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1 Introduction

It is by now well-established that maximal supergravity in D ≥ 3 dimensions admits

a systematic hierarchy of p-form potentials with 0 ≤ p ≤ D. This structure has been

termed tensor hierarchy [1–3] and has been derived from the properties of gauged maximal

supergravity theories. Tantalizingly, the tensor hierarchy derived in this way agrees very

well with a ‘spectral analysis’ of the Kac-Moody Lie algebra E11 [4, 5].1 The compatibility

of the tensor hierarchy with supersymmetry was also checked in many cases, most notably

the occurence of ten-forms in type IIB supergravity in D = 10 [6, 7]. The various p-forms

that appear in the tensor hierarchy transform under the continuous hidden symmetry

groups E11−D(R). For this paper we will use the tensor hierarchy as predicted by E11 and

summarized in table 1.

In supergravity, there typically exist relatively simple solutions that couple to a p-form

potential. These are called (p − 1) branes and have a p-dimensional world-volume and a

string frame tension with fixed scaling with respect to the string coupling constant gs. For

1There are small (potential) differences in D = 3 that we will argue in footnote 5 are not important for

the purposes of this paper.
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D\p 1 2 3 4 5 6 7 8 9 10

IIA 1 1 1 1 1 1 1 1 2×1

IIB 2 1 2 3 4⊕2

9 2⊕1 2 1 1 2 2⊕1 3⊕1 3⊕2 4⊕2×2

8 (3,2) (3̄,1) (1,2) (3,1) (3̄,2) (8,1)⊕(1,3) (6̄,2)⊕(3,2)
(15,1)⊕(3̄,3)

⊕2×(3̄,1)

7 10 5 5̄ 10 24 40⊕15 70⊕45⊕5

6 16c 10 16s 45 144s

320⊕126+

⊕10

5 27 27 78 351 1728⊕27

4 56 133 912 8645⊕133

3 248 3875⊕1
147250

⊕3875⊕248

Table 1. The tensor hierarchy of p-forms for 3 ≤ D ≤ 10 as predicted by E11. For type IIA,

there is no non-abelian U-duality, for type IIB it is SL(2, R). We omit the scalars that form the

(non-linear) coset E11−D/K(E11−D) with K(E11−D) the maximal compact subgroup. In D = 8,

we take E3 = SL(3) × SL(2). See also [4, 5].

example, in the line for IIA in table 1 one can see the standard supersymmetric D0, F1,

D2, D4, NS5, D6 and D8 branes of the theory. In addition, there are a p = 8 potential and

two p = 10 potentials. The question which of these couple to supersymmetric branes has

been answered for example in [7, 8] where it was found that none of them gives rise to a

supersymmetric brane in type IIA.

Looking at table 1, the question arises more generally: Out of the p-form potentials

in a given dimension D, which ones are sources for supersymmetric branes of maximal

supergravity and what is the scaling of their tension with gs? This is the main question we

will answer fully and completely using E11 in this paper. We note that quite a number of

results in this direction have already been obtained in the recent past [9–12]. The analysis

rested on analysing the structure of the Wess-Zumino terms as a necessary criterion for

supersymmetry and resulted in a number of wrapping rules that permit the derivation of

the number of supersymmetric solitons of a given scaling g−σ
s for σ = 0, 1, 2, 3 from the

known branes in IIA and IIB. An additional outcome of this analysis was that, in order to

get the right number of solutions, it is not sufficient to just study the dimensional reduction

of the IIA/IIB branes but a supplemental ‘inflow’ of objects was needed for σ ≥ 2 from so-

called generalised Kaluza-Klein monopoles. This only happens for branes of co-dimension

at most two. Branes of co-dimension less than two couple to p-forms with p = D − 1 or

p = D and hence not to fields with local degrees of freedom.

That not all p-forms give rise to supersymmetric solutions can be seen for example in

the type IIB case. There one obtains an SL(2, R) triplet of 8-forms [6, 13] that would näıvely

suggest a triplet of supersymmetric 7-branes. One supersymmetric 7-brane is certainly the

D7 (with σ = 1), another one is its S-dual partner (with σ = 3). However, it turns out that

one cannot associate a supersymmetric 7-brane with the third 8-form potential [10, 14, 15].

The reason is basically that these are dual to only the two scalars (φ, χ) parametrising the
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D\p 0 1 2 3 4 5 6 7 8 9

IIA 1 1 1 1 1 1 1

IIB 2 1 2 2 2

9 3 2 1 1 2 3 2 2 2

8 6 3 2 3 6 8 6 6

7 10 5 5 10 20 25 20

6 16 10 16 40 80 96

5 27 27 72 216 432

4 56 126 576 2016

3 240 2160 17280

Table 2. Total number of supersymmetric p-branes of maximal supergravity in D space-time

dimensions as predicted by E11. Note that p is shifted by one compared to table 1 as it now labels

the p-branes (coupling to a (p + 1)-form potential). The table contains all gs scalings together.

SL(2, R)/SO(2) scalar manifold. This kind of reasoning will not apply to p-forms with p =

D − 1 or p = D in D space-time dimensions since the corresponding forms are not dual to

any of the physical fields.2 U-duality is compatible with supersymmetry, so all the members

of the U-duality orbit of a given supersymmetric brane will be supersymmetric. This is

what happens in the example above: the third potential is not in the orbit of the D7-brane.

With this reasoning we could already determine a lower bound on the number of

supersymmetric p-branes in D space-time dimensions by looking at the size of the U-

duality orbits of the standard branes.3 We claim that this already gives the full correct

answer rather than just a lower bound. As will be explained in more detail below, the

reason is that from an E11 point of view, this orbit corresponds entirely to real roots of

the algebra, whereas all other orbits correspond to imaginary roots. That the solutions

associated to imaginary roots are not supersymmetric was verified in detail in the null case

in [21].4 What has to be done therefore from an E11 logic is to select among the potentials

of table 1 those that correspond to real roots. This can be done since one knows for all

the potentials the corresponding roots. What one arrives at is table 2. For consistency we

note that U-duality preserves the norm.5

In the table, all possible gs scalings are still grouped together but it is desirable to

differentiate the different types of non-perturbative behaviour in terms of string frame

tensions. This can be done by recalling that U-duality is composed out of T- and S-duality,

see for instance. [23, 24]. T-duality does not change the power of gs [24] and therefore one

2The (D − 1)-forms correspond to possible (gauge) deformations of maximal supergravity, the D-forms

are related to constraints on these deformations; this will not be of importance in this paper.
3The counting of supersymmetric branes presented here only deals with ‘pure’ or ‘elementary’ branes

and does not consider intersecting branes nor dyonic [16] or more complicated bound states. These can be

also analysed by algebraic methods [17–20].
4The difference between real and imaginary also played an important role in [22].
5The difference in the 3-form spectrum in D = 3 in the tensor hierarchy analysis of [2] and the E11

analysis of [4, 5] consists of the 248 of E8 in table 1. It lies entirely in the imaginary root sector and so

does not source any supersymmetric branes. Its presence or not does not alter table 2.
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needs to consider the breaking

E11−D(R) ⊃ SO(10 − D, 10 − D; R) × R+. (1.1)

The weight under R+ corresponds to σ when normalized correctly. We will discuss this

breaking in more detail below and there will give tables counting the supersymmetric

objects for all values of p, D and σ. Our results represent the first complete count of

supersymmetric branes in all dimensions D ≥ 3 and agree with completely independent

derivations where available.

