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Abstract 
This paper presents a method to quantify the spectral 
characteristics of reduction in speech. Hämäläinen et al. 
(2009) proposes a measure of spectral reduction which is able 
to predict a substantial amount of the variation in duration that 
linguistically motivated variables do not account for. In this 
paper, we continue studying acoustic reduction in speech by 
developing a new acoustic measure of reduction, based on 
local manifold structure in speech. We show that this measure 
yields significantly improved statistical models for predicting 
variation in duration. 
Index terms: temporal reduction, spectral reduction, manifold 
structure 

1. Introduction 
Reduction, i.e. the phenomenon that speech sounds can deviate 
from their unreduced ‘canonical’ form, is an inherent property 
of conversational speech that is interesting from several 
scientific points of view. From the perspective of linguistics, 
the co-presence of reduced and less reduced forms of speech 
units raises the question how reduction can emerge in a 
linguistic system constrained by the communicative purpose of 
speech. Psycholinguists have long wanted to understand which 
factors influence reduction. Finally, from the point of view of 
Automatic Speech Recognition (ASR), acoustic phenomena 
related to reduction pose a serious challenge for the modelling 
of speech units, in both parametric and non-parametric 
(episodic, e.g. De Wachter, 2007) approaches. 
In recent years, substantial research has been conducted to 
investigate reduction. In most of these studies, reduction is 
analysed while focusing on its linguistic aspects: the contexts 
in which reduction occurs, and the linguistic factors that 
predict the amount of reduction observed in speech (e.g. word 
frequency, Pluymaekers et al., 2006; syllable structure, mutual 
information, rate of speech, Pluymaekers et al. 2005). 
Furthermore, these studies consider duration as a measure (an 
observable epiphenomenon) of reduction, based on the 
observation that reduced forms often correspond to shorter and 
less carefully pronounced or deleted segments of speech. 
Evidently, reduction also manifests itself in the spectral 
domain. Due to its higher-dimensional nature, spectral 
reduction is more difficult to measure than its one-dimensional 
counterpart duration. A recent study investigates a method of 
measuring the level of spectral reduction by using ASR-based 
decoding techniques (Hämäläinen et al., 2009).  In this study, 
reduction is quantified by the distance between a particular 
stretch of speech (represented as a sequence of MFCC vectors) 
and a sequence of Hidden Markov Models (HMMs) 
corresponding to the canonical phonetic transcription of the 
stretch of speech in question. In essence, this technique boils 
down to constructing an adequate distance measure between 

trajectories in the acoustic space in such a way that it reflects 
the deviation from the canonical pronunciation trajectory. 
Because spectral reduction manifests itself in higher 
dimensions, it is likely that alternative distances can be 
defined that measure the deviation between a given trajectory 
and its unreduced counterpart in a different way. In this paper, 
we propose such an alternative, based on the use of manifolds. 
When using this method, each realisation of a given syllable 
(e.g. an affix) is represented by a trajectory (represented as a 
sequence of MFCC vectors).  The collection of all trajectories 
defines a manifold that is spanned by the collection of all 
individual MFCC vectors along each trajectory. This manifold 
is input for ISOMAP (Tenenbaum et al., 2000), a dimension 
reduction algorithm that looks for the local structure of the 
manifold by using the geometric structure of the 
neighbourhood around each of its points. The advantage of 
this method is that exploiting this manifold provides new local 
coordinates for each point on the manifold. Especially if the 
dimension in which the manifold is embedded is large, the use 
of these lower-dimensional coordinates may simplify the 
interpretation of the structure of the manifold. Furthermore, 
ISOMAP generates a neighbourhood graph in which each 
point serves as a node, which can be used to define a new 
distance between all points on the manifold (the geodesic 
distance). Since this distance is based on an entirely different 
view of variation in speech than HMM alignment scores, with 
respect for the local structure, we hypothesize that it will serve 
as a promising factor, complementary to HMM scores, in the 
modelling of reduction.   
The aim of this paper is to study our hypothesis that the 
ISOMAP distance (or ‘dissimilarity’) can be used in statistical 
models that explain duration in terms of a number of linguistic 
and acoustic variables. Previous experiments have shown that 
HMM alignment scores predict a substantial amount of the 
variation in duration that the linguistically motivated variables 
do not account for. In the present paper, the ISOMAP distance 
will similarly be used as an alternative independent variable. 
We use four frequent Dutch affixes (‘ver-’, ‘ont-’, ‘ge-’, en ‘-
lijk’) that are known to be prone to reduction. The experiments 
presented in this paper use the same data set and experimental 
set-up as in Pluymaekers et al. (2005) and Hämäläinen et al. 
(2009).  
This paper is further organized as follows. In Section 2 we will 
present the methodology. Data and experiments are presented 
in section 3 and 4, while a discussion and our conclusions 
follow in Section 5. 

