complete set of lexical

frame hierarchies dominating all permuta-
tions of w (henceforth called the set of
dominance structures), and

2. Checking linear order on the basis of the
FSA, taking into account the possibilit y of
promotion of phrases in valid dominance
structures.

Step 1. Any lexical frame is rewritable in
terms of a context-free rule because the func-
tional nodes in the second layer of a lexical
frame can be viewed simply as annotations
on edges descending from the root node.
Every word in w is associated with one or (in
case of word-class ambiguity) several (O(1))
lexical frames, and every lexical frame has
exactly one lexical anchor.

Since a lexical frame is an unordered tree, it
can be viewed as an Immediate Dominance
rule with an empty set of Linear Precedence
rules (ID/LP); and parsing with lexical
frames could proceed as outlined in Shieber
(1984). However, this method would not take
the full set of valid dominance structures into
account. For instance, the sentence Kim we
know Dana hates cannot be analyzed by an
ID/LP grammar because Kim has moved out-
side the locality scope of hate.

Therefore we follow an indirect course. We
interpret the input string as a multiset, i.e. as
the set of all permutations of input words, so
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that any scope of locality is included. Moreo-
ver, we ‘fr eeze’ the lexical frames into an ar-
bitrary but fixed left-to-right order of
branches, which gives a context-free gram-
mar2. This guarantees, for instance, that the
valid dominance structure is built for the ex-
ample in Fig. 3 (as one of the permutations of
We know Dana hates Kim). Hence, the first
step enumerates all l ocality domains3.

In order to deal eff iciently with multisets in
the input, we use a slightly extended version
of Earley parsing which overgenerates with
respect to repetitions of the same input sym-
bol. The reason is that we do not check here
whether any symbol occurs more than once.

First, a subgrammar G’ is constructed which
only provides the lexical frames of any input
symbol wi, i=1,...,n. The only modification of
the Earley algorithm concerns the scanning
step. Instead of exploiting only the items (X,
α•tβ) where t=wi+1 in the original input
string, the parser scans all it ems and produces
(X, αt•β) according to subgrammar G’ . Ob-
viously, this modification performs as bad as
ordinary scanning does in the worst case,
without introducing additional time and
space requirements are introduced. Moreo-
ver, the modified scanning method implies
that all permutations of the input string are
explored. Consequently, given the extended
Earley algorithm for subgrammar G’ , the
time complexity and the space complexity for
the construction of all dominance structures
of the multiset of w remains O(n3) time and
O(n2) space units4.

Step 2 is based on the linearizer FSAs and
linearization arrays associated with the
phrases (‘ items’) in the dominance structures.
                                                          
2Without loss of generality, we assume that the left-
most branch contains the head of the frame. Hence we
deploy a context-free grammar in Greibach normal
form: (X, t Y1 ... Yk), with X and Y1 ...Yk non-terminal,
and t terminal.
3Throughout the paper we assume a condensed repre-
sentation of the set of potential dominance structures;
cf. ‘ items’ in Earley parsing (Earley, 1970).
4 Since the unification operation in PG is non-
recursive, it only involves testing a finite list of con-
straints. Hence, it does not increase time complexity.

An array represents a hypothetical order of
the input elements wi...wn  under the assump-
tion that the input elements w1...wi-1 have been
ordered successfully. These orderings are li -
censed by the finite number of slots in the
FSA. As the grammar is in Greibach normal
form, one ordered symbol must equal the
terminal in the rule. All other symbols may
go to the finite set of promotion sites pro-
vided by the FSA. Therefore, the task of step
2 can be reformulated as follows: For any
derivation, compute all bijective functions
from the terminals in the context-free rules to
the input symbols.