Viewing the supersymmetric branes as associated to real roots of E11 makes it very

simple to follow them through the various dimensions and obtain higher-dimensional origins

of the generalised KK-monopoles and similar ‘obscure’ non-standard objects necessary for

the correct counting.

Besides counting the solutions, it is of interest to construct them. This can be done by

performing U-duality transformations on known solutions and in this way generalised KK

monopoles of co-dimension two have already been constructed in the past [25, 26]. These

solutions require a fair number of isometry directions when viewed as ten-dimensional solu-

tions because one needs to perform many T-duality transformations on the known solutions.

We will not address here the construction of supersymmetric generalised Kaluza-Klein

monopole solutions with co-dimension less than two but leave this to future work. The

reason is that they require the extension of the U-duality transformation rules to deformed

supergravity, most notably to massive type IIA supergravity where the D8-brane is already

a solution only of the mass deformed theory [27]. Some solutions can be constructed

without such generalizations of e.g. [28] and which ones can easily be decided by studying

the corresponding E11 root vectors.

The rest of this note starts by giving a more detailed description of the E11 derivation

of the counting of branes and tables for all values of p, D and σ in section 2. There we

will also discuss the higher-dimensional (D = 11) origin of the solutions. In section 3, we

explicitly construct local solutions using T-duality transformations. Appendix A gives the

type IIA and type IIB origin of all the branes and appendix B contains our conventions.

2 E11 derivation

We start this section by recalling the usefulness of E11 [29] as a bookkeeping device for the

field content of maximal supergravity in various space-time dimensions [4–6].

The Dynkin diagram of E11 is given in figure 1. If one is interested in maximal

supergravity in D dimensions one has to ‘cut’ the diagram at node D. To the left one will

have a diagram of type AD−1, corresponding to the so-called ‘gravity line’. To the right of

the cut one obtains the diagram of the hidden symmetry E11−D.6 In other words one has

6For D = 9, one has to also remove node 11, for D = 10, there are two choices, corresponding to type

IIA and type IIB [6].
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1 2 3 4 5 6 7 8 9 10

11

② ② ② ② ② ② ② ② ② ②

②

②

Figure 1. Dynkin diagram of E11 with labelling of nodes.

a decomposition7

E11 ⊃ GL(D, R) × E11−D. (2.1)

One obtains the spectrum of fields in D space-time dimensions by decomposing the

adjoint representation of E11 under this subgroup. As one deals with the adjoint repre-

sentation one can label the elements by the roots α of the algebra. Any such root can be

expanded in a basis of simple roots αi as

α =

11
∑

i=1

miαi. (2.2)

As E11 is an infinite-dimensional Kac-Moody algebra, α can be either real or imaginary,

depending on whether its norm |α|2, computed in the standard Killing metric, is greater

than zero or not. The simplest example of an imaginary root is the affine null root

δ = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 6α8 + 4α9 + 2α10 + 3α11. (2.3)

Imaginary roots can have multiplicities; the multiplicity of δ is equal to 8. Real roots

always have multiplicity equal to 1.

The result of the decomposition of the adjoint of E11 under (2.1) can be ordered by

‘level’, that is by the number of times the deleted simple node αD appears in the expansion.

The results of this decomposition at low levels for all D can be found in [4–6]. In this way

one can associate to any given field in maximal supergravity a root α et vice versa.8

As explained in the introduction, we are interested in the breaking of U-duality to

T-duality. The U-duality group E11−D is constructed from the nodes from D + 1 up to

11; the SO(10−D, 10−D) T-duality subgroup is obtained by ignoring the node 10 of the

E11−D diagram. The R+ factor in (1.1) is therefore associated with the scaling under node

10. More precisely, we have [6]9

σ = m10, (2.4)

i.e., the string frame tension dependence σ is the eigenvalue under the fundamental weight

generator λ10 acting on a given generator of E11.

7The enhancement from SL(D, R) ∼= AD−1 to GL(D, R) is due to the additional Cartan generator of the

node where one cut the diagram.
8Since only Borel elements are associated with fields in a non-linear realization, we always have α > 0.

Due to our restriction to real roots in the following we are not displaying multiplicity indices.
9See also [30].
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Let us view this in an example from type IIB. According to [6], there are three 8-form

potentials, these correspond to the three roots

δ − α10, δ and δ + α10. (2.5)

Referring back to (2.3) the scaling factors of the three potentials are therefore

σ = 1, σ = 2 and σ = 3. (2.6)

The first potential is the one that couples to the D7 of type IIB, the last one is its S-dual.

Both the corresponding roots are real. The middle potential with σ = 2 corresponds to

the null root δ and does not give rise to a supersymmetric solution [21]. Even though the

three potentials together form the 3 of SL(2, R) one cannot map the σ = 1 potential fully

on σ = 2 potential.

Now, we have all the material at hand to find the number of supersymmetric p-brane

solutions of a given scaling σ in D space-time dimensions. It is straight-forward to imple-

ment this on the computer and we merely give the results in table form in tables 3 to 11.

One computes all real E11 roots (up to height 161) and selects all those that correspond

to antisymmetric tensor, groups them by rank, weight under λ10 and dimension.10 Alter-

natively, one can take the tensor hierarchy representations of table 1, compute the Weyl

orbits of the dominant (real) weights (this gives table 2) and then branch these Weyl orbits

under the T-duality Weyl group.11 Note that we have chosen to display the tables with

σ held fix. In this way, one does not immediately see the feature that for D = 3, 4, 6, 10,

the numbers of p-branes with p fixed and varying σ are always symmetric, reflecting the

underlying Z2 S-duality. For the remaining values of D there is of course also a Z2 S-duality

that acts on the representations but in these cases the branched orbits arrange themselves

asymmetrically. The restriction to real roots we have employed here also follows from the

fact that U-duality (the Weyl group) preserves the norm of the roots.

The higher-dimensional origin of a given object can also be recovered easily using the

root α corresponding to the potential and its meaning in the various dimensions. We have

performed this for the higher dimensional origin in type IIA, type IIB and M-theory.

It turns out that there is quite a number of mixed symmetry tensors that occur in this

analysis. Here, we only give the list of tensors in D = 11 (M-theory) that contribute to the

counting and refer to appendix A for type IIA and type IIB. We denote by T(M1,M2,M3,...)

an irreducible tensor of GL(11, R) with Young tableau consisting of columns of lengths M1,

M2, etc. We restrict to 11 ≥ M1 ≥ M2 ≥ . . ., and columns of length 11 are needed to keep

track of the overall weight. In this notation, the three-form of D = 11 supergravity is there-

fore written as T(3). The graviton is in the adjoint of GL(11, R) and is listed as T(10,1) below.