2. Spectral dissimilarity 
The question how to quantify spectral reduction can be made 
more precise by asking how to quantify the amount of 
dissimilarity between reference and reduced realizations of a 
speech unit—in this case, syllable-sized affixes. In this 
section, we propose a spectral dissimilarity measure based on 
the local structure of the speech signal. 
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The starting point of the ISOMAP method is a collection of 
different acoustic realizations of a target affix. The collection 
of all individual MFCC vectors along each trajectory spans a 
manifold. Evidently, such a manifold is difficult to visualize, 
but a lower-dimensional representation reveals some of its 
structure. Figure 1 shows a 2-D map for the Dutch affix ‘ver-’, 
which is one of the four affixes in this study. The location of 
each MFCC vector in this map is determined by projection 
using the first two principal components. 
 

 
 
Figure 1. This figure presents a 2-D representation of the manifold for 
‘ver-’. Each trajectory consists of a sequence of MFCC vectors, and 
each MFCC vector is represented by a (blue) point. Trajectories (these 
are not shown in the figure for clarity) tend to evolve from left to right. 
The (red) larger marks represent the location of the means 
corresponding to a 5-state HMM model trained on the set of 
trajectories (circle left = first state,  single cross = second state, cluster 
of crosses =  third to fifth state.) 

 
For this affix, most (89%) trajectories pass through the 
manifold in the direction of its first principal axis (from the 
left to the right in Fig.1). The 2-D representation is poor and 
therefore does not reveal the structure of the set (which is 
embedded in 13-D) very well. This is shown by the location of 
the means of an HMM model that is trained on this set, 
indicated by the red marks in Figure 1. In 2-D they seem to 
appear very close together, but are actually well separated in 
the original space. 
The structure of the manifold is determined by the variation in 
the speech signal. If all tokens were carefully produced by a 
single speaker, the manifold would have a relatively simple 
structure, determined by the intrinsic variability in speech. 
Adding more speakers and more reduced forms broadens the 
set of trajectories: temporally reduced trajectories lead to 
shorter trajectories, and spectrally reduced trajectories lead to 
larger distance to the reference trajectory. To reduce the 
undesired variation due to speaker effects, it is therefore 
important that the feature extraction diminishes between-
speaker differences as much as possible. To that end, cepstral 
mean subtraction (CMN) is used in all experiments. 
The conceptual advantage of using a manifold is that the 
distance between any two points can now be measured 
according to their geodesic distance, i.e. as measured via the 
manifold. This is accomplished by using the so-called 
neighbourhood graph. 
To understand the essence of this graph, see Figures 2 and 3 
(based on example data unrelated to the study at hand). Figure 
2 presents a collection of points sampled from a bent manifold 
with a hole. The manifold is embedded in dimension 3. The 
neighbourhood graph (shown in figure 3), the result of the 

ISOMAP analysis, is a quasi-isometric, low-dimensional 
representation of the original 3-D data set.  (ISOMAP needs 
technical settings that are not discussed here. To obtain all 
results presented, the L2 (Euclidean) distance was chosen, in 
combination with kNN with k=19 for the construction of the 
neighbourhoods).  
The neighbourhood graph is weighted: each arc between 
neighbouring points is assigned a weight which is equal to the 
distance between these points measured on the basis of the 
new local coordinates. Starting from this local distance 
measure, it takes three steps to arrive at the dissimilarity 
between trajectories: 
1 We extend this local distance measure to all points in the 

neighbourhood graph. Each pair of points (p1, p2) in the 
graph is assigned a distance, defined by the shortest path 
connecting p1 with p2.  