In order to deal eff iciently with the O(n2)
items that are provided as input to step 2, or-
dinary Earley processing is assumed along
the backpointers inserted in step 1. Initially,
this yields all it ems of the form (S, tX1...Xk•)
in In. These O(n) items have successfully
passed step 1. Now, each of these items is as-
sociated with arrays each representing one of
the following hypotheses:
t=w1 and no landing site is selected, or
t=wk and the sequence w1,...,wk-1 of promoted
symbols is li censed by a sequence of landing
sites to the left of wk according to the item’s
FSA (k=2, ...,n).

Exploring the number of resulting items, we
have to consider O(n) context-free rules in In.
Moreover, the order in the original input
string determines a finite sequence of landing
sites according to the currently considered
FSA (w1, w1w2, w1w2w3, ..., w1w2w3...wn).
Hence, the space is O(n2). With each array we
associate a pair containing (1) the ‘ li st of
promoted symbols’ LPS and (2) the ‘ fixed-
order marker’ FOM which provides the in-
dex in w that t takes. Notice the length of
LPS≤n; |FOM|=1.

Now, all substructures of these items (com-
pletions) are evaluated, taking the already
analyzed input symbols into account (this in-
dex with respect to w is provided by the
FOM). Hence, the context-free rules applied
here can only order O(n-1) times O(n-1)
symbols. In general, assuming FOM=i, there
exist O(n-i+1) times O(n-i+1) potential or-
ders for the remaining elements wi+1,...,wn.
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Hence, the overall space complexity is O(n4).

Now consider the general case for an item
(X,tjβ•Yγ) in I j with LPS=a1,...,ap, and
FOM=i (p<i; j≤i; β, γ, δ possibly empty se-
quences of non-terminals; a1,...,ap=w1...wi-1

with missing elements):

For any item (Y,tj+1δ•) in I j+1 the following
hypotheses are generated: wi+1...wi+k-1 is li -
censed by a sequence of landing sites to the
left of wi+k according to the local FSA. Fur-
thermore, one of the following situations
holds: tj+1=wi+k or tj+1 ∈ LPS. Consequently,
FOM=i+k, LPS=LPS+wi+1,...,wi+k-1. If tj+1 ∈
LPS, the rightmost wi+1 in LPS is erased
without loss of generality 5.

If we assume that all it ems are revisited ac-
cording to their backpointers, an ordinary
Earley parser is capable of performing step 2.
(Initially, LPS=nil and FOM=0; finally, an
item (S,α•) with LPS=nil , FOM=n must ex-
ist.) Hence, the input of size O(n2)—the out-
put of step 1—leads to an overall time com-
plexity of O(n2) times O(n3), i.e. O(n5).

Because this result compares favorably with
other grammar formalisms (see below), we
conclude that PG provides an eff icient
method for linear order computation. This
advantage derives basically from the de-
ployment of the promotion/linearization
scheme, which allows for non-local ordering
effects of local ordering decisions, in par-
ticular the partial instantiation of linearizers.

3. PG, TAG, and HPSG
For reasons of space we only address the two
broadly applied formalisms of Tree Adjoin-
ing Grammar (TAG, cf. Joshi & Schabes,
1997; and Head-Driven Phrase Structure
Grammar (HPSG, cf. Sag & Wasow, 1999).

For TAGs, various definitions of dominance
and linear order have been proposed in the
literature (cf. Joshi, 1987; Vijay-Shanker,
1992 for the definition of quasi-trees; Ram-
bow, 1994 for V-TAGs). They all have in
common that long-distance movements are
structurally realized by adjoining, thus
                                                          
5This reflects the linguistic observation that a pro-
moted phrase chooses the lowest possible landing site.

yielding the extended domains of locality
characteristic of all TAGs.

Linear ordering in Local Dominance/(Tree)
Linear Precedence (LD/(T)LP) TAGs pro-
ceeds very much like the ID/LP framework
defined for context-free grammars. Since lo-
cal dominance structures are provided where
‘moved’ constituents feature at the structural
level (i.e. adjoining stretches the distance
between nodes of the same elementary tree),
the cost of linear ordering is at least O(n6)
time units—as for ordinary TAGs (cf. Joshi
& Schabes, 1997).