10The identification of the root associated with a given potential can for example be done with the tables

of [6] or with the help of the simpLie software of [5].
11In some cases there are contributions from more than one irreducible U-duality representation.
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D\p 0 1 2 3 4 5 6 7 8 9

IIA 1

IIB 1

9 2 1

8 4 1

7 6 1

6 8 1

5 10 1

4 12 1

3 14 1

Table 3. Supersymmetric p-branes in D dimensions that scale like g−0
s , i.e., σ = 0. The table

agrees with that of [11] and is in accord with the ‘fundamental wrapping rule’. The table contains

the fundamental string and its reductions as well reductions of KK momentum states.

D\p 0 1 2 3 4 5 6 7 8 9

IIA 1 1 1 1 1

IIB 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

8 2 2 2 2 2 2 2 2

7 4 4 4 4 4 4 4

6 8 8 8 8 8 8

5 16 16 16 16 16

4 32 32 32 32

3 64 64 64

Table 4. Supersymmetric p-branes in D dimensions that scale like g−1
s , i.e., σ = 1. The table

agrees with that of [11] and is in accord with the ‘D-brane wrapping rule’. The table contains the

usual D-brane spectrum.

With these conventions the full list of mixed symmetry tensors in D = 11 necessary

for the counting in table 2 is

T(10,1), T(3), T(6), T(8,1), (2.7a)

T(9,3), T(9,6), T(9,8,1), (2.7b)

T(10,1,1), T(10,4,1), T(10,6,2), T(10,7,4), T(10,7,7), T(10,8,2,1), T(10,8,5,1), T(10,8,7,2),

T(10,8,8,4), T(10,8,8,7), (2.7c)

T(11,4,3), T(11,5,1,1), T(11,6,3,1), T(11,6,6,1), T(11,7,4,2), T(11,7,6,3), T(11,7,7,5), T(11,8,3,1,1),

T(11,8,4,4), T(11,8,5,2,1), T(11,8,6,4,1), T(11,8,7,2,2), T(11,8,7,5,2), T(11,8,7,7,3),

T(11,8,8,1,1,1), T(11,8,8,4,1,1), T(8,8,5,4), T(11,8,8,6,2,1), T(11,8,8,7,4,1), T(11,8,8,7,7,1),

T(11,8,8,8,2,2), T(11,8,8,8,5,2), T(11,8,8,8,7,3), T(11,8,8,8,8,5), T(11,8,8,8,8,8). (2.7d)
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D\p 0 1 2 3 4 5 6 7 8 9

IIA 1

IIB 1

9 1 2

8 1 4 4

7 1 6 12 8

6 1 8 24 32 16

5 1 10 40 80 80

4 12 60 160 240

3 84 280 560

Table 5. Supersymmetric p-branes in D dimensions that scale like g−2
s , i.e., σ = 2. The table

agrees with that of [11] and is in accord with the ‘dual wrapping rule’. This table contains the

NS-branes and reductions of (generalised) Kaluza-Klein monopoles.

D\p 0 1 2 3 4 5 6 7 8 9

IIA

IIB 1

9 1 1

8 2 4 2

7 4 12 12

6 8 32 48

5 16 80 160

4 32 192 480

3 64 448 1344

Table 6. Supersymmetric p-branes in D dimensions that scale like g−3

s
, i.e., σ = 3. The table

agrees with that of [12] and is in accord with the ‘exotic wrapping rule’.

We have grouped the generators into four classes in a specific way that arises from the

form of their extremal (lowest) root vectors. The first line belongs to E8, the second line

to E9, the third line to E10 and the last line to E11. Solutions corresponding to the first

two lines with co-dimension at most two can be written in terms of D = 11 supergravity

by using the techniques of [25, 26]. The last two lines are associated with deformations of

supergravity [4, 5, 31].

The real root components of these mixed symmetry tensors are always obtained when

the maximal number of indices is identical. This can be seen by considering the action

of the lowering operators of GL(11, R) on the tensors. The lowest root component of the

multiplet is the one where all indices take their maximum value. For example, if we write

the tensor T(10,1,1) explicitly with indices as

T(10,1,1) : TM1...M10,N,P , (2.8)
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D\p 0 1 2 3 4 5 6 7 8 9

IIA

IIB 1

9 1

8 2

7 1 4

6 8 16

5 40 96

4 1 160 512

3 14 574 2304

Table 7. Supersymmetric p-branes in D dimensions that scale like g−4
s , i.e., σ = 4. There is no

obvious wrapping rule associated with this table.

D\p 0 1 2 3 4 5 6 7 8 9

6 8

5 80

4 32 480

3 448 2688

Table 8. Supersymmetric p-branes in D dimensions that scale like g−5

s , i.e., σ = 5. Dimensions in

which there are no branes have been eliminated from the table.

D\p 0 1 2 3 4 5 6 7 8 9

4 240

3 280 3360

Table 9. Supersymmetric p-branes in D dimensions that scale like g−6

s
, i.e., σ = 6. Dimensions in

which there are no branes have been eliminated from the table.

D\p 0 1 2 3 4 5 6 7 8 9

4 32

3 64 2688

Table 10. Supersymmetric p-branes in D dimensions that scale like g−7

s
, i.e., σ = 7. Dimensions

in which there are no branes have been eliminated from the table.

then the lowest root vector component is (M,N,P = 1, . . . , 11)

T2 ...11,11,11. (2.9)

We see that this tensor, reduced along the direction 11 will give rise to a pure nine-form.

In fact, it is the nine-form that the mass of massive type IIA couples to [28, 32]. We note

that the highest GL(11, R) level needed in E11 to accommodate all the tensors of (2.7)

is ℓ = 17.

– 9 –



J
H
E
P
1
0
(
2
0
1
1
)
1
4
4

D = 3:

σ\p 0 1 2 3 4 5 6 7 8 9

8 1 2304

9 1344

10 560

11 64

Table 11. Supersymmetric p-branes in 3 dimensions that scale like g−σ

s
for σ = 8, 9, 10, 11. This

table is different from the preceding ones as only D = 3 appears and we have therefore chosen a

more compact presentation.

One can also analyse the T-duality representations that occur for the different values

of σ. For σ ≤ 3, these were already given in [10, 12]. For σ = 4 we find that for D ≤ 7 the

following representations of SO(10 − D, 10 − D; R) arise12

(D − 2)-brane (7 − D)-form

(D − 1)-brane self-dual (10 − D)-form and (7 − D, 1) hook

In addition, there is a singlet (D − 3)-brane in D = 4.

For σ = 5 one finds the following representations of SO(10 − D, 10 − D; R) in D ≤ 7.