2 Since points in the neighbourhood graph are one-to-one 
with points in the ISOMAP input, the ISOMAP distance 
can be extended to each pair of points in the input space. 

3 The dissimilarity between two trajectories in the original 
space is defined by aligning these trajectories using the 
point-point distance from step 2. Finally, this measure is 
normalized as to contain no information about the 
duration of the trajectories. 

 

 
Figure 2. This figure shows an example of ISOMAP input. A 
collection of points spans a manifold in a 3-D embedding space. The 
manifold is sharply bent and has a hole. 

 

 
Figure 3. Based on the set of points shown in figure 2, ISOMAP builds 
the neighbourhood graph. Each point in figure 2 has been mapped 
onto a 2-D plane. The blue arcs connect each point to its 19 closest 
neighbours (i.e. k=19).  
 
For the trajectories for the Dutch suffix ‘-ver’, this 3-step 
procedure results in Fig. 4. This figure shows the distance 
between each trajectory and one trajectory (as reference) that 
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was canonically transcribed as ‘v@r’ (blue crosses). The 
horizontal axis represents the individual realizations 
(trajectories) – this ordering was determined by their ordering 
in the CGN database, while the y-axis presents the ISOMAP 
distance. The (red) circles represents the same information but 
sorted according to increasing distance. The figure shows that 
in the entire set, there is a group of about 15 realizations (out 
of 137) with a relatively small dissimilarity: they are, 
according to this measure, close to unreduced. A varied group 
of realizations exists with distances in the middle range; two 
outliers have an exceptionally high dissimilarity. (An analysis 
showed that these two outliers correspond to very short 
acoustic tokens, which have both been manually labelled as 
/x/). 

 

 
Figure 4. The ISOMAP distances for all trajectories of the affix ‘ver-’. 

Along the horizontal axis the trajectories are presented, in two 
different orderings (see the text). 

3. Data 

3.1. Speech material 
We re-used the same stretches of speech that Pluymaekers et 
al. (2005) had manually labeled as the target affixes. These 
data originate from spontaneous face-to-face conversations 
between speakers of Dutch as spoken in The Netherlands in 
the Spoken Dutch Corpus (CGN, Oostdijk et al., 2002). We 
investigated the prefixes ge-, ver-, and ont-, and the suffix -
lijk. ‘ge-‘ is commonly used to create the perfect participle, in 
Dutch e.g., ‘gespeculeerd’ the perfect participle form of the 
verb speculate, but can also appear as a nominal or a verbal 
prefix e.g. gebak cakes gebeuren happen. However, we only 
investigated the participial instances of ge-. The affixes ver- 
and ont- are verbalizing prefixes expressing change in state 
e.g., verplaatsen  move while ‘ont’ refers to a negation. The 
suffix -lijk appears in adverbs and adjectives e.g., ‘natuurlijk’ 
naturally. The canonical phonetic transcriptions using the 
Speech Assessment Methods Phonetic Alphabet of the four 
affixes are /x@/, /v@r/, /Ont/, and /l@k/, respectively. 
(Pluymaekers et al., 2005). 

3.2. Feature extraction 
For this study, we used the same data representation as used in 
Hämäläinen et al (2009). The feature extraction of the speech 
data is based on a frame rate of 5 ms. Using the “default” 
frame rate of 10 ms in combination with the chosen model 
topology would have led to undersampling of some of the very 
short realizations. In the present experiments 12 mel frequency 
cepstral coefficients and log-energy were used; first and 
second derivatives were omitted, since the entire trajectory is 

taken as one analysis unit and so dynamic information is 
preserved in the trajectory. As said, cepstral mean 
normalization was done over the complete recordings to 
minimize the acoustic effects due to between-speaker 
differences. 
 