As is well -known, scrambling cannot be de-
scribed by a simple (LD/(T)LP) TAG. Quasi-
trees represent partial descriptions of trees.
This definition allows for underspecified or-
dering of moved elements. Loosely speaking,
in this framework the spine for promotion is
specified declaratively. Similarly, V-TAGs (a
specific kind of Multi -component TAG) pro-
vide a method for manipulating different
portions of the same overall derivation tree.
Both formalisms are able to handle scram-
bling phenomena. However, the individual
readings are spelled out as different derived
trees which are computed on the basis of ad-
joining in an ordinary TAG parser; hence,
this costs at least O(n6) time units.

The essential difference between the PG and
TAG formalisms can be summarized as fol-
lows. In both PG and TAG, dominance
structures—consisting of lexical frames and
elementary trees, respectively—describe lin-
guistically motivated domains of locality. In
TAG, the adjoining operation which moves
constituents apart, affects the dominance
structure. In PG, the linearization component
leaves the dominance structure intact. The
linearizer FSA associated with lexical frames
can accommodate constituents originating
from other constituents—a behavior that is
less costly, as shown above.

In HPSG (Sag & Wasow, 1999), the PHON
and GAP features, the GAP principle and the
argument realization principle are basically
responsible for word ordering and long-
distance movement. The PHON feature of
phrasal types enumerates the linear order on
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the basis of li st addition (⊕, i.e. a non-
commutative sum). Furthermore, movement
phenomena are handled by the GAP feature,
the GAP principle and the argument realiza-
tion principle. The GAP feature contains a
list of elements to be moved. The argument
realization principle, which says that a word
structure tree is well -formed only if the va-
lence lists (SPR and COMPS) add up to the
argument structure (ARG-ST), is extended to
instantiate gaps freely; i.e. some elements of
ARG-ST are neither on the SPR nor on the
COMPS list, but on the GAP list instead. The
GAP principle tests whether the GAP values
of all daughters add up to be the GAP value
of the mother, unless the rule sanctioning the
structure is the Head-Fill er Rule. In order to
ultimately get all gaps fill ed, the initial sym-
bol must have an empty GAP list.

This method, li ke PG's linearization scheme,
computes linear order without manipulating
the dominance structure (i.e., the daughters’
feature descriptions). Loosely speaking, the
specification in the PHON feature can be in-
terpreted as a regular expression equivalent
to a FSA (although the PHON feature does
not provide the definition of the Kleene Star;
the infinity of li censed orderings is provided
by the recursive application of schemata, i.e.
A⊕B, where B has the PHON feature
C⊕D—cf. Sag & Wasow, o.c., p. 374). Fur-
thermore, the realization of movement phe-
nomena corresponds directly to promotion,
i.e., the gap is percolated along the spine. The
definition of landing sites is defined differ-
ently, however. In PG, landing sites are enu-
merated declaratively whereas HPSG termi-
nates the percolation procedurally in terms of
the GAP principle. As computation of feature
specifications is, in general, NP-complete
(Hegner, 1995), the cost of linear order com-
putation is of no particular interest to HPSG.
However, HPSG aims at describing linguistic
phenomena declaratively. Our description,
we claim, is more declarative than the current
HPSG realization. The linearizer FSA of a
lexical frame can be rewritten as an equiva-
lent regular expression and becomes associ-
ated with the referring phrasal type in HPSG.

4. Conclusions
We have described an approach to linear or-
dering that involves a non-local precedence
mechanism which does not rely on a defini-
tion and scope of movement as in terms of
the GAP feature. In comparison to TAG’s
structural representations based on adjoining,
PG’s promotion/linearization yields a more
eff icient analysis. Compared to HPSG, it can
give rise to more declarative word ordering.
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