(D − 2)-brane (4 − D) tensor spinor

(D − 1)-brane (6 − D) tensor spinor and (4 − D, 1) hook spinor

For σ > 5 one can also easily determine the T-duality representations but since there

are very few cases that appear, we do not list them here. For even σ one obtains tensors

and for odd σ (general) tensor spinors. To recover the correct counting from the T-duality

representations one again has to restrict to real roots; alternatively, the correct counting

is given by the size of the SO(10 − D, 10 − D; R) Weyl orbit of the lowest weight.

3 Co-dimension two supergravity solutions

The IIA/IIB solutions that are required as additional sources for the supersymmetric branes

discussed in section 2 can be constructed from (discrete) U-duality. In the language of E11

introduced above this corresponds to Weyl transformations. In this section we exemplarily

construct some such solutions of co-dimension two.

3.1 D = 7 and 1/g2
s

As the first example we take 4-branes in D = 7 maximal supergravity with tension 1/g2
s in

string frame. There are two transverse directions that we take to be in directions 1 and 2.

The counting predicts a total of 12 such objects. They have the following ten-dimensional

origin

• Three singly wrapped NS5-branes by choosing one of the world-volume directions to

lie along one of the three compact directions.

12If D = 7 the hook tableau does not exist and the representation is absent. Similarly, in the table for

σ = 5.
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• Six wrapped Kaluza-Klein 6-monopoles. The NUT has to be in one of the three

compact directions, and another world-volume direction is along one of the other two

compact directions, leading to 3 × 2 possibilities.

• Three ‘non-standard’ branes. These are the ones that we will discuss in more detail

now.

Considered as real roots of E11 the three ‘non-standard’ branes correspond to

β1 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 6α8 + 4α9 + 2α10 + 4α11, (3.1a)

β2 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 7α8 + 4α9 + 2α10 + 4α11, (3.1b)

β3 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 7α8 + 5α9 + 2α10 + 4α11. (3.1c)

From a IIA perspective they are all at level (2, 4) since the coefficients of α10 and α11 are 2

and 4, respectively. They all belong to the GL(10, R) representation with an (8, 2) Young

tableau. Considering the affine null root δ that has level (2, 3) in the IIA decomposition,

we expect that all solutions are more complicated versions of the fundamental string that

sits at level (0, 1) = (2, 4)− (2, 3) in the level decomposition. Additionally, we expect from

the form of the roots that this string is extended along the directions 9 and 10.

Let us construct a solution corresponding to β1. The fastest way of doing this is by

realising β1 as a short Weyl transformation acting on a known solution. We choose

β1 = w8w11w8(β0) (3.2)

for β0 = δ−α8. The BPS seed solution corresponding to β0 is a (smeared) KK6-monopole

that is aligned as follows in IIA:

1 2 3̂ 4 5 6 7 8 9 10

× × × × × N ×

The hat on the direction 3 indicates that we choose this direction to be the time direction,

‘N’ indicates the NUT. The IIA metric of this solution is given in string frame by

ds2
β0

= H
(

(

dx1
)2

+
(

dx2
)2

+
(

dx8
)2
)

+ H−1
(

dx9 − Bdx8
)2

−
(

dx3
)2

+
(

dx4
)2

+
(

dx5
)2

+
(

dx6
)2

+
(

dx7
)2

+
(

dx10
)2

. (3.3)

All other fields vanish. The equations of motion are satisfied if H is harmonic and B is its

conjugate harmonic13

∂iH = −
∑

j=1,2

ǫij∂jB. (3.4)

We furthermore assume H to be positive.

The Weyl transformation w8 corresponds to an interchange of direction 8 and 9; the

Weyl transformation w11 is a double T-duality in directions 9 and 10 with subsequent

13We use ǫ12 = +1 and a sign choice was made in writing (3.4). The equations are also solved for the

opposite choice.
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interchange of the two directions [24]. Carrying out the transformation dictated by (3.2)

using the Buscher rules one obtains the following string frame configuration14

ds2
β1

= H̃
(

(

dx9
)2

+
(

dx10
)2
)

+ H
(

(

dx1
)2

+
(

dx2
)2
)

−
(

dx3
)2

+
(

dx4
)2

+
(

dx5
)2

+
(

dx6
)2

+
(

dx7
)2

+
(

dx10
)2

, (3.5a)

B9 10 = B̃, (3.5b)

φ =
1

2
log H̃. (3.5c)

All other field components vanish. The functions H̃ and B̃ are defined by

H̃ =
H

H2 + B2
, B̃ =

B

H2 + B2
(3.6)

and are also conjugate

∂iH̃ =
∑

j=1,2

ǫij∂jB̃. (3.7)

We see that our expectations regarding the configuration are borne out. The similarity to

the fundamental string (B.10) can be seen after rescaling to Einstein frame.

This type IIA solution is best interpreted as a solution of D = 7 supergravity where

one has reduced along the isometry directions 8, 9 and 10. In this case it couples not to

an (8, 2) mixed Young tableaux but to a pure 5-form. The tension of this object in string

frame can be shown to be 1/g2
s by standard U-duality techniques and we note that this

solution has already appeared in [25].

3.2 D = 7 and g−3
s

Table 6 predicts four 4-branes in D = 7 with tension proportional to g−3
s . One of them is

obtained by wrapping the S-dual of the D7 brane of type IIB, the origin of the other three

branes is not immediate from the standard string theory branes. They could be obtained

by SL(5, Z) U-duality from the wrapped S-dual in D = 7. We instead construct them

directly in type IIA by considering the corresponding E11 roots.

The four roots are

β1 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 6α8 + 4α9 + 3α10 + 3α11, (3.8a)

β2 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 6α8 + 5α9 + 3α10 + 3α11, (3.8b)

β3 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 7α8 + 5α9 + 3α10 + 3α11, (3.8c)

β4 = α3 + 2α4 + 3α5 + 4α6 + 5α7 + 7α8 + 5α9 + 3α10 + 4α11 (3.8d)

From the form of the roots, we can guess their type IIB intepretation. The first root is the

one corresponding to the S-dual of the type IIB 7-brane; the other three resemble more

complicated versions of the D1-branes. Similarly, we can give their origin in D = 11. Here,

14This is essentially the same calculation as in [26].
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the first three arise from wrapping the KK7-monopole in specific ways, whereas β4 is a

more complicated 3-brane.