Table I. The four affixes, the number of realizations (tokens), the 
number of speakers, and a number of token transcriptions. 
Affix #tokens #spk examples of transcriptions 
Ge- 427 132 x@, G@, x,… 
Ver- 137 80 v@r, v@, vr, v, f@r,... 
Ont- 101 63 Ont, Ond, Omp, Od, Om, .. 
-lijk 157 87 l@, lk, @k, @, g, k,… 
 

4. Experiments 

4.1. Using ISOMAP scores 
The experiments are designed to investigate our hypothesis 
that ISOMAP scores can be applied to explain duration as a 
measure of reduction using linguistic variables, the HMM-
based score and the ISOMAP score. Success is not trivial since 
the ISOMAP scores do not contain explicit durational 
information (neither the HMM scores do). First we checked to 
what extent the HMM-based score and the ISOMAP score 
correlate. Overall, this correlation was low for each of the 
affixes (‘ont’ 0.35, ‘ver’ 0.21, ‘ge’ 0.19 and ‘lijk’ 0.16), 
suggesting that the ISOMAP scores may contain information 
that is complementary to the HMM-based scores. 
We took the statistical models described by Hämäläinen et al. 
as a starting point, and extended these models with the 
ISOMAP reduction scores as another predictor. As in 
Hämäläinen (2009), we removed outliers: six for ge-, four for 
ver-, three for ont-, four for -lijk in the case of words in non-
final position (114 observations), and five for -lijk in the case 
of words in final position (43 observations). The distributions 
of the continuous variables didn’t require additional 
transformations to adhere to normality. 
We used the duration of the affix as the response variable and 
fitted different linear multiple regression models to affix data: 
the Pluymaekers model, the Hämäläinen HMM model, and 
two ISOMAP models (see below). We used least-squares 
regression for the statistical analyses in this study. The 
proportion of variance accounted for by a model is expressed 
by the coefficient R2.  

4.2. Results  

A. ge- 
Here, four models were compared: two reference models 
(Pluymaeker and Hämäläinen), and two models (I and II) in 
which the ISOMAP scores were used. In all these analyses, we 
kept the set of independent linguistic variables the same. 
 

Table IIA Overview of model results for ‘ge-’ 
Model R2 
Pluymaekers model (duration as function of 
frequency, onset complexity, speech rate) 

0.09 

Hämäläinen model: same variables, HMM 0.20 
ISOMAP model I: variables, HMM, ISOMAP 0.27 
ISOMAP model II: variables, ISOMAP 0.22 

 
While the Hämäläinen model significantly improved on the 
Pluymaekers model (F(1, 416) = 56.1, p < 0.0001), it appears 
that adding the ISOMAP reduction score as independent 
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variable (model ISOMAP I) again leads to a significant 
improvement compared to the Hämäläinen model. (F(1, 415) = 
49.1; p < 0.0001). 
For the sake of completeness, we also present ISOMAP model 
II in which we replace the HMM score by the ISOMAP score. 
This doesn’t lead to a significant improvement compared to 
the. Hämäläinen model. 
In the last two ISOMAP models, the ISOMAP score was a 
significant factor: � = 4.4, t(415) = 7.5, p<0.0001, and �  = 
5.3, t(415) = 7.6, p<0.0001, respectively. 
The result shows that the ISOMAP score is also useful when 
explaining the duration of realizations. The correlation 
between the ISOMAP scores and the HMM-based scores is 
0.19; part of the ISOMAP information is apparently useful in 
further explaining the duration variable. 
 