In type IIA theory, the first three are similar to D0-particles whereas the last one is a

kind of D2-brane. Let us construct the solution for β3 and β4 explicitly. For β3 we do this

by reduction of a suitable (smeared) KK7-monopole of D = 11. From the root vector β3

one deduces that the KK7-monopole in D = 11 has to be

ds2
11 = H

(

(

dx1
)2

+
(

dx2
)2

+
(

dx11
)2
)

−
(

dx3
)

+
∑

k=4,5,6,7,9,10

(

dxk
)2

+ H−1
(

dx8 − Bdx11
)2

. (3.9)

The NUT is in the direction 8 and time is in direction 3. The functions B and H depend on

x1 and x2 and satisfy (3.4). This solution has to be reduced along the M-theory direction

x11. The result in IIA Einstein frame is

ds2
β3

= H̃−1/8H
(

(

dx1
)2

+
(

dx2
)

)2
− H̃−1/8

(

dx3
)2

+ H̃−1/8
∑

k=4,5,6,7,9,10

(

dxk
)2

+ H̃7/8
(

dx10
)2

, (3.10a)

φ = −3

4
log H̃, (3.10b)

A8 = −B̃, (3.10c)

where H̃ and B̃ are as in (3.6). As expected, the solutions couples to the 1-form potential

and is hence similar to a D0-brane.

Since β4 = w11(β3) we can construct the solution for β4 by performing a double T-

duality in directions 9 and 10 and subsequent exchange of directions 9 and 10. We need

to use the Buscher rules extended to the RR sector since the IIA vector potential is non-

vanishing. These have been studied for example in [28]. A version sufficient for our purposes

is derived in (B.9) in the appendix. The resulting solution of type IIA in Einstein frame is

ds2
β4

= H̃−3/8H
(

(

dx1
)2

+
(

dx2
)

)2
− H̃−3/8

(

dx3
)2

+ H̃−3/8
∑

k=4,5,6,7,9,10

(

dxk
)2

+ H̃5/8
(

(

dx10
)2

+
(

dx9
)2

+
(

dx10
)2
)

, (3.11a)

φ = −1

4
log H̃, (3.11b)

A8 9 10 = −B̃. (3.11c)

The solution couples to the 3-form potential of type IIA as expected and also displays a

metric characteristic of a D2-type object. This solution has appeared in slightly different

form in [25], where it was also shown that its tension in string frame scales like 1/g3
s .
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3.3 D = 4 and g−4
s

As one example for string frame tension 1/g4
s we study a co-dimension two brane in D = 4.

According to table 7 there is a single such object. Its root vector is

β = α3 + 2α4 + 4α5 + 6α6 + 8α7 + 10α8 + 7α9 + 4α10 + 5α11. (3.12)

The origin of this solution in type IIA and type IIB is that of a more complicated NS5-

brane, whereas in D = 11 it is related to the M5-brane. We construct the solution in type

IIA by starting from a known solution and performing an appropriate series of duality

transformations.

One way of arriving at β is by starting from

β0 = α3 + 2α4 + 3α5 + 5α6 + 7α7 + 9α8 + 6α9 + 3α10 + 4α11 (3.13)

(which agrees with w8w9w7w8w6w7(β4) with β4 of (3.8d)) and then considering the follow-

ing chain of E11 Weyl transformations

β = w10w9w8w7w6w5w11(β0). (3.14)

The only transformations that do not correspond simply to a permutation of space-like

directions in type IIA are the ones in with indices 10 and 11; we will deal with them by

lifting the solution corresponding to β0 to D = 11 where the reflection in 10 is also a

simple permutation.15 The reflection in 11 is a, as before, a double T-duality in type IIA

in directions 9 and 10 with interchange of the two directions.

The type IIA Einstein frame solution corresponding to β0 (obtained as a permutation

variant of (3.11)) is

ds2
β0

= HH̃−3/8
(

(

dx1
)2

+
(

dx2
)2
)

− H̃−3/8
(

dx3
)2

+ H̃−3/8
∑

k=4,5,9,10

(

dxk
)2

+ H̃5/8
(

(

dx6
)2

+
(

dx7
)2

+
(

dx8
)2
)

, (3.15a)

φ = −1

4
log H̃, (3.15b)

A6 7 8 = −B̃. (3.15c)

The w11 reflection gives the metric IIA Einstein frame solution

ds2
w11(β0) = HH̃−5/8

(

(

dx1
)2

+
(

dx2
)2
)

+ H̃3/8
∑

k−6,7,8,9,10

(

dxk
)2

+ H̃−5/8
(

−
(

dx3
)2

+
(

dx4
)2

+
(

dx5
)2
)

, (3.16a)

φ =
1

4
log H̃, (3.16b)

A3 4 5 = − 1

H̃
. (3.16c)

15Note that is the final reflection in 10 that changes the scaling of the tension with gs.
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Performing now the remaining transformations of (3.14) one arrives finally at the solution

for β in type IIA Einstein frame

ds2
β = HH̃−3/4

(

(

dx1
)2

+
(

dx2
)2
)

− H̃−3/4
(

dx3
)2

+ H̃−3/4
(

dx4
)2

+ H̃1/4
10
∑

k=5

(

dxk
)2

, (3.17a)

φ = −1

2
log H̃, (3.17b)

B3 4 = − 1

H̃
. (3.17c)

We see that it indeed couples to the NS-NS 2-form as expected and has a metric similar to

that of an NS 5-brane. By the usual U-duality arguments its tension in string frame scales

like 1/g4
s . This solution has been already listed in [25].

3.4 D = 3 and g−4
s

As a final example we consider another 1/g4
s brane, this time a 0-brane in D = 3. Out

of the 14 such objects in table 7, 7 correspond more complicated NS 5-branes of type IIA

(obtained by reduction of solutions of the type studied just now) whereas there are 7 purely

gravitational solutions that we now aim to construct. They correspond to tensors of shape

(8, 7, 1) in type IIA and are hence generalised Kaluza-Klein monopoles.

One E11 root that corresponds to such an object is

βG = α3 + 3α4 + 5α5 + 7α6 + 9α7 + 11α8 + 7α9 + 4α10 + 6α11. (3.18)

It can be reached from β of (3.12) by the following chain of Weyl transformations:

βG = w11w8w7w6w5w4(β). (3.19)

All of these operations we can carry out easily as permutations and (double) T-duality

transformation in type IIA. What one arrives at is the following Einstein frame metric16

ds2
βG

= HH̃−1
(

(

dx1
)2

+
(

dx2
)2
)

+

9
∑

k=4

(

dxk
)2

+ H̃
(

dx10
)2

+ 2dx3dx10. (3.20)

All other fields are zero as this solution is purely gravitational. As we only performed

T-dualities on the solution (3.17), the solution also has a string frame tension 1/g4
s . This

solution was given before in [25].

3.5 Relation to Geroch group

The proper language for analysing solutions that depend on two (or less) transverse di-

rection is that of the Geroch group [33–35]. The Geroch group is the infinite-dimensional

16Note the absence of −
`

dx3
´2

in the metric which stems from the cancellation of terms when applying

the T-duality rules (B.9).
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solution generating group of supergravity solutions that have D − 2 commuting Killing

vectors. It is an affine symmetry group [35, 36]; in the present case, it is affine E8, i.e.,

E9 [36, 37]. All the solutions relevant here are in fact described by an affine SL(2, R)

subgroup of E9.

A convenient quantity for parametrising such solutions is the complex Ernst potential

that we here define as [26]17

E = B + iH. (3.21)

The conjugate harmonic equation (3.4) then becomes the Cauchy-Riemann condition for

E to be holomorphic in ξ = x1 + ix2. The transformed Ernst potential Ẽ = B̃ + iH̃ then is

anti-holomorphic in ξ according to (3.7). Furthermore, the two Ernst potentials are related

by

Ẽ =
1

Ē . (3.22)

Thinking of E as parametrising the upper half plane, this corresponds to the action of the

matrix
(

1 0

0 −1

)

∈ PGL(2, Z) (3.23)

on it, where a negative determinant amounts to an additional complex conjugation of E .

Any holomorphic Ernst potential E corresponds to a BPS solution [26] and hence

any holomorphic transformation of E will give a new BPS solution. Infinite towers of

supersymmetric solutions were constructed using this approach in [26]. However, the way

of constructing these solutions required going to higher and higher level in the affine group.

The mixed symmetry tensors in the affine group embedded in E11 are of the form [31, 38, 39]

T(9,9,...,9,3), T(9,9,...,9,6), T(9,9,...,9,8,1), (3.24)

where we have used the GL(11, R) ⊂ E11 decomposition that is appropriate for D = 11

supergravity. The number of repetitions of columns of length 9 is equal to the affine level

ℓaff . We see that only up to affine level equal to ℓaff = 1 it is possible to obtain forms in

D ≥ 3 dimensions. The other supersymmetric solutions of co-dimension two in the infinite

towers of [26] are brane solutions only in D = 2 and therefore do not contribute to table 2.18

4 Co-dimension less than two solutions?

In this section, we address the issue of constructing supergravity solutions with co-

dimension equal to one or zero. We will see by means of an example that the construction

17This complex function of two real fields is sufficient as long as one stays in an SL(2, R) subgroup as we

are doing for the elementary BPS solutions.
18An additional complication beyond ℓaff = 1 is that one also has to perform T-dualities in a time-like

direction. Such T-dualities can change the signature of the theory [40–42] and some of the infinitely many

solutions of [26] are therefore solutions of theories with different signature.
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of these objects is not always possible without also considering deformations of maximal

supergravity.

The example we consider are space-filling branes in D = 8 with string frame tensions

scaling like g−3
s . Table 6 predicts two such objects, the corresponding real roots are

β1 = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 6α6 + 7α7 + 8α8 + 4α9 + 3α10 + 4α11, (4.1a)

β2 = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 6α6 + 7α7 + 8α8 + 7α9 + 3α10 + 4α11. (4.1b)

They only differ in the α9 coefficient. Viewed from D = 11 they are part of the level four

tensor with Young tableau (10, 1, 1), i.e., the Romans mass of (2.8). This representation

does not correspond to any of the gradient representations of [38] or to the the dual fields

of [31]. But it is known to be the one that gives rise to the Romans mass [43] upon

dimensional reduction to D = 10 [32]. Viewed from a type IIA perspective the roots (4.1)

belong to a similar (9, 1, 1) representation of GL(10, R).

However, when viewed as coming from type IIB, the two roots are very different due

to the different α9 coefficient. The root β1 belongs to a pure eight-form potential in IIB,

whereas β2 belongs to a tableau of shape (10, 2, 2) at level seven. This is indeed what is

to be expected since we know that there is a space-filling g−3
s brane in type IIB already in

D = 10, namely the S-dual of the D7-brane. Its dimensional reduction to D = 8 will give

a similar brane in D = 8 and it is the one associated with β1. β2, however, does not have

such a simple explanation and it represents the new generalised KK-monopole required for

making the counting correct.

Attempting to construct the local solution corresponding to β2 we consider a sequence

of Weyl transformations that relate β2 to known solutions. The following relation using a

fundamental Weyl reflection gives the solution

β2 = w9(β1). (4.2)

Since we know what IIB solution β1 corresponds to, and w9 is represented as the exchange

of directions 9 and 10 in IIA language, all we would need to do is to take the β1 type IIB so-

lution (S-dual of D7), translate it into IIA variables and then exchange directions 9 and 10.

When trying to do this in practice one encounters the problem that the necessary

IIA version of the D7 brane (or its S-dual) is the D8-brane (or its ‘S-dual’). Whereas the

D7-brane is a bona fide solution of type IIB supergravity with two transverse directions on

which all quantities depend holomorphically, the D8 brane is not a solution of the usual

type IIA: One needs to consider the massive deformation of Romans to accommodate

the D8-brane [27]. That the D8-brane does not arise in type IIA can be seen as follows.

In order to T-dualise one needs an isometry direction in the transverse space. However,

since all everything depends holomorphically on the transverse space, turning one of the

two directions isometric will render all functions constant and then the IIB solution is

diffeomorphic to flat space. This can be circumvented in massive IIA theory [28]. Therefore,

we see that in order to describe all the supersymmetric branes of table 2, we need to include

all possible deformations (massive/gaugings) of maximal supergravity as well. We leave

the construction of these solutions in gauged maximal supergravity or massive supergravity

to future work.

– 17 –



J
H
E
P
1
0
(
2
0
1
1
)
1
4
4

5 Conclusions

In this paper we have determined the number of supersymmetric p-branes associated with a

(p+1)-form potential in 3 ≤ D ≤ 10 dimensional maximal supergravity. The rule for finding

the correct number rested on identifying supersymmetric branes as associated with real

roots of E11 as imaginary roots do not correspond to supersymmetric configurations [21].

The numbers we have obtained in this way coincide perfectly with the counting done by

completely different means for the cases that were analysed in [11, 12]. Our results are

complete and give predictions for supersymmetric branes that become very heavy at weak

string coupling. For all supersymmetric branes we have determined their origin in ten-

dimensional IIA and IIB theory and M-theory in terms of mixed symmetry tensors.

All the new branes that are found in this way have co-dimension at most two. For the

co-dimension two case we have explained how to identify the local supergravity solutions

and have derived them by analysing Weyl orbits in E11. The solutions thus obtained had

already been derived differently in the literature in [25]. We have not addressed the issue

of constructing finite energy solutions by suitable superpositions, i.e., choices of the Ernst

potential in (3.21) but suspect that this will go very much along the lines of [44]. We also

see how to associate the co-dimension two solutions to mixed symmetry tensors of maximal

supergravity. This we did for the example of type IIA and have exhausted the list of affine

generators in (A.1). Clearly, the same can be done for type IIB and D = 11 supergravity.

For solutions with co-dimension at most one, the treatment given here in terms of

massless or ungauged supergravity is generally not sufficient and the formalism will have to

be extended to construct the new solutions. The role of all the new solutions for microstate

counting remains to be clarified.

Acknowledgments

The author would like to thank E. Bergshoeff for valuable correspondence and S. Theisen

for useful discussions.