B. ver- 

Table IIB Overview of model results for ‘ver-’ 
Model R2 
Pluymaekers model (onset complexity, yr of birth)  0.12 
Hämäläinen model: variables, HMM 0.22 
ISOMAP model I: variables, HMM, ISOMAP 0.27 

 
Also for this affix, we see an improvement compared to the 
HMM score model. While the HMM model significantly 
improved on the Pluymaekers model (F(1, 129) = 16.6,p < 
0.0001), it appears that the additional use of the ISOMAP 
score again leads to a significant improvement (F(1, 128) = 19; 
p < 0.001) compared to the Hämäläinen model. The relevance 
of the linguistic variables onset complexity and year of birth 
was unaltered in the ISOMAP model. The ISOMAP model II 
(with the HMM score replaced by the ISOMAP score, not 
mentioned in table IIB) is not significantly better than the 
Hämäläinen model.  
 
C. ont- 
In contrast to the previous two syllables, the prefix ‘ont-’ 
appears difficult to model. The ISOMAP score did not bring 
any significant improvement. 
 

Table IIC Overview of model results for ‘ont-’ 
Model R2 
Pluymaekers model (frequency * speech rate, 
frequency * year of birth, year of birth) 

0.23 

Hämäläinen model: variables, HMM 0.24 
ISOMAP model I: variables, HMM, ISOMAP 0.25 

 
This insignificant result does not come as a complete surprise. 
As was attested in earlier studies, an analysis of variance 
showed that the HMM score model was not significantly better 
than the Pluymaekers model (F(1, 93) = 1.50; p = 0.22), while 
the ISOMAP model I is not significantly better than the 
Hämäläinen model (F(1, 92) = 3.31; p = 0.07). As in 
Hämäläinen et al., we could not find out why this is the case.  
 
D. -lijk 
Of the two cases (final and non-final position, in total 157 
realizations), we only could analyze the non-word-final 
realizations. The number of examples for the final position 
(43) is too low to reliably and robustly construct an ISOMAP 
neighbourhood graph. The results below therefore refer to the 
realizations in the non-word final position. 
Also in this case, the ISOMAP model I is (significantly) better 
than the Hämäläinen model, albeit with a less pronounced p-
value (F(105) = 4.70, p<0.05) than for ‘ver’ and ‘ge’. Again, 
the ISOMAP model II does not differ significantly from the 
Hämäläinen model. 

 
Table IID Overview of model results for ‘-lijk’ 

Model R2 
Pluymaekers model (frequency, year of bith) 0.19 
Hämäläinen model: variables, HMM 0.22 
ISOMAP model I: variables,  HMM,  ISOMAP 0.27 

 

5. Discussion and conclusion 
In general, ISOMAP scores proved useful as an additional 
independent variable for predicting duration. For ‘ge-’ and 
‘ver-’, we obtained significant improvements over the model 
that only uses the HMM alignment scores in addition to the 
linguistic variables. For ‘ont-’, we found no significant 
improvements, while the ‘-lijk’ suffix could only be evaluated 
for the non-final realisations but with a significant 
improvement as result. 
The results show that the ISOMAP distance can serve as an 
additional independent variable in linear models explaining the 
duration of an affix realization. However, the method has a 
number of drawbacks. Firstly, a computational and practical 
drawback is its computational complexity and its dependence 
on the population density of the manifold. E.g. the number of 
word-final examples of -lijk was too low to reliably construct a 
neighbourhood graph. Furthermore, the ISOMAP scores 
depend (slightly) on the choice of the reference realisation. It 
is not straightforward to let ISOMAP decide on this reference. 
Since the geometry of the manifold also depends on 
differences between speakers, both the HMM score and the 
ISOMAP score will explain part of the variation caused by this 
factor. The extent to which this is a serious effect has been 
reduced by applying cepstral mean normalisation in the MFCC 
frontend. To further reduce speaker dependency in the 
structure of the manifold, a vocal tract length normalisation 
(VTLN) will be applied in future experiments. 
Overall, we conclude that the spectral part of reduction is a 
complex phenomenon, in which both HMM scores and 
ISOMAP scores can play a complementary role. In statistical 
models, duration is best predicted by taking both acoustically 
motivated measures into account. 
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