Note added. After this paper was finished, the preprint [45] appeared that extends the

Wess-Zumino analysis of [9–12] for D ≥ 6. Where comparable those results are also in

agreement with ours. Similarly, the paper [46] appeared after first release of this paper and

contains some overlap with the results discussed in section 3.

A Type IIA and IIB origin of all solutions

In this appendix, we give the complete list of all tensors in type IIA and type IIB necessary

for accommodating all supersymmetric solutions summarised in table 2.

The type IIA mixed tensor fields necessary for accommodating all the solutions are:

T(9,1), T(1), T(2), T(3), T(5), T(6), T(7), T(7,1), (A.1a)

T(8,1), T(8,2), T(8,3), T(8,5), T(8,6), T(8,7), T(8,7,1), (A.1b)
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T(9), T(9,1,1), T(9,3), T(9,3,1), T(9,3,3), T(9,4,1), T(9,5,1), T(9,5,2), T(9,6), T(9,6,2), T(9,6,3),

T(9,6,4), T(9,6,5,2), T(9,6,6), T(9,7,1), T(9,7,1,1), T(9,7,2,1), T(9,7,4), T(9,7,4,1), T(9,7,5,1),

T(9,7,6,1), T(9,7,6,2), T(9,7,7), T(9,9,7,2), T(9,7,7,3), T(9,7,7,6), T(9,7,7), (A.1c)

T(10,1,1), T(10,3,2), T(10,3,3), T(10,4), T(10,4,1), T(10,4,1,1), T(10,4,3), T(10,5,1,1), T(10,5,2),

T(10,5,2,1), T(10,5,3,1), T(10,5,5), T(10,5,5,1), T(10,6,2), T(10,6,3,1), T(10,6,3,2),

T(10,6,4,2), T(10,6,5,2), T(10,6,5,3), T(10,6,6,1), T(10,6,6,3), T(10,6,6,4), T(10,6,6,5),

T(10,7,2), T(10,7,2,1,1), T(10,7,3,1,1), T(10,7,3,3), T(10,7,4), T(10,7,4,1), T(10,7,4,1,1),

T(10,7,4,2), T(10,7,4,2,1), T(10,7,4,4), T(10,7,5,2,1), T(10,7,5,3), T(10,7,5,3,1),

T(10,7,5,4,1), T(10,7,6,1,1), T(10,7,6,2,2), T(10,7,6,3), T(10,7,6,4,1), T(10,7,6,4,2),

T(10,7,6,5,2), T(10,7,6,6,3), T(10,7,7), T(10,7,7,1,1,1), T(10,7,7,2,2), T(10,7,7,3),

T(10,7,7,3,1,1), T(10,7,7,4,1,1), T(10,7,7,4,3), T(10,7,7,4,4), T(10,7,7,5), T(10,7,7,5,1),

T(10,7,7,5,1,1), T(10,7,7,5,2), T(10,7,7,5,2,1), T(10,7,7,5,4), T(10,7,7,6,2,1), T(10,7,7,6,3),

T(10,7,7,6,3,1), T(10,7,7,6,4,1), T(10,7,7,6,6), T(10,7,7,6,6,1), T(10,7,7,7,1,1), T(10,7,7,7,2,2),

T(10,7,7,7,3), T(10,7,7,7,4,1), T(10,7,7,7,4,2), T(10,7,7,7,5,2), T(10,7,7,7,6,2), T(10,7,7,7,6,3),

T(10,7,7,7,7,1), T(10,7,7,7,7,3), T(10,7,7,7,7,4), T(10,7,7,7,7,5), T(10,7,7,7,7,7). (A.1d)

As in (2.7), we have grouped them into four classes according to the origin of their lowest

root vectors in E8, E9, E10 or E11.

The higher-dimensional of all the branes of table 2 can be found in type IIB by con-

sidering the following set of tensors:

T(9,1), T(0), T(2), T(4), T(6), T(7,1), (A.2a)

T(8), T
′
(8).T(8,2), T(8,4), T(8,6), T(8,7,1), (A.2b)

T(9,2,1), T(9,3), T(9,4,1), T(9,5,2), T(9,6,1), T(9,6,3), T(9,6,5), T(9,7,1,1), T(9,7,3,1),

T(9,7,4), T(9,7,5,1), T(9,7,6,2), T(9,7,7,1), T(9,7,7,3), T(9,7,7,5), T(9,7,7,7) (A.2c)

T(10), T
′
(10), T(10,2,2), T(10,4), T(10,4,1,1), T(10,4,2), T(10,4,4), T(10,5,2,1), T(10,5,4,1),

T(10,6,2), T(10,6,2,2), T(10,6,3,1), T(10,6,4,2), T(10,6,5,1), T(10,6,5,3), T(10,6,6),

T(10,6,6,2), T(10,6,6,4), T(10,6,6,6), T(10,7,1,1,1), T(10,7,3,1,1), T(10,7,4,1), T(10,7,4,2,1),

T(10,7,4,3), T(10,7,5,1,1), T(10,7,5,3,1), T(10,7,5,5,1), T(10,7,6,3), T(10,7,6,3,2), T(10,7,6,4,1),

T(10,7,6,5,2), T(10,7,6,6,3), T(10,7,7,1,1), T(10,7,7,2,1,1), T(10,7,7,3,3), T(10,7,7,4,1,1),

T(10,7,7,5,1), T(10,7,7,5,2,1), T(10,7,7,5,3), T(10,7,7,5,5), T(10,7,7,6,1,1), T(10,7,7,6,3,1),

T(10,7,7,6,5,1), T(10,7,7,7,3), T(10,7,7,7,3,2), T(10,7,7,7,4,1), T(10,7,7,7,5,2), T(10,7,7,7,6,3),

T(10,7,7,7,7), T(10,7,7,7,7,2), T(10,7,7,7,7,4), T(10,7,7,7,7,6). (A.2d)
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B Conventions

We use the mostly plus convention for the metric.

B.1 Type IIA and type IIB

Our conventions for type IIA and type IIB supergravity (in a non-democratic formulation)

are as follows. The NS-NS sector action in string frame is

SNS−NS =

∫

d10x
√
−gse−2φ

(

Rs + 4(∂φ)2 − 1

12
H2

(3)

)

, (B.1)

where we have eliminated Planck’s constant and the pre-factor. Upon changing to the

Einstein frame metric gE
mn = e−φ/2gs

mn, the action becomes

SNS−NS =

∫

d10x
√

−gE

(

RE − 1

2
(∂φ)2 − 1

12
e−φH2

(3)

)

. (B.2)

Here, H2
(3) = HmnpH

mnp. The NS-NS sector is common to type IIA and type IIB, however,

it will be useful to distinguish the fields in the two theories. We put hats on all type

IIB quantities.

The string frame action for the R-R sector of IIA is given by

S
(IIA)
R−R =

∫

d10x
√
−gs

(

−1

4
F 2

(2) −
1

48
F 2

(4)

)

. (B.3)

For type IIB it is given by the pseudo-action (of course, to be supplemented by self-

duality of the five-form)19

S
(IIB)
R−R =

∫

d10x
√

−ĝs

(

−1

2
F̂ 2

(1) −
1

12
F̂ 2

(3) −
1

480
F̂ 2

(5)

)

. (B.4)

In both actions, F(p+1) denotes a field strength with p + 1 anti-symmetric indices arising

from a p-form potential; its square is constructed by full contraction with the metric. We

do not give the Chern-Simons terms as they will vanish for all solutions considered in this

paper. Similarly, we will not give the ‘transgression’ and Chern-Simons type terms that

appear in the definition of the various field strengths.

In the presence of an isometry, the two theories become equivalent and one can map

one set of variables to the other.20 Assume that z = 10 is the isometry direction. The map

19In string frame, the SL(2, R) symmetry of type IIB is not manifest since the metric transforms. In

Einstein frame, the kinetic terms for the two scalars combine as usual into − 1
2
τ−2
2 ∂τ∂τ̄ , where τ = χ̂+ ie−φ̂

and ∂χ̂ = F̂(1) and SL(2, R) acts by fractional linear transformations on τ . The modified two 3-form field

strengths (F̂(3) + χ̂Ĥ(3), Ĥ(3)) form an SL(2, R) doublet. It is the modified field strengths that satisfy trivial

Bianchi identities (and hence derive directly from 2-form potentials that also transform as a linear doublet).

The 5-form potential F̂(5) is invariant but satisfies a non-trivial Bianchi identity [47]. All this also follows

from the structure of the exceptional algebra [48, 49].
20This is clear since there is only one maximal ungauged supergravity theory in D = 9. Relations of the

type below have already been derived before, see for instance [50].
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between the two reduced theories is most easily done in the Einstein frame. We write the

reduction ansatz in terms of the zehnbein decomposed as a block diagonal matrix21

em
a =

(

ecϕeµ
α e−7cϕAµ

0 e−7cϕ

)

, where c =
1

4
√

7
. (B.5)

The field strength of the Kaluza-Klein vector A will be denoted by F in order to distinguish

it from the forms arising from the reduction of the various p-form fields. With this ansatz

the NS-NS sector action (B.1) reduces to

SNS−NS =

∫

d9x
√

−g(9)

(

R(9) −
1

2
(∂ϕ)2 − 1

2
(∂φ)2

−1

4
e
−φ+ 3

√

7
ϕ
H2

(2) −
1

4
e
− 4

√

7
ϕF2

(2) −
1

12
e
−φ− 1

√

7
ϕ
H2

(3)

)

, (B.6)

where we have set the volume of the isometry direction to one. Again, we do not give the

full definitions of the various field strengths as they will not matter in our solutions. The

reduced action is valid for both type IIA and IIB; one has to put hats on all variables for

type IIB.

The type IIA R-R sector (B.3) reduces in Einstein frame to

S
(IIA)
R−R =

∫

d9x
√

−g(9)

(

−1

2
e

3
2
φ+

√

7
2

ϕF 2
(1) −

1

4
e

3
2
φ− 1

2
√

7
ϕ
F 2

(2)

− 1

12
e

1
2
φ+ 5

2
√

7
ϕ
F 2

(3) −
1

48
e

1
2
φ− 3

2
√

7
ϕ
F 2

(4)

)

, (B.7)

whereas the type IIB R-R sector action (B.4) reduces to22

S
(IIB)
R−R =

∫

d9x
√

−ĝ(9)

(

−1

2
e2φ̂F̂ 2

(1) −
1

4
e
φ̂+ 3

√

7
ϕ̂
F̂ 2

(2)

− 1

12
e
φ̂− 1

√

7
ϕ̂
F̂ 2

(3) −
1

48
e

2
√

7
ϕ̂
F̂ 2

(4)

)

. (B.8)

The map between the two theories (in Einstein frame) is now easily deduced to be23

g(9) = ĝ(9), H(3) = Ĥ(3), (B.9a)

F(1) = F̂(1), F(4) = F̂(4), (B.9b)

F(2) = F̂(2), F(3) = F̂(3), (B.9c)

F(2) = Ĥ(2), H(2) = F̂(2), (B.9d)

together with the (orthogonal) transformation of dilatons

φ =
3

4
φ̂ +

√
7

4
ϕ̂, ϕ =

√
7

4
φ̂ − 3

4
ϕ̂. (B.9e)

21We omit the Einstein frame superscript in order to keep the expressions more legible. Our reduction

ansatz gives the Einstein frame in D = 9.
22Note that the pseudo-action is transformed into a proper action as there is no longer any problem with

self-duality in nine dimensions. The five-form in nine dimensions was dualised into a four-form.
23The relations for the field strengths can be directly integrated up to the corresponding potentials,

ignoring Chern-Simons and transgression terms.
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B.2 (Some) known solutions

The fundamental string extended in directions 9 and 10 and smeared such that the only

remaining transverse directions are 1 and 2 is written in Einstein frame as [51]

ds2
F1 = H−3/4

(

(

dx9
)2 −

(

dx10
)2
)

+ H1/4
∑

i=1,...,8

(

dxi
)2

, (B.10a)

φ = −1

2
log H, (B.10b)

B9 10 = 1/H, (B.10c)

where H is harmonic. As it only uses the NS-NS fields, it is a solution of type IIA and IIB

identical in form.

Interpreting it as a solution of type IIB we can perform an S-duality transformation.

The result is the D1 string solution. Its metric is identical to (B.10a) but the dilaton φ

changes sign and B9 10 is replaced by the Ramond potential A9 10.
24

The D7 brane of type IIB is given by the following expression in Einstein frame

ds2
D7 = τ2

(

(

dx9
)2

+
(

dx10
)2
)

−
(

dx3
)2

+
∑

i=1,2,4,...,8

(

dxi
)2

, (B.11a)

τ = χ + ie−φ (B.11b)

for any holomorphic (or anti-holomorphic) τ = τ(x1 + ix2). We have aligned this solution

such that the transverse space is in directions 9 and 10 and time is in direction 3. In this

way it corresponds to the E11 root

β = α1 + 2α2 + 3α3 + 4α4 + 5α5 + 6α6 + 7α7 + 8α8 + 4α9 + α10 + 4α11. (B.12)

As is well-known, this solution is not of finite energy and one has to use the modular

j-function to ‘restrict’ it to the fundamental domain of the τ plane such that the energy

density becomes proportional to the finite volume of the fundamental domain rather than to

the infinite volume of the full upper half plane [15, 44]. One also has to change the conformal

factor of the two-dimensional transverse space appropriately. This makes the configuration

SL(2, Z) invariant. If one uses 24 D7 branes the transverse space becomes smooth.

Performing an S-duality on the D7 solution produces the S7 brane which has the same

Einstein frame metric but τ replaced by −1/τ . On β of (B.12) it has the effect of increasing

the coefficient of α10 from 1 to 3 and therefore one obtains the root β1 of (4.1a).
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